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Abstract
A healthy soil plant continuum is critical for maintaining agroecosystem functions and ensuring food security, which is the 
basis of sustainable agricultural development. Diverse soil microorganisms form a complex assembly and play an important 
role in agroecosystems by regulating nutrient cycling, promoting plant growth, and alleviating biotic and abiotic stresses. 
Improving microbial coexistence may be an effective and practical solution for the promotion of soil–plant ecosystem health 
in the face of the impacts of anthropogenic activities and global climate change. Modern coexistence theory is a useful 
theoretical framework for studying the coexistence of species that are competing for resources. Here, we briefly introduce 
the basic framework of modern coexistence theory, including the theoretical definitions and mathematical calculations for 
niche difference and fitness difference, as well as ways to test for these differences empirically. The possible effects of several 
major biotic and abiotic factors, such as biological interactions, climate change, environmental stress, and fertilization, on 
microbial niche and fitness differences are discussed. From the perspective of stabilizing and equalizing mechanisms, the 
potential roles of microbe–microbe interactions and plant–microbe interactions in promoting healthy soil–microbe–plant 
continuum are presented. We suggest that the use of the coexistence theory framework for the design and construction of 
microbial communities in agricultural production can provide a solid basis for the biological improvement of agroecosystems.

Keywords Modern coexistence theory · Niche and fitness differences · Stabilizing and equalizing mechanisms · Species 
interactions · Soil health

Introduction

Global demand for crops is growing rapidly and is likely to 
continue for decades to come, due to increases in both the 
global population and per capita consumption (Godfray and 
Garnett 2014; Tilman et al. 2011). However, global crop 
yields are predicted to be insufficient to meet the projected 
demand in 2050 (Ray et al. 2013). Agricultural crop pro-
ductivity is under tremendous pressure from a variety of 
abiotic stresses, due to intensive use of chemical fertilizers 
and pesticides, climate change and environmental pollu-
tion, and biotic stresses from pests and pathogens (Molotoks 
et al. 2020; Pandey et al. 2017). Increasing the productivity 
of agroecosystems remains a huge challenge, and there is 
an urgent need for more sustainable ways to increase crop 
yields.

The phytobiome is composed of plants, their environ-
ment, and diverse interacting microscopic and macroscopic 
organisms, which together profoundly influence plant and 
agroecosystem health and productivity (Leach et al. 2017). 
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In the phytobiome, complex networks of interactions that 
links crops with microorganisms, animals, plants, soil, cli-
mate, and other environmental factors are established and 
regulated through physical and chemical cues (Korenblum 
and Aharoni 2019; Leach et al. 2017). Historically, agro-
ecosystems have been managed by focusing on individual 
components of the phytobiome, such as nutrient applications 
and pesticides. However, managing the phytobiome as an 
integrated system of diverse interacting components may 
offer greater opportunities to achieve optimal and sustain-
able crop productivity (Bell et al. 2019). Phytobiome stud-
ies that consider the complex network of interactions inside 
and outside the plant have demonstrated their potential in 
crop improvement (Hale et al. 2014; Macias-Bobadilla et al. 
2020).

Soil and phytobiome microbes provide essential ecosys-
tem services for agricultural crop production by regulat-
ing nutrient cycling, promoting plant growth, controlling 
pests and pathogens, and alleviating abiotic stress (Begum 
et al. 2019; Goswami and Deka 2020; Vimal et al. 2017). 
Microbes are rarely observed as single species popula-
tions in the soil environment. They form complex consortia 
through various types of interactions, including mutualism 
(two partners A and B have mutual benefit), commensalism 
(A takes profit, whereas B gains no disadvantage), amensal-
ism (A is limited by B), parasitism (A takes profit of B), pre-
dation (A consumes B), and competition (A and B compete 
for a limiting factor) (Faust and Raes 2012; van Elsas et al. 
2019). Thus, the interactions can be either mutualistic (or 
cooperative, leading to a positive effect on partners of the 
interaction) or antagonistic (in which a negative effect on at 
least one partner of the interaction can be seen) (van Elsas 
et al. 2019). These interactions involve ecological processes 
such as physiochemical changes, metabolite exchanges, and 
signaling, which allow different niches to be occupied and 
affect the competitiveness of communities (Braga et al. 
2016). On the one hand, mutualistic interactions between 
plants and arbuscular mycorrhizal fungi provide several 
benefits for plant growth and yield by increasing the avail-
ability of nutrients, improving soil structure and texture, and 
enhancing stress resistance of plants (Begum et al. 2019). 
Plant growth-promoting rhizobacteria generally promote 
plant growth by producing plant hormones such as auxins 
and cytokinins, improving nutrition acquisition, enhancing 
the antioxidant system, and inducing resistance against plant 
pathogens, production of siderophore, volatile organic com-
pounds, and protection enzymes (Vejan et al. 2016). One 
the other hand, antagonistic interactions between plants 
and pathogens have detrimental effects on plant growth and 
account for a major loss in global crop productivity (Oerke 
2006; Strange and Scott 2005).

