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Abstract
Understanding the influences of global climate change on soil microbial communities 
is essential in evaluating the terrestrial biosphere's feedback to this alarming anthro-
pogenic disturbance. However, little is known about how intra-site historical climate 
variability can mediate the influences of current climate differences on community 
dissimilarity and assembly. To fill this gap, we examined and disentangled the interac-
tive effects of historical climate variability and current climate differences on the soil 
bacterial community dissimilarity and stochasticity of community assembly among 
143 sites from 28 forests across eastern China. We hypothesize that the relative im-
portance of stochasticity and community dissimilarity are related to historical climate 
variability and that an increasing sum of intra-site historical variability enhances sto-
chasticity while reduces dissimilarity between two communities. To test our hypothe-
sis, we statistically controlled for covariates between sites including differences in soil 
chemistry, plant diversity, spatial distance, and seasonal climate variations at annual 
timescales. We observed that an increase in inter-site current climate differences led 
to a reduced impact of stochasticity in community assembly and a pronounced diver-
gence between communities. In stark contrast, when communities were subjected to 
a high level of intra-site historical climate fluctuation, the observed impact incurred 
from current climate differences was substantially weakened. Moreover, the influ-
ence of increased historical variability was consistent along the gradient of current 
temperature differences between sites. However, effects induced by historical fluc-
tuation in precipitation were disproportional and only evident when small inter-site 
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1  |  INTRODUC TION

Evidence is mounting that changes in climate such as warming and 
water stress influence the structure and functionality of soil bacte-
rial communities (Belay-Tedla et al., 2009; Cregger et al., 2012; Guo 
et al., 2018, 2019; Ren et al., 2018; Sheik et al., 2011; Zhou et al., 
2012, 2016). Our understanding of these effects has been remark-
ably informed by field studies with experimental climate change 
treatments. The use of these controlled experimental settings is 
highly informative in assessing the impacts of climate change. For 
example, the impact of elevated temperature on the microbial struc-
ture and functioning in soils has been examined by a continuous 
2–3℃ field-based warming treatment (Belay-Tedla et al., 2009; Guo 
et al., 2018; Sheik et al., 2011; Zhou et al., 2012). However, most of 
these experiments generally simulate a persistent disturbance and 
focus on the effects of changes in mean values (i.e., “trend effects”) 
for different climate factors and, as a result, do not explicitly capture 
the influence of climate variability or extreme events (Jentsch et al., 
2007; Thompson et al., 2013). It is projected that the frequency and 
magnitude of extreme weather events will increase in the near fu-
ture (Cai et al., 2015; Cohen et al., 2018; Screen & Simmonds, 2014). 
These extreme weather events change the long-held climate vari-
ability patterns globally (Jentsch et al., 2007; Thompson et al., 2013) 
and could greatly alter the community structure and ecosystem 
functioning (e.g., composition and secondary production of macro-
invertebrates in freshwaters; Ledger et al., 2011). Elucidating the ef-
fects of historical climate variability on microbial communities is vital 
for better estimating its future dynamics and the impacts on ecosys-
tem functions. Therefore, we must advance our understanding of 
how microbial communities and the relevant assembly processes re-
spond to historical climate variability and its legacy effects (Hawkes 
& Keitt, 2015), although currently, little is known.

Previous studies of spatial and temporal patterns in climate fluc-
tuations over decades have revealed enormous ecological impacts 
on terrestrial plant and animal biology through both direct and indi-
rect pathways (Stenseth et al., 2002). Recently, how constraints from 
prior conditions (i.e., historical contingency) may alter the microbial 
responses to current environmental changes have attracted a great 
deal of attention. Increasing evidence demonstrates that the re-
sponses of soil respiration (Hawkes et al., 2017), decomposition rate 

(Martiny et al., 2017), enzyme activity (Averill et al., 2016), microbial 
growth (de Nijs et al., 2019; Gutknecht et al., 2012), diversity (Ladau 
et al., 2018), and community composition (Barnard et al., 2015; 
Evans & Wallenstein, 2012; Evans et al., 2014) are subject to current 
environmental factors but are shaped by the legacies of past climate 
conditions. These studies have highlighted that considering the dif-
ferences in historical environments is essential in predicting future 
microbial responses under climate change scenarios. Alternatively, 
there is an increasing awareness of the need for considering the 
influence of historical climate fluctuations (Hawkes & Keitt, 2015; 
Thompson et al., 2013), yet relatively little attention has been de-
voted. In particular, how such historical variability may influence the 
observed effects of current climate conditions on the differences 
between communities (i.e., β-diversity) as well as the relative roles of 
deterministic and stochastic processes (Dini-Andreote et al., 2015; 
Stegen et al., 2012; Vellend, 2010; Zhou et al., 2014; Zhou & Ning, 
2017) in community assembly remains unexplored.

Traditionally, human-induced climate changes such as global 
warming and drought are considered strong ecological forces that 
influence microbial diversity and shape community structure (Guo 
et al., 2018; Sheik et al., 2011; Zhou et al., 2012). When these im-
posed stresses persistently control and shape the communities with 
less environmental fluctuations, such abiotic filters tend to impose a 
strong natural selection on the community, which deterministically 
drives the community assembly (Ning et al., 2019; Zhou & Ning, 
2017). For example, increasing dissimilarities of soil microbial com-
munities between warmed and control samples (with large current 
climate differences) are found during succession over a long-term 
effect of warming (i.e., a persistently imposed environmental stress), 
indicating warming-driven deterministic filtering occurring on mi-
croorganisms (Guo et al., 2018). Therefore, a more substantial inter-
site difference of current climate conditions (ΔCC; e.g., generated by 
a natural temperature gradient or a persistent warming treatment) 
can lead to a decreasing impact of stochasticity in the assembly pro-
cesses (Figure 1a) and an increasing divergence between communi-
ties (Figure 1b).

