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ABSTRACT

It is of great interest to elucidate the biogeographic patterns of soil microorganisms and their driving forces, which is
fundamental to predicting alterations in microbial-mediated functions arising from environment changes. Although
dissolved organic matter (DOM) represents an important resource for soil microorganisms, knowledge of how its quality
affects microbial biogeography is limited. Here, we characterized soil bacterial communities and DOM quality in 45 soil
samples collected from a 1500-km sampling transect through semi-arid regions in northern China which are currently
suffering great pressure from climate change, using Illumina Miseq sequencing and fluorescence spectroscopy, respectively.
We found that DOM quality (i.e. the source of DOM and the humification degree of DOM) had profound shaping influence on
the biogeographic patterns exhibited by bacterial diversity, community composition and association networks. Specifically,
the composition of bacteria community closely associated with DOM quality. Plant-derived DOM sustained higher bacterial
diversity relative to microbial-derived DOM. Meanwhile, bacterial diversity linearly increased with increasing humification
degree of DOM. Additionally, plant-derived DOM was observed to foster more complex bacterial association networks with
less competition. Together, our work contributes to the factors underlying biogeographic patterns not only of bacterial
diversity, community composition but also of their association networks and reports previously undocumented important
role of DOM quality in shaping these patterns.
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INTRODUCTION

Microbial biogeography, the study of distribution patterns of
microbial communities over space and time, is a key topic in
microbial ecology (Martiny et al. 2006). One of the primary inter-
ests in continuously studying microbial biogeography is to get
insights into the mechanisms generating and maintaining diver-
sity (Chu et al. 2020), which are critical for predicting how ecosys-
tem will respond to current and future environmental changes
and forms a foundation for conservation and environmental
management (Wang et al. 2017; Meyer et al. 2018). Given that
the climate change will continue and the weather patterns will
be more erratic and extreme in the future (Jansson and Hof-
mockel 2020), such information is of particular importance for
climate-sensitive soil ecosystems like semi-arid regions. Semi-
arid regions refer to areas with an aridity index ranging 0.2–
0.5 (Pointing and Belnap 2012). The unique climate features as
well as low levels of water and nutrients make the semi-arid
regions prone to desertification (Hu et al. 2017), which can be
exacerbated by climate change and thus lead to the expansion
of desert and desert steppe (Veron and Paruelo 2010; Delgado-
Baquerizo et al. 2013). Therefore, a thorough study of microbial
biogeographical patterns and their drivers in these desertified
areas fills a crucial need for a predictive understanding of micro-
bially driven ecosystems processes under future climate scenar-
ios and for designing effective management strategies.

Over the past few decades, studies in microbial biogeog-
raphy have substantially benefited from advances in high-
throughput sequencing technology, which allows descriptions
of entire microbial communities with unprecedented capacity
and resolution (Balint et al. 2016; Peay, Kennedy and Talbot 2016).
The biogeographic patterns exhibited by soil microorganisms
have been extensively investigated in a wide range of terres-
trial ecosystems (Yang et al. 2014; Shi et al. 2015; Deng et al.
2016; Wilhelm et al. 2017; Huang et al. 2019), at local (Bahram,
Peay and Tedersoo 2015; Bahram et al. 2016), regional (Kivlin
et al. 2014), continental (Griffiths et al. 2011; Ma et al. 2017) and
global scales (Bahram et al. 2018; Delgado-Baquerizo et al. 2018).
These previous studies have primarily focused on the patterns
of microbial community diversity and composition. In contrast,
far less attention has been given to the biogeographic varia-
tion in interactions between microbial community members.
Instead of existing alone as individual populations, microorgan-
isms coexist in complex arrays in which they interact with each
other (Faust and Raes 2012). Such inter-taxa associations, which
could be either positive (e.g. cooperation) or negative (e.g. com-
petition), contribute more to system functions than individual
populations (Ma et al. 2016; Wu et al. 2020) and represent a cru-
cial dimension of microbial community not captured by simple
diversity and composition (Rottjers and Faust 2018). Association
network analysis is an effective method for inferring and visu-
alizing potential interactions among community members and
has been widely used (Barberan et al. 2012). To date, integrat-
ing network theory to biogeography has been well addressed in
macro-ecology (Cumming et al. 2010; Poisot et al. 2012). However,
biogeographic patterns of microbial association networks have
been seldom explored (Ma et al. 2016), as a result, how topology
of microbial association networks changes over space remains
largely unknown.

Regarding factors shaping microbial biogeographic patterns,
the existing studies yet have shown mixed results. For exam-
ple, depending on the spatial scale and ecosystem under inves-
tigation, the distribution of bacterial diversity and community