Many plant growth-promoting microorganisms have been 
isolated from soil or rhizosphere to study their beneficial 

effects on soil and plant (De-Bashan et al. 2020; Le Mire 
et al. 2016; Mahanty et al. 2017). Microbiome engineering 
is an emerging field of synthetic biology, which may provide 
a sustainable strategy to improve crop productivity (Ahkami 
et al. 2017; Orozco-Mosqueda et al. 2018; Qiu et al. 2019). 
The synthetic community builds on complementary eco-
logical functions of microorganisms and aims to engineer 
synthetic microbial communities to promote beneficial 
plant–microbe interactions (Ke et al. 2020). A synthetic 
microbial community is designed by mixing selected micro-
bial strains that perform a given function better than the sum 
of individual performances and applying it to plants to study 
various aspects of plant–microbe interactions (Vorholt et al. 
2017). The challenge of microbiome engineering is not only 
to design synthetic microbial consortia with multiple plant 
growth-promoting functions, but also to stabilize them under 
field conditions (Arif et al. 2020; Sessitsch et al. 2019). It is 
necessary, therefore, to understand the mechanism of both 
microbe–microbe interactions and plant–microbe interac-
tions (including how microbes affect plants and how plants 
manipulate microbes) based on the theory of species coexist-
ence (Arif et al. 2020; Vorholt et al. 2017).

Species coexistence has been studied for decades, result-
ing in two prevailing views on the mechanisms involved. 
One is the classical niche-based viewpoint that focuses on 
the demands of species and emphasizes niche differentia-
tion among species to reduce interspecific competition and 
allow coexistence (Grinnell 1917; Hardin 1960; Macarthur 
and Levins 1967). The other is the neutral viewpoint, which 
assumes that different species are functionally equivalent 
and that coexistence is driven by stochasticity and dispersal 
(Bell 2001; Hubbell 2001). The modern coexistence theory 
developed by Peter Chesson reconciles these two perspec-
tives and provides a more comprehensive theoretical frame-
work for studying the coexistence of species in competition 
for resources (Chesson 2000, 2013, 2018). In the past two 
decades, modern coexistence theory has been widely used 
in the theoretical and empirical research on the coexistence 
of plant species. Here, we review the basic framework of 
modern coexistence theory, including the theoretical defi-
nitions and empirical approaches to test the theory, discuss 
the main biotic and abiotic factors that influence microbial 
species’ coexistence within this framework, and highlight 
the potential application of modern coexistence theory in 
agricultural soil–microbe–plant systems.

The framework of modern coexistence 
theory

In order to understand and predict species coexistence 
quantitatively on the basis of mechanistic theory, Chesson 
(2000) proposed two ecological differences among species, 
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namely, niche difference and average fitness difference. Here, 
ecological niche is not a Hutchinsonian hypervolume (Leibold 
1995) but instead is defined by the relationship between 
organisms and the physical and biological environment, taking 
into account both time and space. A particular combination of 
physical factors (e.g., temperature and moisture) and biological 
factors (e.g., predated food resources, predators, and natural 
enemies) at a particular point in time and space defines a point 
in niche space. A modern definition of a species’ ecological 
niche is the response that the species has to each point in the 
niche space and the effect that the species has at each point 
(Chesson 2000; Shea and Chesson 2002). Responses are 
defined in terms of demographic variables, such as survival 
and individual growth; but of most importance is the overall 
outcome of these responses, the per capita rate of increase. 
Effects include consumption of resources, interference with 
access to resources by other organisms, support of natural 
enemies, and occupancy of space. Niche difference reflects 
the spatial and temporal differences in resource utilization of 
species. Niche differences arise when intraspecific competition 
is greater than interspecific competition and prevents any 
species from becoming completely dominant or extinct in 
the community, thus stabilizing coexistence. By contrast, 
fitness difference is competitive asymmetry, which can 
result in one species excluding another species, regardless 
of their relative abundance, thus limiting the possibility of 
coexistence. Examples of fitness difference include differences 
of species in fecundity, susceptibility to generalist predators, 
resistance to fluctuating environment, and ability to take 
up limited resources (Chesson and Kuang 2008). The joint 
effects of niche difference and fitness difference determine 
whether each species in a competitive pair can increase 
from low density when the other is abundant, thus leading to 
coexistence or exclusion (Fig. 1). Niche difference supports 
coexistence by limiting the overexpansion of species when 
they rise to dominance and protecting them from exclusion 
when they become rare (Adler et al. 2007). Fitness difference 
drives competitive exclusion when species share the same 
niche. When niche difference between competitors is larger 
than fitness difference, the two species will coexist stably. 
Otherwise, the species with higher fitness will exclude other 
species.

Increasing niche difference between species and/or 
decreasing fitness difference, referred to as stabilizing and 
equalizing mechanisms, respectively, can promote coexist-
ence (Chesson 2000). In other words, the stability mecha-
nism tends to restrict species to interactions within their own 
population while limiting those with competitors, and the 
equalizing mechanism tends to make species more similar 
in competitiveness. For example, resource partitioning (the 
specialization of species on different resources) is a stabiliz-
ing mechanism that increases niche differences. Many trade-
offs (a negative correlation between traits because the cell 

resources allocated to one trait result in a decrease in the 
fitness of another trait) can be seen as equalizing mecha-
nisms, because doing well in one respect often means doing 
less well in another (Chesson 2013). For example, in order 
to survive in a harsh environment, a species may reduce its 
reproduction rate in exchange for survival (i.e., survival-
reproduction trade-offs), thus limiting the fitness differences 
between species.