Microorganisms are generally expected to exhibit resilience to 
environmental changes because they feature physiological plasticity, 
dormancy, resuscitation, faster growth and turnover rate, and rapid 
evolution (Hawkes & Keitt, 2015; Shade et al., 2012). In the face 

differences were observed. Consequently, if the prior climate variability is ignored, 
especially regarding environmental factors like temperature, we assert that the in-
fluence current climate differentiation has on regulating community dissimilarity and 
assembly stochasticity will be underestimated. Together, our findings highlight the 
importance and need of explicitly controlling the mean and the historical variability 
of climate factors for the next “generation” of climate change experiments to come.
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community assembly, community dissimilarity, current climate difference, ecological 
stochasticity, forest soil, historical climate fluctuation
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of shifting conditions, a highly resilient community likely responds 
quickly and is capable of recovering without qualitatively switching 
to an alternative stable state (Hawkes & Keitt, 2015; Shade et al., 
2012). Nevertheless, in highly fluctuating environments, the resil-
iency could be largely reduced by historical contingencies, the leg-
acies that can result from the local adaptation and priority effects 
caused by the previous environmental regime (Shade et al., 2012). 
As a result, a local community is expected to suffer more consider-
able random changes when it undergoes a higher degree of intra-site 
historical fluctuation (e.g., the inter-annual variation of temperature 
within site).

In terms of the stochastic processes in regulating the commu-
nity assembly as well as the divergence in community structure be-
tween communities, we hypothesize that the relative importance 
of stochasticity and the community dissimilarity are related to the 
historical climate variability (HC) of a given pair of communities. 
Particularly, when a pair of communities are under fluctuated condi-
tions and a larger sum of intra-site historical climate variability (ΣHC) 
is observed, the impact of stochasticity is expected to be enhanced 
(Figure 1c) with less community dissimilarity (Figure 1d) than those 

for community pairs under relatively constant environments (i.e., a 
smaller ΣHC).

According to this primary hypothesis, ΔCC and ΣHC show op-
posite effects on the impact of stochasticity and the community 
dissimilarity (Figure 1a–d). Thus, our second hypothesis is that the 
effects of ΔCC could be weakened by an enhanced ΣHC, especially 
when ΔCC is small. Specifically, under the scenarios with an increase 
in ΣHC, we expect that the magnitude (i.e., mean) increases for the 
impact of stochasticity (Figure 1e, solid line) while it decreases for 
the community dissimilarity (Figure 1f, solid line) along the gradient 
of ΔCC. Furthermore, we expect that the influence of the enhanced 
ΣHC is disproportional and more substantial when ΔCC is small. 
Particularly, a larger increase in stochastic impacts (Figure 1e, solid 
arrow line) and a greater decrease in the community dissimilarity 
(Figure 1f, solid arrow lines) are anticipated under small ΔCC than 
those under large ΔCC (Figure 1e,f, dashed arrow lines). Moreover, if 
the ΔCC is large with a stronger and dominant effect than ΣHC, the 
observed influence of the enhanced ΣHC would be reduced or may 
even be negligible (Figure 1e,f, dashed arrow lines).

Here, to test our hypotheses, we present a study ascertaining 
the effects of ΔCC and ΣHC on the beta-diversity and the rela-
tive importance of stochastic/deterministic assembly processes of 
soil bacterial communities in forest ecosystems. We evaluated the 
community dissimilarity and the impact of stochasticity (Ning et al., 
2019) among the 143 sites in 28 natural forest reserves across east-
ern China (Figure S1) with a wide range of climate conditions (Chen 
et al., 2020; Wang et al., 2019). We were particularly interested in 
how the long-term historical variability could mediate the effects of 
observed current climate differentiation.

F I G U R E  1  Conceptual diagrams showing our hypotheses in 
this study. We expect that a more substantial inter-site difference 
of current climate conditions (ΔCC) represents a stronger abiotic 
environmental stress and deterministically leads to a decreasing 
impact of stochasticity (a) and an increasing divergence between 
communities (b). In contrast, when a local community undergoes 
higher degree of intra-site historical fluctuation, it is expected 
to suffer more considerable random changes. When a pair of 
communities are under fluctuated conditions and a larger sum of 
intra-site historical climate variability (ΣHC) is detected, the impact 
of stochasticity is expected to be enhanced (c) with less community 
dissimilarity (d). Due to the opposite effects of ΔCC and ΣHC on 
the impact of stochasticity and the community dissimilarity, the 
enhanced ΣHC might weaken the effects of ΔCC, especially when 
ΔCC is small. Specifically, under the scenarios with an enhanced 
ΣHC, we expect that the magnitude (i.e., mean) increases for the 
impact of stochasticity increases (e, solid line) while it decreases 
for the community dissimilarity (f, solid line) along the gradient of 
ΔCC. Moreover, the effect of the enhanced ΣHC is expected to be 
disproportional and more evident when ΔCC is small. Particularly, 
a larger increase in stochastic impacts (e, solid arrow line) and a 
greater decrease in the community dissimilarity (f, solid arrow lines) 
are anticipated under small ΔCC. Moreover, we expected that the 
observed influence of the enhanced ΣHC would be reduced or 
may even be negligible (e and f, dashed arrow lines) when the ΔCC 
is large and provides a stronger and dominant effect than ΣHC 
[Colour figure can be viewed at wileyonlinelibrary.com]
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2  |  MATERIAL S AND METHODS

2.1  |  Study sites and soil sampling

We tested our hypotheses using 429  soil samples that were col-
lected from 28 natural forest reserves across a broad range of 
latitudes (21.88°–53.45°N) and longitudes (100.01°–129.65°E) in 
eastern China in 2012 (Figure S1; Table S1; Chen et al., 2020; Wang 
et al., 2019). The soil bacterial communities from these forest eco-
systems are shaped by the impacts of a wide gradient of climatic and 
edaphic conditions.

