
The ISME Journal (2021) 15:2233–2247
https://doi.org/10.1038/s41396-021-00919-9

ARTICLE

Synergistic epistasis enhances the co-operativity of mutualistic
interspecies interactions

Serdar Turkarslan1
● Nejc Stopnisek 2

● Anne W. Thompson 3
● Christina E. Arens1 ● Jacob J. Valenzuela1 ●

James Wilson1
● Kristopher A. Hunt 2

● Jessica Hardwicke2 ● Adrián López García de Lomana 4
● Sujung Lim 5

●

Yee Mey Seah6
● Ying Fu7

● Liyou Wu7
● Jizhong Zhou 7

● Kristina L. Hillesland 6
● David A. Stahl2 ●

Nitin S. Baliga 1

Received: 26 July 2020 / Revised: 18 December 2020 / Accepted: 29 January 2021 / Published online: 21 February 2021
© The Author(s) 2021. This article is published with open access

Abstract
Early evolution of mutualism is characterized by big and predictable adaptive changes, including the specialization of
interacting partners, such as through deleterious mutations in genes not required for metabolic cross-feeding. We sought to
investigate whether these early mutations improve cooperativity by manifesting in synergistic epistasis between genomes of
the mutually interacting species. Specifically, we have characterized evolutionary trajectories of syntrophic interactions of
Desulfovibrio vulgaris (Dv) with Methanococcus maripaludis (Mm) by longitudinally monitoring mutations accumulated
over 1000 generations of nine independently evolved communities with analysis of the genotypic structure of one
community down to the single-cell level. We discovered extensive parallelism across communities despite considerable
variance in their evolutionary trajectories and the perseverance within many evolution lines of a rare lineage of Dv that
retained sulfate-respiration (SR+) capability, which is not required for metabolic cross-feeding. An in-depth investigation
revealed that synergistic epistasis across pairings of Dv andMm genotypes had enhanced cooperativity within SR− and SR+
assemblages, enabling their coexistence within the same community. Thus, our findings demonstrate that cooperativity of a
mutualism can improve through synergistic epistasis between genomes of the interacting species, enabling the coexistence of
mutualistic assemblages of generalists and their specialized variants.

Introduction

Syntrophic interactions between bacteria and archaea are a
major driver of anaerobic transformations of >1 gigaton/
year of C into methane, which is ~30 times more potent
than CO2 as a greenhouse gas [1]. Across diverse anoxic
environments, including anaerobic reactors, animal guts,
ocean and lake sediments and soils, in the absence of
respirable electron acceptors, such as nitrate and sulfate,
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diverse syntrophs partner with methanogens to oxidize
organic material. Syntrophy can be either obligate or
facultative, for example, although oxidation via sulfate
respiration (SR) is energetically favorable compared to
syntrophy, many sulfate-reducing bacteria are facultative
syntrophs that conditionally engage in syntrophy with
methanogens in the absence of sulfate [2].