Within the framework of modern coexistence theory, 
there are two methods to estimate niche difference and fit-
ness difference. The first is based on the Lotka–Volterra 
competition model (Chesson 2000, 2013). Niche difference 
and fitness difference between species can be estimated 
by intraspecific and interspecific competition coefficients, 
which represent a species dependence on its own density 
and the density of other species, respectively. The equations 
are as follows:

where �ij describes the per capita effect of species j on 
species i, as a proportion of the maximum per capita growth 
rate of species i is decreased by increasing the density of 
species j by one unit. The coefficient measures intraspecific 

Niche difference = 1 − ρ = 1 −

√

αij×αji

αjj×αii

Fitness difference =
fj

fi
=

√

αii×αij

αjj×αji

Fig. 1  The conceptual diagram of modern coexistence theory. The 
competitive outcome is determined by the balance between niche dif-
ference and fitness difference, which can be calculated based on the 
Lotka–Volterra competition model (Chesson 2000, 2013) or Mac-
Arthur’s consumer-resource model (Carroll et  al. 2011). The dotted 
and solid lines represent the boundaries where fj/fi equals 1/ρ and ρ, 
respectively. The right area indicates the region where coexistence 
occurs; the top and bottom areas indicate where species j and i is 
dominant, respectively. Figure  modified from Ke and Letten (2018)
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density dependence if i = j and interspecific density depend-
ence if j is different from i. The niche overlap, ρ, is a meas-
ure of the relative strength of density-dependent feedback 
between species and within species. Niche difference reflects 
the degree of intraspecific competition (denominator) rela-
tive to interspecific competition (numerator). Fitness dif-
ference between competitors, fj/fi , describes the degree to 
which species i is more sensitive to intraspecific and inter-
specific competitions than species j. The larger the ratio, the 
greater the fitness advantage of species j relative to i, and 
the faster species j can exclude i in the absence of niche dif-
ference. Two species coexist stably when their growth (and 
therefore their increase in density) has a greater inhibitory 
effect within their own population than on the population 
of the other species. In other words, when the intraspecific 
competition coefficient exceeds the interspecific competition 
coefficient, that is, when fitness difference is between ρ and 
1/ρ, stable coexistence occurs.

Another way to measure niche difference and fitness dif-
ference is based on MacArthur’s consumer-resource model 
(Carroll et al. 2011). In this model, niche difference and 
fitness difference are calculated by the effect of interspecific 
interaction on population dynamics, that is, the invasion rate. 
The proportional reduction in the growth rate of an invader 
i due to interspecific competition is called i’s sensitivity  (Si) 
to the native species j, which is defined as Si=

�i,0−�i,j

�i,0

 , where 
µi,0 and µi,j are the per capita growth rate of invader i in the 
absence and presence of the native species j, respectively. 
When  Si < 1, i can invade j, but invasion is not possible when 
 Si > 1 (i.e., negative growth as invader). For  Si approaches 
1, a species would show a sharp drop in growth rate when 
invading, while  Si < 0 indicates facilitation (i.e., a special 
case in which the invader grows better in the presence of the 
resident than in monoculture). The niche difference and fit-
ness difference between the invasive and local species can 
be calculated by the geometric mean and geometric standard 
deviation of their sensitivities to competition. The formulae 
are as follows:

when both species are sensitive to interspecific competi-
tion, a negative invasion growth rate and an unsuccessful 
invasion (i.e., the invader dies, and in this case, there is no 
invasion) occur. It means that  Si > 1 and a negative niche 
difference in the calculated values, suggesting strong compe-
tition between invasive and local species. When the growth 
of a species as an invader is as good as that of the species 
alone,  Si→ 0 and niche difference → 1, it indicates that spe-
cies are not negatively affected by interspecific competition. 
Niche difference reduces the competition, corresponding to 

Niche difference = 1 −
∏n

i=1
S
1∕n

i

Fitness difference = exp

�

�

(lnS)2 − (lnS)2
�1∕2

�

the decrease of  Si. If fitness difference > 1, the fitness of 
invaders is greater than that of native species, while fitness 
difference < 1 is the opposite. If fitness difference is close to 
1, the growth rates of the two species are affected equally by 
each other, which makes it possible to coexist stably, even 
with a small niche difference.

Most of the empirical tests of modern coexistence theory 
are carried out in annual plant communities by calculating 
niche difference and fitness difference based on parametric 
competition models. These models need field estimations 
of species germination fractions, per-germinant fecundi-
ties without neighbors, seed survival in soil, and all pair-
wise competition coefficients (Godoy et al. 2014; Godoy 
and Levine 2014; Kraft et al. 2015). Some studies have also 
determined niche difference and fitness difference between 
pairs of microbes by measuring invasion growth rates in 
mutual invasion experiments with bacterial strains (Li et al. 
2019; Tan et al. 2017), yeast (Grainger et al. 2019), and 
green algae (Narwani et al. 2013). Based on the monocul-
ture and invasive growth rates, the sensitivity of each spe-
cies to competition was evaluated, and the niche difference 
and fitness difference were determined using the equation 
described by Carroll et al. (2011). However, in complex soil 
environments, microbial communities are characterized by 
multi-species interactions. A key obstacle to using these 
methods to measure the rate of invasion growth is that it is 
difficult to do so in the soil microbiome. Empirical testing of 
modern coexistence theory frameworks in the microbiomes 
of agricultural ecosystems faces great practical challenges. 
Here, we suggest that future research on microbial interac-
tions involving two or more species in microcosms should 
be conducted not only in pure culture but also with surface-
reactive particles of soils, such as different clay minerals, 
in order to test the modern coexistence theory (Bairey et al. 
2016; Stotzky 1986).