We collected top layer soils (0–10 cm in depth) from 3 to 14 sites 
in each forest reserve. The latitude, longitude, and elevation of 
each site were recorded by a portable GPS machine. The numbers 
of sites were determined approximately based on the sizes of for-
est reserves. The locations of sites were selected to represent the 
gradient of elevation for each forest reserve. In each sampling site, 
we collected three soil samples as biological replicates that were lo-
cated ∼5 m apart from each other. After the removal of vegetation 
litter, soils were sampled and stored in sterilized polyethylene bags 
and kept on ice immediately in the field and then transported to the 
laboratory.

We performed the measurement of soil properties and the mo-
lecular analysis for each biological replicate. In this study, we rarified 
9735 bacterial reads for each soil sample (i.e., replicate) and then 
combined all the reads from the three replicates within each site to 
generate one composited sample with a total of 29,205 reads (see 
detailed methods below). Accordingly, the soil properties of each 
site were estimated as the mean values of the three replicates (see 
detailed methods below). A few soil samples were discarded be-
cause their bags were broken during transportation. Sites without 
three replicates were then removed from the subsequent analyses. 
Overall, a total of 429 soil samples were used to represent the soil 
bacterial communities and soil properties of 143 sites among 28 for-
est reserves (Figure S1).

2.2  |  Soil properties and plant species richness

For each sample (i.e., replicate), soil properties, including moisture, 
pH, electrical conductivity (EC), total organic carbon (TOC), total ni-
trogen (TN), total phosphorus (TP), total potassium (TK), as well as 
available P, K, Al, Ca, and Mg, were measured as described in Wang 
et al. (2019). The mean values of the three replicates were then cal-
culated for each site (Table S2). For the subsequent analyses, the 
difference of soil properties between sites was calculated as the 
pairwise Euclidean distance based on the standardized data of these 
12 edaphic variables.

We obtained plant species richness from Wang et al. (2011). In 
brief, the plant species richness of each forest reserve (Table S2) was 
determined based on its spatial location and the woody plant dis-
tribution map (spatial resolution: 50  ×  50  km), which was created 
by Fang et al. (2011). In this distribution map of woody plant, they 

compiled the plant species distributions in China from all floras pub-
lished before 2008, including Flora of China, Higher Plants of China, 
Flora Reipublicae Popularis Sinicae, more than 120 volumes of provin-
cial floras, and many local floras across China. Moreover, 21 senior 
botanists from different regions of China were invited to check and 
supplement the plant species distributions in each region to improve 
the accuracy of this database. This distribution map matched the 
survey-based map within 95% confidence (Wang et al., 2012).

2.3  |  Climate factors and their historical variability

We downloaded public climate datasets generated by a 194 
weather station network spread across China from the National 
Meteorological Information Center (http://data.cma.cn/en; Figure 
S2). Although some weather stations have recorded the climate con-
ditions since 1949, the most comprehensive daily records of temper-
ature (°C) and precipitation (mm) from all the stations are available 
since 1952. Therefore, we extracted these daily records over a 60-
year period (1952–2012) to capture the historical climate fluctua-
tions. For temperature, we calculated the monthly means based on 
the daily data and then averaged the 12 monthly means as the an-
nual mean temperature (AMT) for each year. For precipitation, we 
summed up the daily data to generate the monthly sums and then 
added up the 12 monthly sums as the annual precipitation (AP) for 
each year. We estimated the yearly AMT and AP for each site by ap-
plying the kriging interpolation method (Kilibarda et al., 2014) using 
the “gstat” package in R, and obtained the interpolated AMT and AP 
according to the site location. By doing this, a total of 61 data points 
of yearly AMT (or AP) were obtained for each site over the 60-year 
period.

In addition, we compared the mean annual temperature (MAT) 
and mean annual precipitation (MAP) that were estimated by the 
kriging interpolation method against those from historical climate 
data in “WorldClim” public climate database v2.1 (Fick & Hijmans, 
2017). The monthly climate data for mean temperature and precip-
itation that were corrected by elevation were downloaded at high 
spatial resolution (30 s, ~1 km2). Because the historical climate data-
set in “WorldClim” was compiled for 1970–2000, the comparison 
was focused on this period. Monthly values were extracted based 
on the site locations using the “raster” package in R. For each site, 
we calculated the AMT and AP of each year and then calculated the 
MAT and MAP during the period from 1970 to 2000. Accordingly, 
the MAT and MAP based on datasets using the kriging interpola-
tion method were also calculated for 1970–2000. Consistent pat-
terns of historical climate conditions among our sites were observed 
between these two datasets with significant correlations (MAT: 
r = 0.93, p < 0.0001; MAP: r = 0.97, p < 0.0001; Pearson correlation; 
Figure S3). Notably, because sampling sites at a given forest reserve 
were selected to represent the altitudinal gradient, the macroclimate 
data from weather stations may not distinguish the local climate dif-
ferences among sites. Thus, the comparison of sites within the same 
forest reserve was excluded for the subsequent analyses.

http://data.cma.cn/en
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In this study, we used the interpolated data of 2012 (i.e., 
AMT.2012 and AP.2012) to represent the current climate condi-
tions (CC) of each site (Table S1) and calculated the ΔCC as the 
pairwise Euclidean distance of standardized values for each cli-
mate factor. We also calculated the MAT and MAP over the 60-
year period for each site (i.e., MAT.60yrs and MAP.60yrs that 
were calculated as the means of 61  yearly AMT and AP; Table 
S1). We found that the AMT and AP of 2012 were strongly and 
significantly correlated to their long-term averages (AMT.2012 
vs. MAT.60yrs: r  =  0.99, p  <  0.0001; AP.2012 vs. MAP.60yrs: 
r  =  0.97, p  <  0.0001; Pearson correlation). In addition, we per-
formed Mantel tests to compare the inter-site climate differences 
(i.e., the pairwise differences among 143  sites) between 2012 
and the averages over the 60-year period. The results of Mantel 
tests further suggested that the ΔCC could indicate the inter-site 
differentiation in the long-term average effect of environmental 
stress on the microbial communities (AMT.2012 vs. MAT.60yrs: 
r = 0.99, p < 0.001; AP.2012 vs. MAP.60yrs: r = 0.92, p < 0.001; 
Mantel test). Therefore, we used the current climate conditions 
to reflect the natural gradients of annual mean temperature and 
annual precipitation at the regional scale in this study.