composition could be driven by a range of different factors such
as soil pH (Fierer and Jackson 2006; Shi et al. 2018), salinity
(Lozupone and Knight 2007), plant species richness (Wang et al.
2017) and temperature (Zhou et al. 2016). Surprisingly, among
these various driving factors, whether and how resource qual-
ity affects spatial patterns of soil microbial communities has not
been properly appreciated, even though resources always exist
as mixtures of multiple forms (Muscarella et al. 2019). Besides,
it’s well known that climate change has significant impact on
organic matter (OM) in soil (Luo et al. 2016) and thus it is criti-
cal to understand the role of OM in shaping microbial biogeog-
raphy in semi-arid regions where the supply of OM is limited.
Dissolved organic matter (DOM), known as the most mobile
fraction of OM (Jansen, Kalbitz and McDowell 2014), plays key
role in supplying carbon (C), nitrogen (N) and energy source for
soil microorganisms (Benner 2011; Gmach et al. 2020). This fact
makes DOM the locus of intense microbial activities and leads
it to be regarded as a major hotspot for biogeochemical pro-
cesses (Li et al. 2018). It is of great importance to uncover the
role of DOM quality in shaping soil microbial biogeographic pat-
terns, because although soil microorganisms have great depen-
dence on DOM, they are unable to utilize all of the available
organic matter due to substrate preference (Glassman et al.
2018; Li et al. 2019). Meanwhile, DOM, an extremely compli-
cated mixture (Cory and McKnight 2005), comprises thousands
of organic compounds that varied in bioavailability and degrad-
ability (Marschner and Kalbitz 2003; Zhou et al. 2019b), with its
quality being highly dynamic and sensitive to environmental
changes (Li et al. 2018; Chai et al. 2019). It was shown that the
quantity of DOM had significant impacts on the bacterial com-
munities in semi-arid soils (Bastida et al. 2016), but how varia-
tions in DOM quality relate to soil bacterial diversity patterns
in semi-arid regions still remains unknown. In addition, micro-
bial mineralization of DOM contributing to the CO2 production
(Drake et al. 2015) further necessitates a comprehensive inves-
tigation linking DOM quality to soil microbial biogeography in
semi-arid regions.

In the present study, we carried out a 1500-km transect sur-
vey in semi-arid regions in Inner Mongolia, China. The study
area encompasses considerable environmental variations and
is extremely susceptible to climate change (Bai et al. 2008).
Given that the availability of organic C is a main limiting fac-
tor for microbial communities in semi-arid regions (Maestre
et al. 2015; Bastida et al. 2016), we hypothesized that the spa-
tial variations in bacterial in soil bacterial diversity, commu-
nity composition and association networks could be primar-
ily driven by DOM quality. To test this hypothesis, we charac-
terized soil bacterial communities using Illumina sequencing
of 16S rRNA gene and DOM quality using fluorescence spec-
troscopy. Two commonly used spectrofluorometric indices were
calculated to quantify DOM quality. Fluorescence index (FI) is
used to differentiate the source of DOM, with lower values (val-
ues of 1.2–1.5) indicating plant-derived DOM and higher values
(values > 1.7) indicating microbial-derived DOM (Gabor et al.
2015; Agethen and Knorr 2018). Humification index (HIX) is used
to monitor the degree of humification, with higher values cor-
responding to increasing degree of humification (Ohno 2002;
Gabor et al. 2015). The primary goals of this study were (1)
to explore the biogeographic patterns exhibit by soil bacterial
diversity, community composition and association networks,
and (2) to uncover the role of DOM quality in shaping these
patterns.
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MATERIALS AND METHODS

Study sites and field sampling

This research was carried out along a 1500-km transect across
the Inner Mongolia in northern China, which presents a natural
precipitation gradient from the east to the west (Wang et al. 2014)
and is characterized by high vulnerability to climate change
as well as desertification processes (Bai et al. 2008). The tran-
sect spanned 37.69◦N–49.25◦N and 107.23◦E–122.41◦E, covering
approximately 12◦ latitude and 15◦ longitude, respectively (Fig-
ure S1, Supporting Information). A total of 45 sites were estab-
lished through the entire transect during September to early
October in 2016. There was no rain during the sample collec-
tion and the altitude of the sampling sites ranged from 172 to
1450 m. A portable GPS device was used to record the coordi-
nate of each site during the field work. Vegetation types of the
selected sampling sites were mainly desert and desert steppe,
which were species-poor and characterized by bare soils (low
plant cover and no biocrusts) and sparse shrubs (Caragana micro-
phylla Lam., Artemisia ordosica) or grasses (Leymus chinensis). Soil
types were predominantly sandy soil which was dominated by
sand (Table S1, Supporting Information). At each site, a 8 m ×
8 m plot was established and five 0.5 m × 0.5 m quadrats were
randomly placed in bare ground areas within the plot. Surface
soil (0–10 cm) samples were collected at each quadrat and were
homogenized completely as one composite sample per plot. In
total, 45 soil samples were collected. These soil samples were
passed through a 2 mm sieve to remove roots and rocks and
were then separated into two parts, sealed in sterilized sam-
pling bags. Soil samples were returned to laboratory as soon as
possible. One part was placed on ice and stored at −80◦C for
later DNA extraction upon arrival. The other part was trans-
ported at ambient temperature and was analyzed immediately
for edaphic properties and DOM quality upon arrival.