Effects of biotic and abiotic factors on niche 
difference and fitness difference

In agricultural ecosystems, the effects of biotic interactions, 
climate change, environmental stress, fertilization, and soil 
constraints on the outcome of species competition have long 
been the focus of research (Valladares et al. 2015; Wardle 
2006). In the framework of modern coexistence theory, these 
factors may act as stabilizing or/and equalizing forces for 
coexistence (Fig. 2). Biotic interactions, including mutual-
istic and antagonistic interactions, have positive or nega-
tive on the species involved, so they play different roles in 
determining the competitive outcome within communi-
ties (Faust and Raes 2012). In theory, mutualistic interac-
tions promote coexistence by increasing niche difference 
(i.e., enabling access to other unavailable nutrients) and 
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equalizing fitness difference (i.e., increasing the fitness of 
inferior species more than that of the dominant species). 
However, they may also result in competitive exclusion by 
reducing niche difference (due to increasing interspecific to 
intraspecific competition, since the mutualistic commodi-
ties are themselves limited) and increasing fitness difference 
(i.e., increasing the fitness of the superior competitor more 
than that of the inferior) (Bartomeus and Godoy 2018; Johnson 
2021). The effects of mutualistic interactions on competitive 
outcomes and the mechanisms by which they occur depend 
on the response of species to the interactions. For example, 
using pollination and mycorrhizal mutualisms as illustrative 
systems, Johnson (2021) empirically quantifies niche and 
fitness differences between competitors and demonstrates 
that species might appear to coexist on resources alone, 
when the simultaneous incorporation of mutualisms actu-
ally drives competitive exclusion or competitive exclusion 
might occur under resource competition, when in fact, the 
incorporation of mutualisms generates coexistence. Arbus-
cular mycorrhizal fungi-dependent plant species are more 

phenotypically similar to each other and thus compete more 
strongly than arbuscular mycorrhizal fungi-independent 
plant species, and different mycorrhizal dependent plant 
species are more likely to coexist (Veresoglou et al. 2018). 
Mutualistic interactions between plants and arbuscular myc-
orrhizal fungi act as both stabilizing and equalizing forces in 
plant competition. Plant pathogens have antagonistic interac-
tions with plants. However, these interactions can act as a 
stabilizing force, thus promoting plant species coexistence. 
They achieve this by enhancing intraspecific negative inter-
actions: density-dependent diseases are more likely to spread 
through dense host populations and reduce their dominance 
(Parker et al. 2018). In addition, plant pathogens can act 
as an equalizing force by reducing the competitive advan-
tage of better competitors. For example, plants with high 
growth rates, large seeds, and fast leaf turnovers have advan-
tages in resource acquisition strategies. However, there are 
often trade-offs associated with such resource acquisition 
strategies, in the form of lower investments in the protec-
tion against pathogens, which can result in reductions in 

Fig. 2  Graphical presentation of the possible effects of biotic and 
abiotic factors on niche and fitness differences. ND, niche difference; 
FD, fitness difference; Bio, biotic interactions; Cli, climate change; 

Env, environmental stress; Fer, fertilization; Soi, soil constraints. Red 
and blue lines indicate negative and positive relationships, respec-
tively. Gray thin arrows indicate indirect impact pathways
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their competitive advantage due to antagonistic interactions 
(Maron et al. 2018; Petry et al. 2018). Indeed, fast-growing 
plant species experience greater fungal infection rates than 
slow-growing species (Blumenthal et al. 2009; Parker et al. 
2018). By changing the fitness hierarchies of competitors, 
antagonistic interactions may therefore promote coexistence 
or exclusion.

Climate change (i.e., rising temperature, drought, and 
elevated  CO2  [eCO2]) is expected to have a profound impact 
on the coexistence of species by changing niche and fitness 
differences (Valladares et al. 2015). Higher temperatures 
can change the feeding and population growth rates of spe-
cies (Brown et al. 2004; Zhou et al. 2016). The asymmetric 
responses of species’ resource requirements as a function 
of rising temperature can change both niche partitioning 
and competitive hierarchies (Lewington Pearce et al. 2019). 
For example, a study using experimentally derived energy 
budgets and field temperature data show that temperature-
dependent asymmetries in energetic performance between 
Hemimysis anomala (which increases its feeding rate with 
temperature in parallel with growing metabolic demand) and 
Mysis salemaai (which maintains a constant feeding rate 
with temperature leading to diminishing energy assimilation) 
are an important mechanism determining invasion success 
under warming climates (Penk et al. 2016). Temperature can 
affect the growth and competition among Microcystis aer-
uginosa, Planktothrix agardhii, and Cyclotella meneghini-
ana, but the response is dependent on the species (Gomes 
et al. 2015). Because different temperatures may result in the 
production of distinct compounds that affect the competi-
tion, the vulnerability of target species to these compounds 
may also depend on the temperature. Therefore, the sen-
sitivity and the physiological status of competing species 
can determine their lasting coexistence. On the other hand, 
higher temperatures may lead to increases in resource inputs 
or decreases in resource availability (due to higher decom-
position rates), resulting in differences in the quantity and 
quality of resources and thus directly changing the ecologi-
cal habitat (Davidson and Janssens 2006; Liang et al. 2017).

The soil water status controls microbial activities directly 
or indirectly by affecting the availability of nutrients (Keitt 
et al. 2016). Due to changes in precipitation or to long-term 
drought under climate change, the fitness of soil microorgan-
isms may be reduced by investment in resources to tolerate 
drying and rewetting stress (Evans et al. 2014). Bacteria may 
be more negatively affected by drought than fungi, which 
may be attributed to their different tolerances to water stress 
(Preece et al. 2019). A number of traits, including osmolytes, 
thick cell walls, β1,3-glucan, trehalose, melanin, and bud-
ding growth, can allow fungi to maintain activity during 
drought (Treseder and Lennon 2015). Filamentous fungi can 
produce hyphae that extend up to meters and forage for water 
across small matrix of dry soil (Klein and Paschke 2004). 