We defined the intra-site historical climate variability (HC) as the 
coefficient of variation (i.e., a ratio of standard deviation over the 
mean, CV) of the interpolated values over the 60-year period (i.e., 
AMT.CV and AP.CV; Table S1). For a given pair of sites, we calcu-
lated the ΣHC as the sum of standardized values of the coefficient 
of variation for each climate factor. In this study, although we mainly 
focused on the potential effect of historical climate fluctuation on 
the assembly of soil bacterial communities, the influence of seasonal 
dynamics of climate conditions at the annual timescale could also 
alter the microbial communities. Thus, for each site, we calculated 
the CV of the monthly values of each year and then calculated the 
mean of 61 CV values over the 60-year period to estimate the intra-
site annual climate variation (i.e., TEM.CV and PRE.CV, indicating the 
means of annual variations of temperature and precipitation, respec-
tively; Table S1).

2.4  |  DNA extraction, sequencing, and 
sequence processing

We extracted the soil microbial DNA from 0.5  g of soil using 
the MoBio PowerSoil DNA extraction kit following the manu-
facturer's instructions. To characterized the bacterial communi-
ties, we amplified the V4 hypervariable region of the 16S rRNA 
gene using the 515F (GTGCCAGCMGCCGCGGTAA) and 806R 
(GGACTACHVGGGTWTCTAAT) primer pair (Chen et al., 2020). 
We constructed the sequencing libraries by pooling the ampli-
fied products from individual soil samples together in equimo-
lar concentrations. After purifying them using the E.Z.N.A.® Gel 
Extraction Kit, we conducted the sequencing on a 2 × 300 paired-
end MiSeq NextGen platform. We processed the raw sequenc-
ing data following the UPARSE pipeline (Edgar, 2013). Briefly, we 

merged the quality-filtered reads into paired-end sequences after 
deleting the short and low-quality sequences. After removing the 
chimeric and singleton sequences, we clustered the remaining 
reads into Operational Taxonomic Units (OTUs) at a 97% similar-
ity threshold. We aligned the representative bacterial OTUs using 
PASTA (Mirarab et al., 2015) and constructed the phylogenetic 
tree using FastTree (Price et al., 2010). We rarefied 9735 bacte-
rial reads for each soil sample. All the reads from the three bio-
logical replicates were further combined (i.e., a total of 29,205 
reads) as a composited sample to represent the community com-
position of each site. The representative sequences of bacterial 
OTUs, their abundances in each forest site, and the phylogenetic 
tree are available in figshare (https://doi.org/10.6084/m9.figsh​
are.12657464).

2.5  |  Estimating stochasticity of 
community assembly

To estimate the relative importance between stochastic and deter-
ministic processes in shaping the bacterial community structure, we 
calculated the phylogeny-based modified stochasticity ratio (pMST, 
%) for every pair of sites. The pMST is an index for pairwise compari-
son and is modified from previous stochasticity ratio indexes (Guo 
et al., 2018; Ning et al., 2019; Zhou et al., 2014). Briefly, we used the 
abundance-weighted beta-mean-nearest-taxon-distance (βMNTD) 
metrics (Stegen et al., 2012) to assess the phylogenetic dissimilar-
ity of bacterial communities between sites. We then calculated the 
pMST by comparing the observed and null expected phylogenetic 
beta-diversity as Equations (1) and (2) (Liang et al., 2020). Since the 
βMNTD has no fixed upper limit, we standardized the βMNTD by 
dividing it with the estimated maximum βMNTD as previously re-
ported (Ning et al., 2019). Then, we calculated the similarity as the 
complement, that is, 1  −  standardized dissimilarity. The detailed 
equations were listed below:

where Dij is the observed standardized βMNTD between sites i and j, 
Cij is the observed similarity, and Cij = 1 − Dij. Gij is the null expectation 
of standardized βMNTD between sites i and j, while Eij is the null ex-
pectation of the similarity. The null communities are generated based 
on a null model algorithm reported previously (Guo et al., 2018) with 
1000 randomization times. For the comparison of stochasticity, a given 
pair of sites with a higher value of pMSTij suggests that the stochastic 
processes play relatively more important roles in driving the commu-
nity turnover than those in other site pairs. The calculation was per-
formed using our in-house pipeline (http://ieg3.rccc.ou.edu:8080/).

(1)pMSTij =
Eij

Cij

∙
Dij

Gij

if Cij ≥ Eij

(2)pMSTij =
Gij

Dij

∙
Cij

Eij
if Cij < Eij

https://doi.org/10.6084/m9.figshare.12657464
https://doi.org/10.6084/m9.figshare.12657464
http://ieg3.rccc.ou.edu:8080/
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2.6  |  Statistical analyses

To visualize the temporal fluctuations from 1952 to 2012, we calcu-
lated the yearly averages of AMT and AP of sites within each forest 
reserve along the latitudinal gradient. For each climate factor, we 
performed the Pearson correlation to relate the historical climate 
variability to the latitude. For the spatial patterns of historical cli-
mate variability across eastern China, the coefficient of variation for 
each climate factor was interpolated by kriging and visualized on 
the map.