Illumina sequencing of 16S rRNA gene and data
processing

Soil microbial DNA was extracted from 0.25 g soil per sam-
ple using The Power soil DNA Kit (MO BIO, Carlsbad, CA)
according to the manufacturer’s instructions. Nano Drop
2000 UV–vis spectrophotometer (Thermo Scientific, Wilming-
ton, DE) was used to evaluate the purity and concentra-
tion of the extracted DNA. High-quality DNA samples were
used for polymerase chain reaction (PCR) with the bacterial
primer pair 515F (5’-GTGCCAGCMGCCGCGGTAA-3’) and 907R (5’-
CCGTCAATTCCTTTGAGTTT -3’; Biddle et al. 2008). Each DNA
sample was amplified in a 20 μL volumes containing 4 μL of
5 × FastPfu Buffer, 2 μL of 2.5 mM dNTP mix, 0.8 μL of each
primer (5 μM), 0.4 μL of FastPfu Polymerase (TransGen, Beijing,
China), 0.2μL of BSA, 10 ng of template DNA and double-distilled
H2O. The amplification was conducted under the following con-
dition: 95◦C for 3 min, followed by 35 cycles at 95◦C for 30 s,
55◦C for 30 s, 72◦C for 45 s and a final elongation step at 72◦C for
10 min. PCR was performed for each soil DNA samples in tripli-
cate and combined into a composite sample. After purifying and
quantifying using AxyPrep DNA Gel Extraction Kit (Axygen Bio-
sciences, Union City, CA) and QuantiFluor -ST (Promega, Madi-
son, WI), respectively, the PCR products were used to construct
DNA library and paired-end sequencing (2 × 250 bp) was then
performed on the Illumina Miseq sequencing platform (Illu-
mina, San Diego, CA, USA). All of the bacterial sequence data
in this present study have been deposited in Sequence Read

Archive (SRA) of NCBI database under the accession number
SRP149055.

The quality of raw sequences was checked by using Trimmo-
matic with a 50 bp sliding window, a minimum quality score of
20 and a minimum length of 50 bp (Bolger, Lohse and Usadel
2014). After the above quality trimming, retained sequences
were merged using FLASH with a minimum overlap of 10 bp and
a 20% error rate (Magoč and Salzberg 2011). UCHIME algorithm
in USEARCH (Edgar et al. 2011) was used for detecting and filter-
ing chimeric sequences. Classification of operational taxonomic
units (OTUs) at 97% identity level was done using the UPARSE
algorithm. Taxonomic affiliations of the OTUs were assigned to
bacteria by reference to SILVA release 123 using RDP classifier
(Wang et al. 2007). Singletons were eliminated in the whole data
set to minimize the impact of sequencing artefacts resulting in
1 446 362 sequences, ranging from 19 303 to 41 233 per sam-
ple. To minimize any bias due to differences in sequencing depth
among samples, the sequence data were randomly subsampled
to 19 303 sequences per sample before downstream analyses.

Climatic data collection and edaphic variables analyses

Mean annual precipitation (MAP) and mean annual temperature
(MAT) for each site were obtained from China Meteorological
Data Sharing Service System (https://data.cma.cn/en). Aridity
index (AI) was then calculated using the obtained MAP and MAT
values and aridity (1-AI) was used in this study for simplicity.
Edaphic variables, including soil pH, soil texture (proportion of
clay, silt, fine sand and coarse sand), soil electrical conductivity
(EC), the content of total nitrogen (TN), the content of total phos-
phorus (TP), soil organic carbon (SOC) and soil moisture were
determined in this study. Methods for measuring these edaphic
properties were described in detail in our previous study (Huang
et al. 2019, 2020). Briefly, soil pH was measured by a pH meter in a
slurry with a 1:2.5 (w/v) ratio of soil to water. Soil texture, includ-
ing proportion of clay (particle size < 0.002 mm), silt (particle size
ranging from 0.002 to 0.05 mm), fine sand (particle size rang-
ing from 0.05 to 0.25 mm) and coarse sand (particle size ranging
from 0.25 to 2 mm), was determined using a Mastersizer 2000
(Malvern Instruments, Malvern, England). TN was determined
using a Kjeltec 2200 Auto Distillation Unit (Foss Tecator AB, Swe-
den). TP was measured by molybdenum blue method using a
UV–visible spectrophotometer (UV-2550, Shimadzu, Japan). SOC
was quantified using potassium dichromate oxidation titration
method (Bai et al. 2018). Soil moisture was determined gravimet-
rically at 105◦C for 24 h.

DOM extraction and DOM quality characterization

DOM in soil was extracted using the water extraction method
according to Gao et al. (2018) with some modifications. In brief,
the collected soil samples were air-dried at room temperature
and 5 g of air-dried soil were mixed with 25 mL distilled water
in 50 mL centrifuge tubes. The obtained 1:5 (w/v) soil/water sus-
pension was then placed in an end-over-end shaker in the dark
and shaken for 2 h. The DOM extract was performed by cen-
trifuging the suspension at 600 rpm for 10 min and collecting the
supernatant. To avoid possible scatter of the spectral analysis
induced by fine particles, the supernatant was filtered through
a 0.22 μm membrane. The filtrate was transferred into brown
glass sample bottles to prevent photodecomposition and stored
in at 4◦C in darkness. All of these DOM samples were analyzed
within 24 h after extraction.
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For characterization of DOM quality, fluorescence excitation
emission matrix (EEM), a fast, sensitive and non-destructive
spectroscopic technique (Chai et al. 2019), was used in this study.
Absorbance scans and fluorescence EEM were collected simulta-
neously using an Aqualog Analyzer (HORIBA Scientific, Edison,
NJ, USA) equipped with 10-mm quartz fluorescence cuvettes.
Milli-Q water was used as the blank. Absorbance spectra were
scanned in the range of 200–800 nm with a 1 nm interval. EEM
data was collected for each sample at excitation wavelengths
(Ex) of 200–550 nm in increments of 4 nm and at emission wave-
lengths (Em) of 280–550 nm in increments of 1 nm. MATLAB
R2016b (The MathWorks, Natick, MA, USA) was used to facili-
tate EEM data manipulation and analyses. After method blank
subtraction and removal of the 1st and 2nd Rayleigh and Raman
peaks, EEM data was normalized to Raman Units (R.U.) follow-
ing the method of Murphy et al. (2010). The absorbance data
obtained above was used to correct for inner filter effects as
described by Kothawala et al. (2013).