Also, drought can cause changes in nutrient cycling and C 
allocation in soils, which may influence the niche for micro-
organisms (Pugnaire et al. 2019). Mutualistic symbionts such 
as N-fixing bacteria, plant growth-promoting rhizobacteria, 
and arbuscular mycorrhizal fungi may increase under water 
stress to enhance nutrient acquisition and drought tolerance 
(Ngumbi and Kloepper 2016; Suri et al. 2017).

Elevated  CO2 undoubtedly alters belowground C and 
nutrient allocation, resulting in either positive or negative 
changes in growth rates and competitive abilities of soil 
microorganisms (Castro et al. 2010). Heterotrophic decom-
posers and mutualistic mycorrhizal fungi are the two main 
groups of soil microbes that respond to changes in C and 
nutrient cycling under  eCO2 (Pugnaire et al. 2019). High 
concentration of  CO2 undermines energy acquisition of 
syntrophic microorganisms but not that of the aceticlastic 
methanogen in a model microbial consortium, resulting in 
the dominance of aceticlastic methanogen in the competitive 
interaction (Kato et al. 2014). In addition, climate change 
can indirectly affect niche difference and fitness difference 
among competing species by changing biotic interactions. 
For example, climate change is expected to alter host–patho-
gen interactions by increasing pathogen reproduction and 
host–plant modulation such as altering host tissue size and 
texture (Singh et al. 2019). Furthermore, the effects of cli-
mate change on soil microbes may be stronger under multi-
ple climate change factors, such as the additive or interactive 
effects of rising temperature, drought, and  eCO2 (Gray et al. 
2011; Thakur et al. 2019).

Environmental pollutant stress (such as antibiotics, met-
als, and microplastics) is known to affect the soil biome 
and soil functions. Environmental stress can cause fitness 
trade-offs in microorganisms, that is, a loss of competi-
tiveness (i.e., a reduction in growth rate or yield) due to 
greater investment in resistance (Andersson and Levin 1999; 
Hall et al. 2015). The reduction of fitness is highly specific 
and environment dependent. A species may be resistant in 
one environment but sensitive in another, and the fitness 
cost of microbial resistance usually increases under more 
stressful growth conditions (Hall et al. 2011; Petersen et al. 
2009). From the perspective of resistance evolution, stress 
affects not only fitness difference, but also the niche overlap 
between species. There are frequently trade-offs between 
resistance genes and metabolism (Martinez and Rojo 2011; 
Perkins and Nicholson 2008). The niche difference produced 
by the change of resource utilization pattern may be suf-
ficient to offset the fitness cost of resistant mutations and 
allow coexistence. Unlike antibiotics and metals, the effects 
of microplastics on microorganisms seem to be mediated by 
physical parameters, such as particle shape and size, rather 
than by significant chemical-mediated toxicity (Rillig and 
Lehmann 2020). Therefore, microplastics can act as stabi-
lizing factors by changing the spatial structure of microbial 

902 Biology and Fertility of Soils (2021) 57:897–911



1 3

activities, providing adsorbed nutrients and organics, and 
influencing the flow of gas and water (Dussud et al. 2018; 
Yang et al. 2020).

Fertilization is a major anthropogenic activity in agricul-
tural production. The direct effect of fertilization is to create 
niches for soil microbes and plants by providing nutrients 
that increase the metabolic activity of specific bacteria (Jia 
et al. 2020; Lin et al. 2020; Yu et al. 2019). The addition 
of large quantities of nutrients can favor r-strategists, while 
K-strategists prevail in nutrient-poor soils (Malý et al. 2009). 
In addition, fertilization may indirectly affect microbial fit-
ness and niche by changing soil properties such as soil pH 
and aggregates (Geisseler and Scow 2014; Lin et al. 2019). 
Physiological and ecological studies have demonstrated that 
fertilization-induced changes in soil pH may drive niche spe-
cialization of microorganisms, such as ammonia oxidizers, 
as bacteria have rather narrow pH ranges for optimal growth, 
while fungi generally exhibit wider pH ranges for optimal 
growth (Geisseler and Scow 2014; Rousk et al. 2010; Zhao 
et al. 2020). Long-term manure application could increase 
soil aggregation and thus create more ecological niches, 
because macroaggregates can result in more heterogene-
ous habitats and labile substrates than microaggregates 
(Lin et al. 2019; Ye et al. 2021). Organic fertilizers, such 
as animal manure, compost, or sewage sludge, may intro-
duce exogenous microorganisms into the soil that are either 
beneficial or detrimental to the growth of soil native organ-
isms and plant, resulting in short-term positive or negative 
effects on microbial interactions, although the microorgan-
isms added to soil by fertilizers may be unable to survive in 
the soil conditions (Lourenço et al. 2018; Suleiman et al. 
2019). Such effects due to long-term fertilizations have also 
been frequently reported (Ling et al. 2016; Windisch et al. 
2021). Moreover, fertilization has a profound impact on 
plant–microbial interactions by changing soil pH, organic 
C content, and nutrient availability (Huang et al. 2019). 
For example, flavonoids are important signaling molecules 
in the interactions between plants and N-fixing bacteria 
(best known as the legume-rhizobia symbiosis), as well as 
between plants and mycorrhizal and phytopathogenic fungi 
(Cesco et al. 2012). Soil organic amendments may interrupt 
flavonoid signaling pathways through metal-mediated reac-
tion between flavonoids and dissolved organic C and weaken 
the effectiveness of plant–microbe interactions based on fla-
vonoids (Del et al. 2020). Due to the high availability of 
nutrients and competition for limited C resources, N and P 
fertilization may reduce arbuscular mycorrhizal fungi colo-
nization and increase fungal pathogen infection (Verbruggen 
and Toby 2010; Veresoglou et al. 2013). It should be noted 
that the effects of long-term fertilizer application on soil 
microbial interactions may have legacy effects in subsequent 
seasons even if fertilizer application has been discontinued 
(Liu et al. 2020).