Conditional switching between syntrophy and SR is
energetically expensive, requiring the differential regulation
of thousands of genes [3]. Not surprisingly, frequent fluc-
tuations between SR and syntrophy was demonstrated to be
energetically unsustainable for a coculture of Desulfovibrio
vulgaris Hildenborough (Dv) and Methanococcus mar-
ipaludis S2 (Mm) [3]. By contrast, prolonged laboratory
evolution of the same community under obligate syntrophy
conditions resulted in significantly improved growth and
stability within 300 generations, but at the expense of loss
of independence through the erosion of SR [4, 5]. Another
striking discovery was that a subpopulation of cells capable
of respiring sulfate (SR+) persisted in low frequency within
the dominant non-sulfate respiring (SR−) populations for
most evolved lines [5]. Persistence of SR+ cells during
syntrophy suggested that they may be adapted to a narrow
niche that the dominant SR− population is unable to exploit
effectively. One hypothesis is that SR+ and SR− have
specialized growth dynamics, allowing for their coex-
istence, e.g., as r- and K-strategists in a seasonal environ-
ment [6–8]. Another consideration is that the Black Queen
Hypothesis (BQH) can explain the persistence of the SR+
population [9]. In this hypothesis, the SR+ population
subsists by producing a costly metabolite that SR− cells
cannot. Dependency of SR− cells on the metabolite pre-
vents them from completely excluding SR+ cells even
though the SR+ cells pay the cost for the metabolite. Given
that mutations in many pathways in the two organisms
could have improved the mutualism, this also raised the
possibility that distinct interactions between SR− and SR+
populations and different subpopulations of evolved Mm
(partner choice [10]) could have independently increased
the productivity of syntrophy in each of the two sub-
populations. Notably, naturally occurring polymorphisms in
ion-translocating CooK subunit of the membrane-bound
COO hydrogenase of Dv are known to be essential
for mutualism with Mm, demonstrating that partner choice
is important in promoting facultative syntrophic
interactions [11].

In coevolved microbial interactions, the fitness of indi-
vidual organisms may depend on the genotypes of both
partners [12]. These epistatic interactions between two
genomes of different species can be described as a form of
“intergenomic interaction” [13]. Intergenomic interactions
can manifest in overall fitness of the community that is
greater (synergistic) or less (antagonistic) than the sum of

fitness contributions of each interacting organism. Prior
work using synthetic communities of yeast, E. coli and
Salmonella enterica have demonstrated the potential for
synergistic epistasis to improve interspecies cooperation
[14–16]. Here, we have investigated whether intergenomic
synergistic epistasis can indeed emerge during evolution to
enhance cooperativity (combined metabolic activity of
interacting microorganisms for efficient cross-feeding) and
productivity of a mutualism that plays a central role in
biogeochemical C cycling across diverse environments.
Further, we have also investigated whether intergenomic
epistasis might also contribute to the coexistence of
assemblages of a generalist and their specialized variants
within the same evolution line. Briefly, we tracked the
longitudinal patterns in which mutations accumulated in Dv
and Mm across 1000 generations of nine independent evo-
lution lines. From the 1 K generation of two lines, we
generated simplified communities through serial end-point
dilutions (EPDs). Bulk sequencing of the simplified com-
munities revealed how parental mutations were segregated
into each EPD, and discovered evidence for the existence of
interactions among specific evolved lineages of Dv and Mm,
within the same evolution line. Through single-cell
sequencing, we then inferred and characterized interac-
tions within a SR+ and a SR− EPD derived from the same
parental population. Finally, we quantified growth rate,
yield, and cooperativity of each EPD, and pairings of
evolved and ancestral clonal isolates of Dv and Mm. These
analyses uncovered synergistic epistasis as a plausible
mechanism for the increased cooperativity of mutualistic
interactions within EPDs, giving likely mechanistic expla-
nation for coexistence of SR+ and SR− assemblages in the
same community (Fig. 1).

Results

Distribution, frequency, and functional implications
of mutations during laboratory evolution of
obligate syntrophy

We evaluated whether the selection of mutations in the
same genes (i.e., “parallel evolution” [17]) had contributed
to improvements in syntrophic growth of Dv and Mm across
independent evolution lines, all of which started with the
same ancestral clone of each organism. The goal of this
analysis was to focus on generalized strategies for adapta-
tion to syntrophy, irrespective of the culturing condition so
we investigated parallelism across both U and H lines.
Based on the number of mutations (normalized to gene
length and genome size) in Dv and Mm across 13 evolved
lines (six lines designated U for “uniform” conditions with
continuous shaking and seven H lines for “heterogenous”
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conditions without shaking), we calculated a G-score [18]
(“goodness-of-fit”, see “Methods” section [18]) to assess if
the observed parallel evolution rate was higher than
expected by chance. The “observed G-score” was calculated
as the sum of G-scores for all genes in the genome of each
organism; mean and standard deviation of “expected
G-scores” were calculated through 1000 simulations of
randomizing locations of observed numbers of mutations
across the genome of each organism. The observed total
G-score for Dv (1092.617) and Mm (805.02) was sig-
nificantly larger than the expected mean G-score (Dv:
798.19 ± 14.99, Z= 19.63 and Mm: 564.83 ± 15.95, Z=
15.06), demonstrating significant parallel evolution
across lines.