A total of 9750 data points were used in the statistical analy-
ses, focusing on the differences between any two sites in different 
forests. Notably, there were 10,153 data points for the complete 
pairing based on 143 sites, and we excluded 403 data points rep-
resenting the pairs of sites within the same forest reserve as men-
tioned above. To test our primary hypothesis, we applied multiple 
linear regression analysis to explore the relationships relating the 
ΔCC and ΣHC to the impact of stochasticity (pMST; or the com-
munity dissimilarity [weighted UniFrac distance, for convenience, 
such distance is referred to as UniFrac]). Because our survey was 
conducted across a large range of biomes and geographic areas, 
the observed differences in microbial community compositions 
among sites should also be influenced by a wide variety of soil 
environmental properties, plant diversities, spatial distances, as 
well as the seasonal climate variation at the annual timescale. 
Therefore, for a direct test of the relationships under our histor-
ical climate variability model, we calculated the partial effects of 
ΔCC and ΣHC on the pMST (or UniFrac), holding all other covari-
ates constant.

For this purpose, we regressed the pMST (or UniFrac) on all other 
covariates using standardized values (Equation 3):

where y is the pairwise values of pMST (or UniFrac); SPACE, SOIL, 
and PLANT are inter-site differences (i.e., Euclidean distances) of geo-
graphic locations, soil properties, and plant species richness, respec-
tively; ΣTEM.CV and ΣPRE.CV are the sum of intra-site annual climate 
variations of temperature and precipitation, respectively. The coeffi-
cients γs are slopes of the covariates, and ε is the intercept. Similarly, 
we regressed the ΔCC and ΣHC for each climate factor on these co-
variates (Equation 4):

where x is ΔCC (or ΣHC) of AMT (or AP). We then calculated the re-
siduals from Equation (3) (yres) and Equation (4) (xres), and used these 
residuals for the subsequent analyses.

Residuals of ΔCC and ΣHC for each climate factor were used in 
the multiple linear regression models (Equation 5):

where yres is residuals of pMST (or UniFrac), ΔCCres and ΣHCres are the 
residuals of ΔCC and ΣHC for AMT (or AP), respectively. The coeffi-
cients a and b are slopes of ΔCCres and ΣHCres, respectively, and c is 
the intercept. We extracted and compared the observed coefficients 
(coefobs) of ΔCCres and ΣHCres to reflect their relative importance in 
the model. We assessed the significance of the coefficients by a ran-
domization test. Specifically, we randomized the sample labels in the 
original matrices of pMSTres (or UniFracres) to generate null distance 
matrices and re-conducted the multiple linear regression analysis. We 
repeated this randomization 1000 times to form the null distribution 
of the coefficients. We calculated the P-value as the rank of the ob-
served coefficients relative to this null distribution. Meanwhile, the 
standardized effect size (SES) of the coefficient was calculated as fol-
low (Equation 6):

where coefobs is the observed coefficient value, coefnull is the mean of 
the simulated values, and SDnull is the standard deviation of the simu-
lated values. In addition, we performed Mantel and partial Mantel tests 
to examine the correlations between ΔCCres (or ΣHCres) and pMSTres 
(or UniFracres).

To test our second hypothesis, we explored how different levels 
of ΣHCres could mediate the effect of ΔCCres on the pMSTres and 
UniFracres from two angles. First, we expected a considerable dif-
ference of pMSTres (or UniFracres) between low and high levels of 
ΣHCres along the gradient of ΔCCres. Second, if the influence of the 
enhanced ΣHCres is more evident when ΔCCres is small, we expected 
a substantially greater slope of the relationship between pMSTres (or 
UniFracres) and ΔCCres under a large ΣHCres than that under a small 
ΣHCres.

In this study, to better understand the effect of ΣHCres along 
the whole gradient of ΔCCres, we clustered the whole dataset into 
two sub-datasets based on different levels of ΔCCres and ΣHCres for 
subsequent analyses (Figure S4). Particularly, for each climate factor, 
we first evenly split the range of ΔCCres into five bins, and divided 
the values of pMSTres and UniFracres into five groups accordingly. We 
then separated each group's values into two sub-groups based on the 
group's median of ΣHCres. By doing so, the level of ΔCCres between the 
two sub-groups remained similar while the differentiation in ΣHCres 
was maximized. We combined all the sub-groups under small or large 
ΣHCres (i.e., low or high levels of ΣHCres according to the group's me-
dian), respectively, to generate two sub-datasets with a similar range 
of ΔCCres but an apparent difference in ΣHCres. To test whether 
this arbitrary clustering may influence the results, we repeated this 
procedure to form different pairs of sub-datasets by evenly split-
ting the range of ΔCCres into 10, 15, and 20 bins, respectively and 
re-conducted the subsequent analyses. The raw data in terms of the 
clustering of subsets based on low and high levels of ΣHCres across 
different ranges of ΔCCres (i.e., 5, 10, 15, 20 bins) are available in 
figshare (https://doi.org/10.6084/m9.figsh​are.12657464).

We evaluated the difference of pMSTres (or UniFracres) between 
a given pair of sub-datasets by the Wilcoxon rank-sum test. In 

(3)y = �1 SPACE + �2 SOIL + �3 PLANT + �4 ΣTEM.CV + �5 ΣPRE. CV + �

(4)x = �1 SPACE + �2 SOIL + �3 PLANT + �4 ΣTEM.CV + �5 ΣPRE. CV + �

(5)yres = aΔCCres + bΣHCres + c

(6)SES. coef =
(

coefobs − coefnull

)

∕SDnull

https://doi.org/10.6084/m9.figshare.12657464
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addition, we calculated the effect size for this Wilcoxon rank-sum 
test using the “rstatix” package in R to estimate the magnitude of 
differences between the sub-datasets under small and large ΣHCres. 
The r values of the Wilcoxon effect size (Wilcox.effs r) were calcu-
lated as follow (Equation 7):

where Z is the Z statistic for the Wilcoxon rank-sum test and n is the 
sum of observations in both groups. The r value of Wilcox.effs varies 
from 0 to close to 1, and is used to define the magnitude of differ-
ences, including “negligible” (r < 0.1), “small” (0.1 ≤ r < 0.3), “moderate” 
(0.3 ≤ r < 0.5), and “large” (r ≥ 0.5).