On the basis of the obtained EEM data, tow widely used fluo-
rescence indices, fluorescence index (FI) and humification index
(HIX), were selected to monitor the DOM quality. FI was the ratio
of emission intensities at 450 nm and 500 nm at excitation of
370 nm (Eq. 1; McKnight et al. 2001), which has been used to
differentiate source of DOM, with lower values (values of 1.2–
1.5) indicating DOM that predominately derived from terres-
trial plants and higher values (values > 1.7) indicating microbial
derived DOM (Gabor et al. 2015; Agethen and Knorr 2018). Differ-
ence in FI value of 0.1 can be considered to be significant (McK-
night et al. 2001). HIX, an indicator of the humification degree
of DOM, was calculated from the ratio of area under the emis-
sion spectra in the range 434–480 nm to the sum of the areas
at 300–344 nm and 434–480 nm for excitation at 254 nm (Eq. 2;
Wickland, Neff and Aiken 2007). The vales of HIX range from 0
to 1, with higher values corresponding to increasing degree of
humification, lower H/C ratios and more ring structure (Ohno
2002; Gabor et al. 2015).

F I = Iem450/Iem500
(λex370) (1)

H I X =
∑

Iem434−480
/

(
∑

Iem300−344 + ∑
Iem434−480)(λex254) (2)

Network analysis

To explore the biogeographic patterns of bacterial association
networks, an overall network was first constructed using data
from all 45 sampling sites. To reduce rare OTUs and noise, OTUs
with mean relative abundance less than 0.01% were removed,
thus subsetting the data to 1407 OTUs. All pairwise Spearman’s
rank correlations (ρ) were calculated between the remaining
OTUs using R package Hmisc (Harrell and Dupont 2018). Only
correlations considered to be robust (ρ > 0.6 or ρ < −0.6) and
statistically significant (Benjamini Hochberg adjusted P < 0.01)
were used to construct the network (Ju et al. 2014). The interac-
tive platform Gephi was then used to visualize the constructed
network (Bastian, Heymann and Jacomy 2009). To test whether
the constructed network differed significantly from random net-
works and thus is of ecological significance, Erdös–Réyni random
networks, which had the same number of nodes and links as
the real network, were simulated for 1000 times using R pack-
age igraph (Csárdi and Nepusz 2006). One-sample t-test was
then used to test the difference between the observed network

and the corresponding random networks. Subsequently, sub-
networks for each soil sample were extracted from the con-
structed overall network by preserving OTUs presented in each
sample using igraph package as described by Ma et al. (2016).
For network property characterization, a set of topological met-
rices such as average clustering coefficient (avgCC), average path
length (APL), modularity, average degree (avgK), centralization of
betweenness (CB), centralization of degree (CD) was calculated
using igraph package.

Statistical analysis

To determine spatial oscillation in environmental conditions,
pairwise environmental similarity was regressed against geo-
graphic distance using mantel test in ecodist package with
Spearman correlation and 9999 permutations (Goslee and Urban
2007). Environmental distance was calculated as Euclidean dis-
tances of all standardized environmental factors (i.e. DOM qual-
ity, edaphic and climatic factors) and environmental similar-
ity was calculated as 1 minus environmental distance. Pairwise
geographic distance was calculated using Imap package (Wal-
lace 2012). A principal component analysis (PCA) combined with
a circle of equilibrium contribution was completed in vegan
package (Oksanen et al. 2007) to identify which environmental
factor contributes significantly to environmental heterogeneity.

The alpha diversity of bacteria was represented by the num-
ber of observed OTUs (i.e. richness). The impact of DOM qual-
ity on soil bacterial diversity was explored by fitting linear
regressions between two fluorescence indices (FI and HIX) and
bacterial richness. Before regression analysis, normality tests
(Shapiro–Wilk) were implemented and both FI and HIX were
log-transformed to meet statistical assumptions. Stepwise mul-
tiple regression was conducted to test whether DOM quality
explained bacterial diversity better than other measured envi-
ronmental factors. All the variables were standardized before fit-
ting the model. Forward and backward stepwise model selection
based on Akaike information criterion (AIC) was used to deter-
mine the best model with the ‘stepAIC’ function in MASS pack-
age. To eliminate multicollinear variables, the variance infla-
tion factor (VIF) was calculated by the car package and vari-
ables with VIF < 4 were retained in the final model. The relative
importance of each predictor in the final model was quantified
using the relaimpo package (Gromping 2006). To further quan-
tify how much variability in bacterial diversity can be uniquely
explained by DOM quality and compare the explanatory power
of DOM quality with edaphic and climatic factors, variation par-
titioning analysis (VPA) was carried out as described by Delgado-
Baquerizo et al. (2017).