With the exception of five high G-score genes
(DVU0597, DVU1862, DVU0436, DVU0013, and
DVU2394), which were mutated during long term salt
adaptation of Dv [19], mutations in other high G-score
genes appeared to be putatively specific to syntrophic
interactions. Altogether, 24 genes in Dv and 16 genes in
Mm associated with core processes had accumulated func-
tion modulating mutations across at least 2 or more evolu-
tion lines (Fig. 2 and Supplementary Table S1). Signal
transduction and regulatory gene mutations (seven in Dv
and six in Mm) represented 19.9% and 27.2% of all muta-
tions in Dv and Mm, respectively, similar to long term
laboratory evolution of E. coli [18], potentially because
their influence on the functions of many genes [20, 21]. We
also observed missense and nonsense mutations in outer
membrane and transport functions (four genes in Dv and
three genes in Mm). For example, the highest G-score gene
in Dv, DVU0799—an abundant outer membrane porin for
the uptake of sulfate and other solutes in low-sulfate con-
ditions [22], was mutated early across all lines, with at least

two missense mutations in UE3 (S223Y) and UA3 (T242P).
Notably, the regulator of the archaellum operon
(MMP1718) had the highest G-score with frameshift (11
lines) and nonsynonymous coding (2 lines) mutations [23].
Similarly, two motility-associated genes of Dv (DVU1862
and DVU3227) also accumulated frameshift, nonsense and
nonsynonymous mutations across 4 H and 3 U lines.
Together, these observations were consistent with other
laboratory evolution experiments performed in liquid media
[24], suggesting that retaining motility has a fitness cost
during syntrophy [25, 26].

Consistent with our previous observation that obligate
mutual interdependence drove the erosion of metabolic
independence of Dv [5, 27], mutations in SR genes were
among the top contributors to the total G-score in Dv
(DVU2776 (74.7), DVU1295 (46.5), DVU0846 (42.9), and
DVU0847 (22.3)). However, it was intriguing that DVU2776
(DsrC), which catalyzes the conversion of sulfite to sulfide,
the final step in SR, accumulated function modulating but not
loss-of-function mutations across six lines. The functional
impact of these mutations is not clear but it is possible that
these changes might alter previously suggested alternative
roles for this gene, including electron confurcation for the
oxidation of lactate [28], sulfite reduction, 2-thiouridine bio-
synthesis and possibly gene regulation [29].

Analysis of temporal appearance and combinations
of mutations across evolution lines

Growth characteristics of all evolution lines improved by
the 300th generation [4], and in some lines even before the
appearance of SR− mutations, indicating that mutations in
other genes had also contributed to improvements in syn-
trophy. Each evolution line had at least 8 and up to 13 out of
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Fig. 1 Overview of directed laboratory evolution to probe evolu-
tionary signatures for syntrophic cocultures of Dv and Mm. Thir-
teen independent cocultures were subjected to laboratory evolution
with and without shaking as described before [5]. DNA samples were
collected across generations, end-point-dilutions (EPDs), clonal