Moreover, for a given pair of sub-datasets, we performed a sim-
ple linear model analysis to correlate pMSTres (or UniFracres) and 
ΔCCres and calculated the coefobs. We further calculated the differ-
ence of coefobs (Δcoef) between sub-datasets under small and large 
ΣHCres (Δcoef = coefsmall.ΣHCres – coeflarge.ΣHCres). The significance of 
Δcoef was also estimated by a randomization test (1000 times). We 
clustered each randomized dataset into two null sub-datasets, as 
mentioned above, and generated the null distribution of Δcoef. The 
SES.Δcoef was also calculated. The Δcoef, as well as the averages of 
pMSTres (or UniFracres), were used to examine whether the influence 
of an enhanced ΣHCres might be disproportional along the gradient 
of ΔCCres.

3  |  RESULTS

3.1  |  Current condition and historical variability of 
climate factors

The 143 sites from the 28 natural forest reserves were character-
ized by a wide variety of mean annual temperature (MAT.60yrs, 
11.9  ±  7.1°C) and mean annual precipitation (MAP.60yrs, 
1069.67 ± 561.4 mm) over the period from 1952 to 2012 (Table S1). 
We observed a consistent trend in the yearly AMT and AP among the 
different forest reserves along the latitude over the 60-year period 
(Figure S5). Generally, our results indicated an increasing AMT and a 
decreasing AP in eastern China over time. In addition, both AMT and 
AP decreased with increasing latitude (Figure S5). Furthermore, we 
found space-dependent patterns of historical variability over a half-
century of climate change (Figure S6), and the CV values were posi-
tively and significantly related to the latitude (Pearson's r, 0.65/0.71, 
AMT.CV/AP.CV, p < 0.001).

3.2  |  Opposite effects between ΔCC and ΣHC

Significant relationships (p < 0.05, randomization test) were found 
in the results of multiple linear regression, showing that the values 
of ΔCCres of AP were negatively related to pMSTres (coefobs: −0.068) 

(7)r = Z∕
√

n

TA B L E  1  Summary of statistics of multiple linear regression

Climate factors Variables

Stochasticity (pMSTres) Community dissimilarity (UniFracres)

coefobs p-value SES.coef coefobs p-value SES.coef

AMT ΔCCres −0.014 0.078 −1.325 0.013 0.125 0.994

ΣHCres 0.027 <0.001 2.792 −0.028 <0.001 −3.549

AP ΔCCres −0.068 <0.001 −11.606 0.049 <0.001 8.945

ΣHCres −0.016 0.075 −1.422 −0.002 0.294 −0.516

Note: Residuals of ΔCC and ΣHC for each climate factor were used in the multiple linear regression models (yres ~ aΔCCres + bΣHCres + c). The 
coefficients (i.e., slopes) were extracted from the models and their significance (p-value) were determined by the randomization test (1000 times). 
The standardized effect size (SES) of the coefficient was calculated as: SES.coef = (coefobs − coefnull)/SDnull. pMSTres: residuals of the impact of 
stochasticity; UniFracres: residuals of the weighted UniFrac distance; ΔCCres: residuals of the inter-site difference of current climate conditions; 
ΣHCres: residuals of the sum of intra-site historical climate variability.
Abbreviations: AMT, annual mean temperature; AP, annual precipitation.

Effects of
Controlling 
for

Stochasticity (pMSTres)
Community dissimilarity 
(UniFracres)

AMT AP AMT AP

ΔCCres −0.041 −0.370*** −0.001 0.277***

ΣHCres 0.108* −0.174** −0.151*** 0.099*

ΔCCres ΣHCres −0.074 −0.337*** 0.043 0.260***

ΣHCres ΔCCres 0.125** −0.067 −0.157*** 0.014

Note: Tests were conducted using Pearson's r for different climate factors. The significances were 
tested based on 999 permutations.
***p < 0.001; **p < 0.01; *p < 0.05.

TA B L E  2  Mantel and partial Mantel 
tests for the correlations linking the 
residuals of stochasticity (or community 
dissimilarity) to ΔCCres and ΣHCres



5970  |    KUANG et al.

while positively related to UniFracres (coefobs: 0.049; Table 1). 
However, the values of ΔCCres of AMT were not significantly re-
lated to pMSTres or UniFracres. In contrast, we observed a signifi-
cant and positive relationship between ΣHCres of AMT and pMSTres 
(coefobs: 0.027) but a negative correlation between ΣHCres of AMT 
and UniFracres (coefobs: −0.028). Nevertheless, there were no signifi-
cant relationships between ΣHCres of AP and pMSTres (or UniFracres). 
Consistent patterns were shown in the results of the Mantel and 
partial Mantel tests (Table 2). By accounting for the interactions be-
tween ΔCCres and ΣHCres, we observed that the ΔCCres of AP and 
the ΣHCres of AMT were significantly (positively or negatively) re-
lated to pMSTres and UniFracres after controlling for the effects of 
ΣHCres (or ΔCCres; Table 2). In general, these results supported our 
primary hypothesis that ΣHC shows opposite effects compared to 
ΔCC, and the increase in ΣHC promotes the relative importance of 
stochasticity in assembly processes and reduces the divergence in 
community structure.

By comparing the degrees of SES.coef in multiple linear regres-
sion models as well as the Pearson's r in partial Mantel tests (Tables 
1 and 2), we found that the effects of ΔCCres of AMT were much 
weaker than those of ΔCCres of AP. Inversely, the ΣHCres of AMT 
provided a more considerable impact than those of ΣHCres of AP, 
highlighting the importance of historical variability of temperature 
in community assembly.