Soil acidity, salinity, and compaction are important soil 
constraints for agricultural productivity and sustainability. 
Such stress conditions may significantly change soil physico-
chemical properties and fertility, resulting in impacts on spe-
cies coexistence. Soil acidity can influence microbial niche 
and fitness as the consequence of different optimal pH ranges 
for microbial growth and activity (Rousk et al. 2010). Soil 
pH is a key factor in regulating soil organic matter turnover, 
nutrient bioavailability, and metal transformation (Kemmitt 
et al. 2006). Increasing soluble and exchangeable Al in the 
soil with acidity may affect species coexistence by reducing 
nutrient bioavailability and inducing toxicity to microorgan-
isms and plants (Singh et al. 2017). Also, soil salinity has 
direct effects on microbial niche and fitness due to their dif-
ferent salinity preferences and tolerances (Rath et al. 2019; 
Zhang et al. 2019, 2021). Microbial species with specialized 
physiologies adapted to the high extracellular osmotic pres-
sure may be resistant to soil salinity stress (Oren 2008). In 
addition, soil salinity can affect the availability of water, 
organic C decomposition, and the biogeochemical cycling 
of nutrients and thus may indirectly be a destabilizing factor 
for plants and microorganisms (De León-Lorenzana et al. 
2018; Zhao et al. 2019). Soil compaction mainly affects soil 
physical properties such as bulk density, strength, and poros-
ity, thereby reducing water infiltration, air permeability, and 
aggregate stability, altering elements mobility, and changing 
N and C cycling (Nawaz et al. 2013; Shah et al. 2017). This 
can change the niche properties for both soil microorganisms 
and plant roots. On the other hand, these soil constraints 
may change some biotic interactions among microbes and/
or plants. For example, legumes and their rhizobia exhibit 
diverse tolerances and responses to soil acidity and salinity 
(Zahran 2010). In general, strains of Bradyrhizobium are 
more acid tolerant than those of Rhizobium (Castro et al. 
2016).

Here, we only discuss some major factors affecting eco-
logical niche difference and fitness difference and their pos-
sible pathways. It is not a comprehensive survey of all of the 
factors involved; however, it may help the reader to under-
stand the coexistence of soil microorganisms and plants in 
agricultural ecosystems under climate change and human 
activities.

Modern coexistence theory in agricultural 
soil–microbe–plant systems

Numerous studies have reported complex interactions 
between soil microbes and plants in agroecosystems. Here, 
we attempt to disentangle the underlying mechanisms 
driving these interactions from the perspective of modern 
coexistence theory (Fig. 3). Soil harbors vast numbers of 
microbes, including bacteria, archaea, fungi, protozoa, and 
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viruses, which participate in many ecological processes in 
agroecosystems, such as organic matter decomposition, 
nutrient cycling, pesticide degradation, soil-borne 
pathogen control, and abiotic stress tolerance (Sahu et al. 
2019). Microbe–microbe interactions can occur through 
the transfer of molecular and genetic information, such as 
secondary metabolites, siderophores, cellular transduction 
signaling and quorum sensing, and biofilm formation (Braga 
et al. 2016). It has been suggested that the unculturability 
of many soil bacteria is due to the establishment of 
intercellular metabolic networks, which might be a form of 
coexistence that can potentially have major consequences for 
microbial functioning (Pande and Kost 2017). Mutualistic 
interactions and niche creation, which contribute to 
coexistence, can occur through metabolic cross-feeding, 
where some microorganisms excrete available metabolites 
to form new niches that can be occupied by others for their 
growth (Douglas 2020; D’Souza et al. 2018; San Roman 
and Wagner 2018). Antagonistic interactions can occur 

through exploitative competition for nutrients or produce 
antagonistic metabolites through interference competition 
(Ghoul and Mitri 2016; Hibbing et al. 2010). The types and 
extents of these interactions are largely influenced by various 
abiotic and biotic factors, which in turn change the activities 
of soil microorganisms and the ecological processes involved 
(Saleem and Moe 2014).

Using multiple microbial consortia consisting of bacte-
ria and fungi that are beneficial to plants and manipulating 
rhizosphere microbes to improve crop growth and resistance 
are expected to contribute to sustainable agricultural produc-
tion (Ahkami et al. 2017). Simple consortia (simple mixtures 
of plant beneficial bacteria and/or fungi grown separately 
before inoculation or growth of more than one plant benefi-
cial bacteria and/or fungi together in a medium suitable for 
each one) and complex consortia (reconstructing functional 
metaorganisms based of microbiomes/metagenomics anal-
yses and/or combined with culture-dependent approaches) 
are two known types of consortia formation (Bashan et al. 