isolates, and single cells to identify genomic alterations. In addition,
clonal isolates were paired in varied combinations in order to deter-
mine growth rate and yield for cocultures. Number of samples
sequenced are indicated at the bottom.
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24 high G-score mutations in Dv, while Mm had mutations
in at least 5 and up to 10 out of 16 high G-score genes. We
interrogated the temporal order in which high G-score
mutations were selected and the combinations in which they
co-existed in each evolution line to uncover evidence for
epistatic interactions in improving obligate syntrophy.
Indeed, missense mutations in DsrC (DVU2776) were fixed
simultaneously with the appearance of loss of function
mutations in one of two sigma 54 type regulators
(DVU2894, DVU2394) in lines HA2, and UR1 (P= 5.40 ×
10−5). In rare instances, we also observed that some high G-
score mutations co-occurred across evolution lines, e.g., two
U- and one H-line consistently showed for at least two time
points a mutation in DVU1283 (GalU) coexisting with
mutations in DVU2394 (P= 5.04 × 10−3). More com-
monly, the combinations of high G-score gene mutations
varied across multiple lines. In fact, no two lines possessed
identical combination of high G-score gene mutations
(Fig. 3A, B), and many high-frequency mutations were
uniquely present or absent in different lines (Fig. 3C, D).

Mutations in high G-score genes appeared consistently in
all evolution lines (P < 1.82 × 10−2), although in a different
temporal order in each line. Mutations in the same high
G-score genes appeared at different times (e.g., whereas
mutations in SR gene DVU0847 first appeared in the 300th

generation of HA2, they appeared much later in HR2 and
HA3) (Fig. 3A). Similar temporal patterns of appearance
and co-occurrence of mutations were observed in Mm
(Fig. 3B). We also discovered evidence for temporally
nested fixations, wherein prior to fixation of a mutation
from an earlier generation, another mutation selected in a
later generation gradually increased in frequency towards
fixation e.g., DVU0799, DVU0001, and DVU1283 in HA3
(P= 1.19 × 10−3); and MMP1718 and MMP0335 in UA3
(P= 1.81 × 10−4). Moreover, there were many cases of
simultaneous fixation of mutations in multiple genes (e.g.,
DVU0799 and DVU1214 in HE3; MMP0378, MMP0705,
MMP0986, and MMP1170 in HA2) suggesting that hitch-
hiking may be common [30, 31]. However, given that
samples were only sequenced every 250 generations, we
cannot rule out the possibility of each mutation sweeping
separately during that time interval. These observations lead
us to conclude that mutations that were commonly selected
may simply have additive effects on fitness, arising at dif-
ferent times in different populations because of chance (i.e.,
they became available for selection at different times in
different populations).

The longitudinal analysis revealed a cross-species
selection event that resulted in the replacement of the
dominant clones of both species with new clones containing
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different mutations. Between generations 500 and 780 of
HS3, the dominant Dv (harboring high G-score mutations
DVU0799, DVU0597, DVU0797) and Mm (harboring

dominant mutations in MMP1255, MMP1611, MMP1362,
and MMP1511) clones disappeared (Fig. 3E). At the same
time a new Dv clone with mutations in DVU2394,

5

15

M
ut

at
io

n 
C

ou
nt

HA2 HA3 HE3 HR2 HS3 UA3 UE3 UR1 US1

DVU1012
DVU2405
DVU0876
DVU3227

DVUA0011
DVU1092
DVU0846
DVU1632
DVU0847
DVU0797

IG_184033
DVU1283
DVU0001
DVU1214
DVU2894
DVU1295
DVU0013
DVU1862
DVU2451
DVU2394
DVU2776
DVU0597
DVU1260
DVU0799

M
ut

at
ed

 L
oc

us

0

5

10
HA2 HA3 HE3 HR2 HS3 UA3 UE3 UR1 US1

IG_1429948

MMP1314

MMP1611

MMP1255

MMP0357

MMP0209

MMP0166

MMP1227

MMP1303

MMP1511

MMP0335

MMP1362

MMP1718

MMP0419

100806040

Frequency (%) Generations

10
0

30
0

50
0

78
0

1K

Generations

10
0

30
0

50
0

78
0

1K806040

Frequency (%)