3.3  |  Influence of different levels of ΣHC on the 
effects of ΔCC

In general, compared to the results from a low level of ΣHCres, the 
values of pMSTres were significantly (p < 0.001, Wilcoxon rank-sum 
test) greater under a high level of ΣHCres along the range of ΔCCres 
for both AMT and AP (Figure 2a,b; Table S3). A total of 9750 data 
points were used in the analyses and the numbers of data points 
in each bin were shown in Table S3). In contrast, we found signifi-
cant (p < 0.001) decrease in values of UniFracres when the ΣHCres 
increased (Figure 2c,d; Table S3). Together, these results suggested 
that the increase in ΣHC could weaken the effects of ΔCC on the 
assembly stochasticity and community dissimilarity. However, the 
magnitude of this alleviation was larger for temperature than precip-
itation, revealed by greater degrees between effect sizes (pMSTres: 
0.147 vs. 0.062; UniFracres: 0.142 vs. 0.098, Wilcox.effs r; Figure 2; 
Table S3).

To examine whether the high level of ΣHC had disproportional 
influence along the gradient of ΔCC, we compared the coefficients 
of relationships relating ΔCCres to pMSTres (or UniFracres) under small 
and large ΣHCres. For the relationships between ΔCCres of AMT and 
pMSTres (or UniFracres), we observed similar trends showing that the 
Δcoef was non-significant (pMSTres: p = 0.311; UniFracres: p = 0.193; 
randomization test) with a relatively small effect size (pMSTres: SES.
Δcoef = −0.487; UniFracres: SES.Δcoef = −0.880; Figure 3a,c; Table 
S4). However, we found that the influences of high level of ΣHCres 
were considerable and were of similar magnitude under small and 

large ΔCCres of AMT (pMSTres: 0.166/0.167; UniFracres: 0.121/0.192; 
Wilcox.effs r; Figures S7a,c). These results indicated that the en-
hanced ΣHC of AMT imposed a consistent impact that leads to an 
increase in pMST and a decrease in the UniFrac along the gradient 
of ΔCC.

In contrast, for the correlations between ΔCCres of AP and pM-
STres (or UniFracres), we found a significant (p < 0.001; randomiza-
tion test) difference of coefficients between low and high levels of 
ΣHCres with much greater effect sizes than those for AMT (pMSTres: 
SES.Δcoef  =  3.094; UniFracres: SES.Δcoef  =  −3.796; Figure 3b,d; 
Table S4). The changes in slope for these correlations suggested a 
disproportional influence of high level of ΣHC along the gradient of 
ΔCC. A large differentiation in effect size was observed between 
small and large ΔCCres of AP (Figures S7b,d), revealing that the in-
fluence of high level of ΣHCres was only considerable under small 
ΔCCres of AP (pMSTres: Wilcox.effs r = 0.219; UniFracres: Wilcox.effs 
r = 0.203), yet it could be negligible when the ΔCCres was large (pM-
STres: Wilcox.effs r = 0.083; UniFracres: Wilcox.effs r = 0.009). These 
patterns were in line with the results of regression models and par-
tial Mantel tests, showing that the influence of ΔCC was much stron-
ger than that of ΣHC for AP. In general, results for AP supported 
our second hypothesis, suggesting that the effect of the high level 
of ΣHC was disproportional and the observed impact of ΔCC could 
be more substantially alleviated, especially when the ΔCC is small.

4  |  DISCUSSION

As one of the major human impacts, globally pervasive climate 
change not only results in a gradual shift of mean annual climate 
values but also changes the frequency and severity of extreme 
events (IPCC, 2013) and fundamentally alters the inherent natural 
variability of different climate conditions (Seneviratne et al., 2012). 
Concerns about the increasing climate variability have been widely 
acknowledged and raised due to its critical consequences on diverse 
ecosystems (Frank et al., 2015). Intensive studies have indicated that 
global climate change has an undoubted impact on the microbial 
community structure and influences the microbially mediated eco-
system C and N cycling (Bardgett et al., 2008; Diamond et al., 2019; 
Frey et al., 2013; Glassman et al., 2018; Kirchman et al., 2009; Li 
et al., 2019; Nielsen & Ball, 2015; Zhou et al., 2012). Instead of ad-
dressing the importance of average changes, we have concentrated 
on how historical variability over a half-century could mediate the 
observed influence of current climate differentiation on community 
dissimilarity and assembly. Our findings are in line with our primary 
hypothesis and have revealed that the increase in historical climate 
variability could promote the impact of stochasticity yet reduce 
the divergence between local soil bacterial communities in forest 
ecosystems.

Our findings have partly supported our second hypothesis that 
the enhanced historical climate variability provides contrary effects 
to weaken the observed influence of current climate difference 
on the impact of stochasticity and community dissimilarity. Such 



    |  5971KUANG et al.

effect is expected to be disproportional and could be overridden by 
stronger selective stresses from greater differentiation in current 
climate conditions. However, only the patterns for precipitation 
follow this hypothesis, and the alleviation is unexpectedly consis-
tent along the gradient of current temperature differences. We 
have further tested our hypotheses based on the rare biosphere, 
since these sub-communities are increasingly recognized to harbor 
keystone taxa and have an over-proportional role in biogeochemi-
cal cycles and microbiome function (Banerjee et al., 2018; Jousset 
et al., 2017). Our primary hypothesis is well supported when con-
sidering the sub-communities of rare OTUs (i.e., those OTUs with 
less than 0.1% of relative abundances across all the 143  sampling 
sites, representing 15.04 ± 4.77% of the total communities; Tables 
S5 and S6). Interestingly, we found that the enhanced historical 
variability of both temperature and precipitation can consistently 

weaken the observed influence of current climate difference (Table 
S7 and S8), revealing a significant impact on the assembly of rare 
taxa. Compared to the abundant species, these rare populations are 
relatively low in abundance and are more likely governed by eco-
logical drift due to the inherent random processes of birth, death, 
and reproduction (Nemergut et al., 2013; Zhou & Ning, 2017). These 
findings imply that the rare taxa might be more susceptible to the 
dramatic changing scenarios and the influences by the impact of sto-
chastic processes rather than abundant ones. Given that this rare 
biosphere is crucial in promoting long-term ecosystem resilience and 
ecological stability (Lynch & Neufeld, 2015), our findings suggest 
that historical climate variability could be one of the major factors 
controlling the assembly of rare species over spatiotemporal scales, 
which enabling prospective predictions of ecosystem responses (Jia 
et al., 2018).