For characterizing bacterial biogeographic patterns,
distance-decay relationship was analyzed using linear regres-
sion between log-transformed community similarity and
log-transformed geographic distance (Bahram et al. 2013). The
community similarity was calculated as 1 minus Bray–Curtis
dissimilarity. The statistical significance of distance-decay
relationship was determined by matrix permutation tests
with 1000 permutations, as data points within matrices were
non-independent (Martiny et al. 2011). To assess the relative
importance of environmental factors versus geographic factors
in structuring the observed bacterial biogeographic patterns,
community variations were partitioned into environmental and
geographic effect using a two-way permutational multivariate
analysis of variance (PERMANOVA) as described by Wu et al.
(2018). Briefly, the aforementioned PCA of environmental data
set and principle coordinate analysis of neighbor matrices
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Figure 1. Relationships between soil bacterial diversity, as measured with bacterial richness, and both (A) FI and (B) HIX. Adjusted R2 and associated P-value in each

fitted linear regression are shown on the figure.

(PCNM; Dray, Legendre and Peres-Neto 2006) were used to rep-
resent environmental effect and geographic effect respectively.
According to the Kaiser–Guttman rule, the first five axes of PCA
that accounted for 80.4% of the total variation in environmental
factors and PCNM1-PCNM3 were selected and included in
the two-way PERMANOVA. The statistical significance of the
pure effects of environmental (E|G) and geographic factors
(G|E) were all tested with 1000 permutations. To confirm the
result of variation partitioning, Mantel and partial Mantel tests
were conducted for relationships between spatial community
dissimilarity and environmental/geographic factors. Further, for
discerning the roles of DOM quality and other individual envi-
ronmental factors in shaping communities, partial Mantel tests
were applied to determine how well these factors correlated
with community dissimilarity after controlling for geographic
distance.

To estimate the importance of DOM quality for network
topology, the relation between environmental factors and topo-
logical features was analyzed at subnetwork level. Pearson’s cor-
relations between individual network topological features and
environmental factors were first calculated. Multiple regression
on distance matrices (MRM) with the ecodist package was then
implemented to identify the most important factor attributable
to topological variations along the sampling transect. Before
applying MRM, the redundancy of environmental factors was
assed using the varclus procedure in the Hmisc package and
variables with higher correlation (Spearman’s ρ2 > 0.8) were
excluded. Both network topological features and environmen-
tal factors were standardized and Euclidean distance matrices
were used in the MRM model.

RESULTS

Environmental characteristics along the sampling
transect

Significant variations in environmental conditions occurred
along the sampling transect, as the environmental similar-
ity markedly decreased with increasing geographic distance (P
< 0.001; Figure S2a, Supporting Information). The environmen-
tal variability was then illustrated by the PCA in which the first
two axes accounted for 51.9% of the variance (Figure S2b, Sup-
porting Information). The first PCA axis had high loadings of soil

pH, coarse sand, fine sand and FI, while the second PCA axis was
mainly correlated with clay, silt, HIX and TP. The circle of equilib-
rium contribution further showed that pH, coarse sand, FI, clay,
silt as well as HIX contributed more to the identified environ-
mental variations than average (Figure S2b, Supporting Informa-
tion).

Summary of bacterial dataset

A total of 868 635 effective bacterial sequences were obtained
after rarefying samples to the least common number of
sequences (i.e. 19 303). Sequence clustering at a 97% identity
level yielded 7817 unique bacterial OTUs, with the number of
OTUs for each sample ranging from 1105 to 2507. Rarefaction
curves generally approached saturation (Figure S3, Supporting
Information) and the Good’s coverage values were above 95%
in all cases, suggesting that the current sequencing effort was
sufficient to reliably capture the majority of the soil bacte-
rial communities. Overall, soils in semi-arid regions contained
phylogenetically diverse communities, as taxonomic analysis
identified 39 bacterial taxa at the phylum level. Proteobacte-
ria was the most dominant phylum, accounting for 27.41% of
the total effective bacterial sequences on average and rang-
ing from 16.38 to 40.12% per sample (Figure S4, Supporting
Information). The other dominant phyla were Actinobacteria
(15.86–46.51%, averaging 27.01%), Acidobacteria (3.17–21.38%,
averaging 13.31%), Chloroflexi (4.82–16.19%, averaging 8.67%),
Planctomycetes (2.29–7.88%, averaging 5.43%) and Firmicutes
(0.63–35.27%, averaging 4.56%). On average, 1.97% of bacterial
sequences were unclassified at the phylum level (Figure S4, Sup-
porting Information).

Relation of bacterial diversity and DOM quality

FI, an indicator of the source of DOM, was negatively related to
bacterial diversity and explained 56.8% of variation in bacterial
diversity (P < 0.001, Fig. 1A). This means that plant-derived DOM
supported more diverse bacterial communities than microbial-
derived DOM. By contrast, HIX, a measure of the degree of
humification, was positively correlated with bacterial diversity
and explained 36.4% of variation (P < 0.001, Fig. 1B), indicat-
ing that increasing humification of DOM significantly promoted
bacterial diversity. Stepwise multiple regression was used to
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Table 1. The correlations between soil bacterial community dissimi-
larity and environmental and geographic distance. The Mantel statis-
tic r and associated P-value were determined by Mantel and partial
Mantel tests based on Spearman’s correlation with 9999 permuta-
tions, respectively.