Fig. 3  Schematic illustrating soil microbe–microbe interactions 
and plant–microbe interactions through modern coexistence theory. 
The conceptual model of microbe–microbe interactions and plant–
microbe interactions is modified after Bever’s model of pairwise 
plant–soil feedback and its derived framework (Bever 2003; Bever 
et  al. 1997; Kandlikar et  al. 2019; Ke and Wan 2019). The purple 

arrows represent microbe–microbe interactions, which can be either 
mutualistic or antagonistic. The upward red arrows and downward 
green arrows represent the microbial effects on plants and plant 
effects on microbes, respectively, which both can be either positive or 
negative. Thick arrows indicate stronger interactions/effects than thin 
arrows
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2020). The various steps involved in designing the ideal arti-
ficial microbial consortia include selecting the origin of the 
microbes, obtaining and culturing the core microorganisms, 
optimizing microbial interactions according to their compat-
ibility, and assessing the efficacy of these consortia (Kong 
et al. 2018). One of the main challenges of such consortia 
is to explore the interactions between microbial members 
and specific interactions within plant holobiont (Bashan 
et al. 2020). The more species in the consortia, the more 
complex the outcomes of interactions as each member of 
a consortium can potentially affect the growth and produc-
tion of metabolites of other members. It has been shown 
experimentally that defined microscale spatial structure is 
both necessary and sufficient for the stable coexistence of 
interacting microbial species in the synthetic community 
(Kim et al. 2008). In addition to the compatibility of mul-
tiple microorganisms and plant holobiont, more practical 
factors such as initial cell dosages and ratios, physiological 
activity, growth conditions of the strains, suitable formula-
tions for survival and shelf-life of microorganisms, delivery 
approaches, colonization capacity, interaction with native 
microbiota, and potential influence of abiotic and biotic 
conditions of the soil/plant environment are bottlenecks for 
the successful establishment of consortia (Sessitsch et al. 
2019). Nevertheless, some successful consortia have been 
achieved to improve crop growth and stress tolerance. For 
example, a consortium of four bacterial taxa (Pseudomonas 
putida, Citrobacter freundii, Enterobacter cloacae, and 
Comamonas testosteroni) has been reported to mobilize 
soil P and increase crop productivity up to twofold (Baas 
et al. 2016). A bacterial consortium containing four compat-
ible and desiccation-tolerant strains (Pseudomonas putida 
KT2440, Sphingomonas sp. OF178, Azospirillum brasilense 
Sp7, and Acinetobacter sp. EMM02) was able to colonize 
the rhizosphere of plants and enhance desiccation stress tol-
erance in maize (Molina-Romero et al. 2017).

Soil microbes may have stabilizing or destabilizing 
effects on plants by generating negative or positive density-
dependent feedbacks, thus facilitating or hindering coexist-
ence (Bagchi et al. 2014, 2010). Plant growth-promoting 
rhizobacteria such as N-fixing bacteria (e.g., some species 
in the genera Rhizobia, Azospirillum, Azotobacter, Azoar-
cus, and Cyanobacteria) and P-solubilizing bacteria (e.g., 
some species in the genera Azospirillum, Azotobacter, Pseu-
domonas, Bacillus, Rhizobium, Burkholderia, Enterobacter, 
and Streptomyces) may increase the availability of nutrients 
and expand the niche partitioning for plants and/or other 
microorganisms (Gamalero and Glick 2019). Host specific-
ity in plant–microbe interactions may contribute to the niche 
differentiation and nutrient allocation of mycorrhizal plants 
and fungi (Tedersoo et al. 2020). Compared with intraspe-
cific competition, it is expected to reduce interspecific com-
petition and provide a stabilizing mechanism for promoting 

coexistence. On the other hand, plant–microbe interactions 
can provide different fitness benefits for plants and act as 
equalizing factors. Root microbiota are an important fac-
tor influencing host plants’ performance and competition 
in response to biotic and abiotic stressors (Berendsen et al. 
2012; Hodge and Fitter 2013). Microbial-mediated fitness 
differences in plants may be due to their different tolerance 
to soil-borne pathogens or the different benefits they get 
from the interacting soil microorganisms (Kandlikar et al. 
2019). Some plant growth-promoting rhizobacteria are able 
to tolerate abiotic stress and maintain plant fitness by regu-
lating hormonal and nutritional balance and producing plant 
growth regulators (Kumar and Verma 2018). If host immu-
nity shapes the associated microbiota or if host–microbiota 
affect immunity, highly similar root microbiota between host 
plants may reduce plant performance due to transfer and 
coinfection with shared pathogenic bacteria, while specific 
microbial taxa in the root may influence competitive interac-
tions among plants (Castrillo et al. 2017; Fitzpatrick et al. 
2018; Hacquard et al. 2017). The plant-associated micro-
biota depend not only on host species but also on soil prop-
erties, which then in turn regulate plant performance under 
biotic and abiotic stresses. For example, among 30 angio-
sperm species, 40% of the variation in endosphere micro-
bial diversity depends on the host species but only 17% in 
the rhizosphere soil, and drought shifts the composition of 
these root microbiomes, with host-specific changes in the 
relative abundance of specific bacterial taxa associated with 
increased drought tolerance of host plants (Fitzpatrick et al. 
2018). In arbuscular mycorrhizal fungi plant systems, myc-
orrhizal fungi and hyphal networks tend to enhance plant 
intraspecific competition and alleviate interspecific competi-
tion by promoting the performance of inferior competitors 
and suppressing superior competitors (Tedersoo et al. 2020). 
In the context of modern coexistence theory, the extent to 
which plants coexist or repel is affected by microbial den-
sity-dependent feedbacks and niche differentiation, as well 
as fitness advantages provided by microbes for plant species 
(Kandlikar et al. 2019).