F I G U R E  2  Comparison of pMSTres (a, 
b) and UniFracres (c, d) between low and 
high levels of ΣHCres with a similar range 
of ΔCCres. To estimate the influence of 
different levels of ΣHCres on the effects 
of ΔCCres, the range of ΔCCres for each 
climate factor was evenly split into 
five bins and the values of pMSTres and 
UniFracres were then divided into five 
groups accordingly (see Figure S4). The 
values of each group were separated into 
two sub-groups based on the group's 
median of ΣHCres. All the sub-groups 
under small or large ΣHCres (i.e., low or 
high levels of ΣHCres according to the 
group's median) were finally combined, 
respectively, to generate two sub-
datasets with a similar range of ΔCCres 
but an apparent difference in ΣHCres. 
The significance (p-value) of differences 
in pMSTres (or UniFracres) between small 
and large ΣHCres was estimated by the 
Wilcoxon rank-sum test. The magnitude 
of difference was also evaluated by the 
effect size for the Wilcoxon rank-sum 
test (Wilcox.effs r), including “negligible” 
(r < 0.1), “small” (0.1 ≤ r < 0.3), “moderate” 
(0.3 ≤ r < 0.5), and “large” (r ≥ 0.5). 
pMSTres: residuals of the impact of 
stochasticity; UniFracres: residuals of 
the weighted UniFrac distance; ΔCCres: 
residuals of the inter-site difference 
of current climate conditions; ΣHCres: 
residuals of the sum of intra-site historical 
climate variability. See details of residual 
calculation in Section 2 [Colour figure can 
be viewed at wileyonlinelibrary.com]
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The distinct results we observed between climate factors and 
sub-communities may associate with the differences in response and 
tolerance of microbial communities to the changes in precipitation 
and temperature as well as the legacy effects under different per-
turbation patterns over a long-term period. Although the influence 
of different historical climate conditions on soil microbial communi-
ties has been widely addressed (Averill et al., 2016; Barnard et al., 
2015; Evans & Wallenstein, 2012; Evans et al., 2014; Gutknecht 
et al., 2012; Hawkes & Keitt, 2015; Hawkes et al., 2017; Ladau et al., 
2018; Martiny et al., 2017), comprehensive research considering the 
long-term variability of both warming and water stress (Rousk et al., 
2013) and their effects on different microbial sub-communities is 
relatively limited, requiring further study. In summary, this study has 
highlighted the importance of empirical time-series studies with new 

“generation” of climate change experiments (Thompson et al., 2013) 
via explicitly controlling the mean and the variability of climate fac-
tors across diverse ecosystems.

Seasonal trajectories of community turnover are commonly de-
tected in diverse ecosystems, resulting from different community 
responses to the shifting environments and disturbances (Shade 
et al., 2012). These short-term changes include a large number of 
unpredictable disturbance events, which can influence the biologi-
cal interactions, community compositions, and assembly processes 
(Fuhrman et al., 2015; Zhou & Ning, 2017), and be captured by 
the temporal changes of rare microorganisms (Shade et al., 2014). 
In this study, we have considered the average annual variations of 
the climate conditions over decades (i.e., TEM.CV and PRE.CV) as 
covariates and statistically controlled them in our historical climate 

F I G U R E  3  Comparison of coefficients 
of the relationships relating ΔCCres to 
pMSTres (a, b) or UniFracres (c, d) under low 
and high levels of ΣHCres. The generation 
of the two observed (or null) sub-datasets 
with small and large ΣHCres was described 
in Figure 2 and Figure S4. Specifically, a 
total of 9750 data points were used in 
this analysis. The numbers of data points 
in different bins are shown in Table S4. 
The low and high levels of ΣHCres were 
defined according to the median of 
each bin. The significance (p-value) of 
Δcoef (coefSmall.ΣHCres − coefLarge.ΣHCres) 
and the standardized effect size (SES) 
of Δcoef ((Δcoefobs − Δcoefnull)/SDnull) 
between sub-datasets were calculated by 
randomization test (1000 times). pMSTres: 
residuals of the impact of stochasticity; 
UniFracres: residuals of the weighted 
UniFrac distance; ΔCCres: residuals of the 
inter-site difference of current climate 
conditions; ΣHCres: residuals of the sum 
of intra-site historical climate variability. 
See details of residual calculation in 
Section 2 [Colour figure can be viewed at 
wileyonlinelibrary.com]
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variability model. Nevertheless, we acknowledge that the seasonal/
annual dynamics of community composition and its influence on 
the effect of long-term historical climate variability remain unclear. 
Thus, distinguishing the differentiation of short-term (e.g., weekly/
seasonal) and long-term (e.g., interannual) changes in community 
structure and assembly processes are required in the future to vali-
date the effects observed in this study.

Understanding how soil bacteria fulfill multiple important bio-
geochemical functions in forest ecosystems has advanced in recent 
years, whereas model-based predictions of how their responses to 
global climate change influence such ecosystem functions are far 
from completed (Lladó et al., 2017). This great challenge is mainly 
due to the temporal lags in microbial responses and the uncertain 
changes in community assembly caused by past climate events 
(Averill et al., 2016; Hawkes & Keitt, 2015; Hawkes et al., 2017). 
More empirical and theoretical studies exploring the differentiations 
in local adaptation and vulnerability to disturbance among diverse 
microorganisms (e.g., generalists/specialists) (Mariadassou et al., 
2015; Slatyer et al., 2013) as well as the microbial dormancy and 
resuscitation in the face of environmental changes (Jones & Lennon, 
2010; Lennon & Jones, 2011) may help to unveil the underlying 
mechanisms. Together, considering the spatial pattern of ongoing 
climate variability may improve our ability to simulate the dynam-
ics of large-scale biogeochemical cycles under future global change 
scenarios.
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