Effect of Controlling for
Spearman’s
coefficient P-value

Env 0.476 < 0.001∗∗∗

Geo 0.332 < 0.001∗∗∗

Env Geo 0.389 < 0.001∗∗∗

Geo Env 0.154 0.004∗∗

Env, Environmental distance; Geo, geographic distance;
∗∗P ≤ 0.01;
∗∗∗P ≤ 0.001, significant P-values are in bold.

test whether DOM quality explained bacterial diversity better
than other measured environmental factors. Five variables were
selected in the best model and together accounted for 62.5% of
the overall variability in bacterial diversity (Table S2, Supporting
Information). Among them, FI and HIX were the best predictors
and respectively contributed 65.47% and 18.85% of the explained
variation of bacterial diversity (Fig. 2A and Table S2, Supporting
Information). Variation partitioning model further verified that
bacterial diversity was primarily driven by DOM quality, as DOM
quality uniquely explained the largest proportion of the variance
in bacterial diversity (Fig. 2B).

Spatial variability in bacterial community composition
and its relation with DOM quality

There was high spatial variability in communities of bacteria,
as the bacterial community similarity decreased with increas-
ing geographic distance, showing a significant distance-decay
relationship (slope = −0.082, P < 0.001, Fig. 3A). The result
of variation partitioning (two-way PERMANOVA) showed that
both environmental factors and geographic factors indepen-
dently explained significant amounts of variation in bacterial
community composition (P = 0.001 and P = 0.009, respectively),
but environmental factors had much higher explanatory power
than geographic factors (14.34% vs. 4%; Fig. 3B). These results
were also supported by Mantel tests and partial Mantel tests,
which showed that bacterial community dissimilarity signifi-
cantly associated with environmental and geographic distance
(all P < 0.01), but its correlations with environmental distance
(Mantel r = 0.476 and partial Mantel r = 0.389) were consistently
higher than that of geographic distance (Mantel r = 0.332 and
partial Mantel r = 0.154; Table 1). Further, partial Mantel tests
were performed to discern the roles of individual environmental
factors in structuring bacterial communities after removing the
effect of geographic distance (Table 2). This showed that bacte-
rial community dissimilarity was more strongly associated with
FI than with other environmental factors, resulting in the high-
est partial Mantel coefficient of up to 0.513 (P < 0.001). Soil pH
also had significant effect on bacterial community dissimilar-
ity (partial Mantel r = 0.262, P < 0.001), which was comparable
to the effect of HIX (partial Mantel r = 0.230, P < 0.001). TP, TN,
Silt and SOC had relatively weak (partial Mantel r ranging from
0.131 to 0.182) but significant (all P < 0.05) effects. Collectively,
these results indicated that spatial variability in bacterial com-
munity composition was primarily driven by environmental fac-
tors, with DOM quality acting as the determinant driver.

Table 2. Partial Mantel tests showing the relationships between bac-
terial community dissimilarity and individual environmental factors
after controlling the potential effect of geographic distance. Mantel
statistic r and associated P-value were determined by partial Mantel
tests based on Spearman’s correlation with 9999 permutations.

Spearman’s
coefficient P-value

DOM quality
FI 0.513 < 0.001∗∗∗

HIX Edaphic factors 0.230 < 0.001∗∗∗

Edaphic factors
Clay (%) −0.137 0.944
Silt (%) 0.158 0.008∗∗

Fine sand (%) 0.108 0.061
Coarse sand (%) 0.039 0.244
Soil moisture (%) 0.119 0.073
pH 0.262 < 0.001∗∗∗

TN (g/Kg) 0.166 0.012∗

EC (μS/cm) 0.123 0.076
SOC (g/Kg) 0.131 0.034∗

TP (g/Kg) 0.182 0.014∗

C/N ratio 0.052 0.248
Climatic factors
Aridity 0.025 0.349
MAP (mm) −0.182 0.995
MAT (◦C) 0.072 0.141

∗P ≤ 0.05;
∗∗P ≤ 0.01;
∗∗∗P ≤ 0.001, significant P-values are in bold.

Overall topological properties of the constructed
network

To infer bacterial associations across a large spatial scale in
semi-arid regions, an overall network was first constructed
using data from all 45 sampling sites. This constructed network
contained 22 696 links among 1201 nodes (Fig. 4A) and harbored
much more positive links (68.98%) than negative ones (31.02%).
The node degree distribution of this network fitted the power
law distribution very well (R2 = 0.923), which is quite different
from the corresponding random networks (Gaussian distribu-
tion: R2 = 0.977; Figure S5, Supporting Information). Besides,
the constructed network exhibited values of average path length
(APL), average clustering coefficient (avgCC) and modularity that
were significantly higher than those in random networks (all P
< 0.001; Table S3, Supporting Information). Such results indi-
cated that the observed network was a nonrandom biologically
meaningful network and exhibited general topological features
such as scale-free, small-world and modular.