The rhizosphere is a unique niche for microorganisms that 
are influenced by plant root exudates (Pinton et al. 2001). 
When the rhizosphere microorganisms with different substrate 
uptake patterns undergo niche differentiation of metabolic 
resource allocation, it leads to stabilizing coexistence (Baran 
et al. 2015). On the contrary, competition for the same resource 
may occur when microorganisms have similar substrate prefer-
ences, leading to competitive exclusion (Freilich et al. 2011). 
Also, the substrate concentration is important because micro-
organisms with low Michaelis–Menten kinetics constant 
(Km) values of uptake for the target substrate can prevail at 
low concentration and the opposite for microorganisms with 
high Km values. For example, the slow-growing K-strategic 
microorganisms with enzymes of high substrate affinity are 
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better adapted for growth on poorly available substrates but 
are uncompetitive against the r-strategic microorganisms with 
higher Km values in the rhizosphere (Tian et al. 2020). The 
kinetic analysis suggested that comammox Nitrospira had 
higher affinity for ammonia than ammonia-oxidizing archaea 
and bacteria and thus might be more competitive under oli-
gotrophic conditions (Kits et al. 2017). Some root exudates, 
such as phenolics and terpenoids, play an antimicrobial role in 
selecting beneficial microbes and resisting soil-borne patho-
gens (Baetz and Martinoia 2014). Phenolic compounds can 
be used as specific substrates or signaling molecules for some 
bacterial groups and benefit the community by creating spe-
cific chemical niches (Badri et al. 2013). In addition, plants 
can also indirectly affect soil microbes by secreting exudates 
such as organic acids, thus changing soil pH and nutrient avail-
ability (Chen et al. 2016; Dakora and Phillips 2002).

Taken together, the effects of microbe–microbe interactions 
and plant–microbe interactions on species competitive out-
comes in agroecosystem can be understood by Bever’s model 
of pairwise plant–soil feedback model (Bever 2003; Bever 
et al. 1997; Kandlikar et al. 2019; Ke and Wan 2019). Firstly, 
microbial mutualistic and antagonistic interactions can affect 
the niche difference and fitness difference among compet-
ing microbes, which is crucial for maintaining soil microbial 
diversity and ecosystem functioning. Secondly, both beneficial 
and pathogenic microbes can modify niche difference and fit-
ness difference between competing plants, thus affecting plant 
growth and yield. Thirdly, plants change niche difference and 
fitness difference among competing microbes by secreting root 
exudates that are beneficial or harmful to soil microbes. By 
integrating niche competition and interaction between micro-
organisms and plants, we can better understand the effects of 
interactions between microorganisms and plants on plant fit-
ness. Although these processes are mainly stabilizing or/and 
equalizing, their impact on coexistence is integrative rather 
than singular and varies with environmental conditions. There-
fore, it is difficult to draw a general conclusion about the influ-
ence of soil microorganism on plant coexistence or the influ-
ence of plant on soil microorganism coexistence. However, 
this framework provides an insight into integrating the roles of 
multiple soil microorganisms and determining their contribu-
tion to plant coexistence, which can be applied to the utiliza-
tion of beneficial microorganisms in plants and the control of 
soil-borne diseases in crop production. More empirical studies 
are suggested to test the framework in mesocosms involving 
two or more microbial species with and without plants.

Conclusion and future perspectives

The modern coexistence theory framework improves 
our understanding of coexistence and can be applied to 
microbial communities under different biotic and abiotic 

conditions. Microbial coexistence plays an important role 
in promoting soil–plant ecosystem health by stabilization 
and equalization. Here, we focus on the theory underlying 
coexistence in soil microbe–plant ecosystems and empha-
size some challenges in the future. First of all, for empiri-
cal testing, it is difficult to estimate experimentally the 
population growth rate of microorganisms in the commu-
nity and their sensitivity to intraspecific and interspecific 
densities. Population dynamics is the result of complex 
species interactions in multiple species communities. It 
remains a big challenge to assess the interaction coef-
ficients among co-occurring microbes, especially in the 
natural range of high population density and heterogene-
ous environment. Therefore, one of the next steps is to 
develop experimental methods to quantitatively estimate 
the niche difference and fitness difference between com-
peting microorganisms in a community and to predict the 
competitive outcome of pairwise interactions between spe-
cies to more complex high-order interactions, even across 
multiple scales of space and time.

Second, modern coexistence theory provides an abstract 
concept of coexistence, but it is difficult to apply to empirical 
studies. Niche difference and fitness difference are simplified 
functional traits of species and lack specific information. By 
linking the niche and fitness of plants and microorganisms 
with specific functional characteristics, physiological char-
acteristics, and biotic or abiotic factors that affect population 
growth rate, we can deepen our understanding of coexist-
ence. For example, temperature has a significant effect on 
the metabolic rate and motility of organisms, which can have 
a special contribution to the population growth rate, thus 
promoting species coexistence. The explanation of func-
tional traits and physiological attributes can be associated 
with niche difference and fitness difference among species 
and explain the potential mechanism of coexistence.

When expanding the application of modern coexist-
ence theory in soil microbe–plant ecosystems, it is nec-
essary to incorporate microbe–microbe interactions and 
plant–microbe interactions into stabilizing and equalizing 
mechanisms. Both model and experimental studies should 
consider more thoroughly the role of plants in mediating 
microbial interactions and the effects of microbes on plant 
niche and fitness. It has important practical significance 
and application value for maintaining microbial and plant 
diversity and its function in agricultural ecosystems. In 
plant microbiome engineering, various microbial strains that 
promote plant growth are usually screened for under highly 
artificial conditions. Successful field application requires 
further consideration of the coexistence of synthetic micro-
bial communities and native soil microorganisms, as well 
as their diversity and ecological functions under the influ-
ence of plant root exudates and other environmental fac-
tors. The application of modern coexistence theory for plant 
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microbiome research can bridge the gap between laboratory 
results and field performance.
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