The nodes in the network distributed into 10 major bacte-
ria phyla, with Proteobacteria (24.56%), Actinobacteria (21.40%),
Acidobacteria (12.32%), Chloroflexi (12.16%) and Plantomycetes
(6.83%) being the top five abundant nodes, accounting for 77.27%
of all nodes (Figure S6, Supporting Information). The network
was then modularized and resulted in 22 modules, but 96.5%
of all nodes were accounted for by only five of the 22 mod-
ules (Figure S7, Supporting Information). These five major mod-
ules were comprised of different taxonomic profiles, as nodes
from modules I, II and III mostly belonged to Proteobacteria,
Actinobacteria and Acidobacteria; nodes from module IV were
mostly Proteobacteria and Actinobacteria; nodes for module V
mostly belonged to Firmicutes (Fig. 4B).

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sec/article/97/7/fiab083/6307509 by U
niversity of O

klahom
a user on 26 O

ctober 2021



Huang et al. 7

Figure 2. Relative contribution of DOM quality, edaphic and climatic factors as predictors of bacterial diversity. (A) Percent of R2 of regressors retained in the best
multiple regression model. Metrics are normalized to sum to 100% and intervals are 95% bootstrap confidence intervals. (B) Venn diagram illustrating the independent
and joint effects of DOM quality, climatic and edaphic factors on bacterial diversity. Note that the fraction of explained variation < 1% is not shown on the figure for

simplicity.

Figure 3. Spatial variability in bacterial community composition and the underlying controlling mechanisms. (a) Distance–decay relationship of soil bacterial com-
munities. (b) The Venn diagram of variation partitioning illustrating the effects of environmental and geographic on community variation. E|G, the pure effects of
environmental factors; G|E, the pure effects of geographic factors; E∩G, the joint effects. ∗ P ≤ 0.05; ∗∗ P ≤ 0.01 and ∗∗∗ P ≤ 0.001.

Figure 4. An overview of the overall bacterial association network. (A) Nodes contained in the network are colored by modules. A connection indicates a strong (ρ > 0.6

or ρ < −0.6) and significant correlation (Benjamini–Hochberg adjusted P < 0.01). The size of each node is proportional to the degree. Modules with nodes less than 15
were grouped into ‘Rest modules’. (B) The phyla distribution of nodes from different major modules.
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Figure 5. Linkages between environmental factors and network topological features. (A) Pearson’s correlation between individual environmental factors and network

topological features. The correlation matrix only keeps correlations with P < 0.05. avgCC stands for average clustering coefficient; APL stands for average path length;
avgK stands for average degree; CB stands for centralization of betweenness; CD stands for centralization of degree; Neg stands for the proportion of negative links.
(B) The contributions (R2 values) of both the total and the top three important environmental factors to topological variations. R2 values and associated P-values were
estimated with MRM models. ∗ P ≤ 0.05; ∗∗ P ≤ 0.01 and ∗∗∗ P ≤ 0.001.

Relation of network topology and DOM quality

The Pearson’s correlation analysis showed that all network topo-
logical features analyzed in this study significantly correlated
with several environmental factors (Fig. 5A), suggesting that
bacterial association network varied with environmental condi-
tions. MRM analysis also confirmed this result, as environmen-
tal factors significantly explained substantial variations in net-
work topological features (40.9%, P < 0.001) after removing the
highly correlated environmental factors from the MRM model
(Fig. 5B and Figure S8, Supporting Information). Further inves-
tigation showed that the top three important factors responsi-
ble for the network’s topology variations were FI, HIX and clay
content (Fig. 5B and Table S4, Supporting Information), with the
explanatory power of FI (31.4%, P < 0.001) being far higher than
HIX (4.9%, P < 0.001) and clay content (4.4%, P < 0.5). Specifi-
cally, FI significantly (P < 0.05) and negatively correlated with
the number of links (r = −0.728) and nodes (r = −0.717), aver-
age degree (r = −0.74) and modularity (r = −0.382), but positively
correlated with centralization of betweenness (r = 0.599), aver-
age path length (r = 0.337) and the proportion of negative links
(r = 0.448), as revealed by Pearson’s correlation analysis (Fig. 5A).
Collectively, these results suggested that topological features of
bacterial association networks were tightly related to DOM qual-
ity, among which FI was the strongest one in explaining topolog-
ical variations.

DISCUSSION

While previous studies have highlighted the importance of fac-
tors such as aridity (Wang et al. 2015), soil total C (Maestre et al.
2015) as drivers of soil bacterial diversity in drylands. Here,
we demonstrated that DOM quality explained bacterial diver-
sity better than any other edaphic and climatic factors inves-
tigated, which was supported by both stepwise multiple regres-
sion (Fig. 2A and Table S2, Supporting Information) and variation
partitioning (Fig. 2B). Specifically, we found that plant-derived
DOM supported higher diversity of soil bacteria relative to DOM
coming from microbial source, as indicated by the significant
negative correlation discovered between FI and bacterial diver-
sity (Fig. 1A). This is largely because that plants represent major
resource inputs to soil (Gmach et al. 2020), and can substan-
tially diversify the pool of resources and offer more ecological

niches to partition by generating plant residues and root exu-
dates (Prober et al. 2015; Zhang et al. 2017). In addition, we noted a
significant positive relationship between bacterial diversity and
HIX, suggesting a higher DOM humification degree with incre-
ment in bacterial diversity (Fig. 1B), which was consistent with
previous studies in glacial ecosystems on the Tibetan Plateau
(Zhou et al. 2019a). As humification processes result in lower H/C
ratios (Gabor et al. 2014) and more complex and disordered struc-
ture of DOM (Bernard et al. 2012), the results observed may reflect
that more diverse bacterial communities are required to break-
down the DOM with increasing degree of humification. These
results for bacteria were similar to our observations of soil fun-
gal diversity (Huang et al. 2020), which collectively emphasized
that DOM quality is of key importance in affecting soil microbial
diversity in semi-arid regions.

As for the bacterial community composition, significant spa-
tial differences were reflected by the distance–decay relation-
ship (Fig. 3A), which has been widely reported in soil bacterial
communities (Ma et al. 2017; Meyer et al. 2018). Both environ-
mental factors and geographic distance can contribute to the
distance-decay relationship (Bahram et al. 2016), but their rel-
ative importance for soil bacterial communities varies across
study systems (Wang et al. 2017), spatial scales (Martiny et al.
2011) and life history of the bacteria (Bissett et al. 2010). Our
results showed that environmental factors were more impor-
tant than geographic distance in shaping bacterial commu-
nity composition (Fig. 3B and Table 1). One possible reason is
that microorganisms have high rate of dispersal due to their
small size, which lessens the importance of geographic dis-
tance (Finlay 2002). Alternatively, semi-arid regions are char-
acterized by low nutrition content and low water availability
(Delgado-Baquerizo et al. 2013; Nielsen and Ball 2015); these
harsh environmental filters may impose strong environmental
selection to select species that can endure such stressful condi-
tions, as previously reported (Chase 2007; Tripathi et al. 2018).
This interpretation was further supported by the prevalence
of stress-tolerant taxa such as Acidobacteria, Chloroflexi and
Plantomycetes (Fierer 2017; She et al. 2018) in this study (Figure
S4, Supporting Information). Among the measured environmen-
tal factors, importantly, we found that soil bacterial commu-
nity composition was strongly correlated with DOM quality after
controlling for the effect of geographic distance (Table 2). This
result indicated that not only the conventional physiochemical
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factors such as pH (Fierer and Jackson 2006), salinity (Zhang et al.
2019), plant diversity (Prober et al. 2015), but also DOM quality
can play a significant role in shaping bacterial community com-
position and was in accordance with studies conducted in per-
mafrost environments (Zhou et al. 2020), lakes (Muscarella et al.
2019) and sea waters (Zhao et al. 2019). Numerous studies have
reported that bacteria specialized on specific DOM substrate and
different components of DOM differentially participate in bacte-
rial metabolism (Li et al. 2019; Muscarella et al. 2019; Zhou et al.
2019a). These specific metabolic niches for bacterial utilization
of DOM might explain why DOM quality could differentiate bac-
teria communities.

Other than driving the patterns of bacterial diversity and
composition, our results showed that DOM quality was also
the most important factor associated with topological vari-
ations in bacterial association networks along the sampling
transect, with FI explaining more of the variability than HIX
(Fig. 5 and Table S4, Supporting Information). Specifically, plant-
derived DOM fostered larger and more complex networks than
microbial-derived DOM as reflected by the significantly nega-
tive relationships between FI and the number of links, nodes
and average degree (Fig. 5A). Because individuals in more diverse
communities are more likely to interact with other species (Tu
et al. 2020), the greater network size and complexity in plant-
derived DOM might be linked to the observed higher bacterial
diversity sustained by plant-derived DOM (Fig. 1A). In addition,
as modules could be regarded as niches (Chaffron et al. 2010;
Eiler, Heinrich and Bertilsson 2012), the negative relationship
between modularity and FI (Fig. 5A) supports the notion that
plant could diversify the resource pool and signifies the impor-
tance of plant-derived DOM in offering niches for microbial com-
munities (Li et al. 2019; Huang et al. 2020). Conversely, the propor-
tion of negative links was observed to be positively correlated
with FI (Fig. 5A), which indicated that there were fewer negative
links in bacterial association networks when DOM was plant-
dominated in origin than those when microbial source domi-
nated. This might be attributed to the fact that plant-derived
DOM is preferentially consumed by microorganisms and trans-
formed into microbial-derived DOM (Roth et al. 2019; Ye et al.
2020), and suggests that the depletion of plant-derived DOM
likely trigger bacterial competition. Previous studies have shown
that resource depletion induced by microbe-mediated transfor-
mation of DOM could enhance the importance of deterministic
selection in community assembly (Zhou et al. 2021) and result
in changes in bacterial community structure (Gabor et al. 2014).
Our results expanded this by showing that depletion of plant-
derived DOM could increase competitive pressure. Overall, we
consider that plant-derived DOM could facilitate the develop-
ment of more niches for bacteria to partition, which would yield
higher bacterial diversity, greater interactions and ultimately
result in more complex bacterial association networks with less
competition.

In summary, this study provides new insights into soil bac-
terial biogeographic patterns in semi-arid regions by exploring
the patterns not only of bacterial alpha- and beta-diversity but
also of bacterial association network, as well as by adding detail
to the importance of DOM quality in structuring bacterial com-
munities. Our results showed that DOM quality, encompassing
the source and the humification degree of DOM, had profound
shaping influence on the biogeographic patterns exhibited by
bacterial diversity, community composition and association net-
works. This previously unrecognized importance highlights that
inclusion the interactions of DOM quality with bacteria commu-
nities is essential to predict how complex bacterial communities

and their contribution to ecosystem function will respond to cli-
mate change in semi-arid regions.
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