100

Desulfovibrio vulgaris Hildenborough (Dv) Methanococcus maripaludis S2 (Mm)A B

1

3

2

7

8

5

4

6

9

10

11

12

13

14

15

16

17

21

22

20

2

1

3

4

5

6

7

8

9

10

M
ut

at
io

n 
C

ou
nt

low

modifie
r

moderate
high

Mutation Impact

low

modifie
r

moderate
high

Mutation Impact

G-score
Rank

G-score
Rank

HA3 HE3 HR2 HS3 UE3 UR1

DVU1788
DVU0436
DVU0672
DVU0845
DVU2609
DVU2244
DVU2396
DVU1083
DVU1833
DVU0796
DVU0150
DVU2210

M
ut

at
ed

 L
oc

us

Generations

10
0

30
0

50
0

78
0

1K

HA2 HA3 HE3 HR2 HS3 UR1 US1

MMP1720
MMP1363

IG_646987
MMP1180
MMP1479
MMP1077
MMP0952
MMP1557
MMP0466
MMP0026

IG_1439720
MMP0643
MMP0146
MMP0694
MMP0939
MMP0234
MMP0033
MMP1170
MMP0986
MMP0705
MMP0378
MMP1186

Generations

10
0

30
0

50
0

78
0

1K

DVU0845
DVU2609

MMP1479
MMP1077
MMP0952
MMP1557
MMP0466

IG_184033
DVU1862
DVU2451
DVU2394
MMP1611
MMP1255
MMP1362
MMP1511
DVU0001
DVU0013
DVU0797
DVU0597
DVU0799

HS3

Generations

10
0

30
0

50
0

78
0

1K

Selective 
sweep

HS3
specific
mutations

1

7
8
4

12

13
15

21

3
7

Desulfovibrio vulgaris 
Hildenborough (Dv)

Methanococcus 
maripaludis S2 (Mm)C D E

Fig. 3 Frequency and time of appearance of mutations through 1
K generations of laboratory evolution lines of Dv and Mm cocul-
tures. The heat maps display frequency of mutations in genes (rows)
in Dv (A) and Mm (B) in each evolution line, ordered from early to
later generations (horizontal axis). High G-score genes are shown in
red font and their G-score rank is shown to the left in gray shaded box,
also in red font. Bar plots above heat maps indicate total number of

mutations in each generation and the color indicates impact of muta-
tion. Use “Frequency”, “Generations”, and “Mutation impact” key
below the heat maps for interpretation. Mutations that were unique to
each evolution line is shown in (C, D) for Dv and Mm, respectively. E
The heatmap illustrates a selective sweep across both organisms in
line HS3.

Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions 2237



DVU2451, DVU1862, and intergenic region IG_184033,
and a new Mm clone with mutations in MMP0952,
MMP1077, and MMP1479 were selected (Fig. 3E). One
explanation for this phenomenon is that, coincidentally, rare
clones in both Dv and Mm acquired beneficial mutations
and outcompeted dominant clones in the same 250 gen-
eration interval of evolution. Another possibility is that
selection of a new dominant clone in one species changed
the selection environment for the other, allowing its rare
clone to take over. Which species might have started this
process is unclear because there are no samples available in
the 250 generations during which the sweep occurred.
However, information about the new mutations, their
functions, and parallel evolution may provide hypotheses.
The novel mutations in DVU2394 (a sigma 54-dependent
transcriptional regulator) and DVU2451 (a lactate per-
mease) co-occurred in at least two lines including HS3
(P= 3.93 × 10−2) and appeared individually in only three
other lines, suggesting that the two genes might be bene-
ficial and also functionally coupled in the context of pro-
moting syntrophy. Notably, we demonstrate later through
single-cell analysis that mutations in DVU2394 occurred
subsequent to mutations in DVU2451, but exclusively in
the SR− lineage within UE3. Interestingly SR− mutations
were never selected through 1000 generations in HS3 line.
Conversely, while mutations in DVU2394, DVU2451, and
DVU1862, all co-occurred in UE3, they did not sweep
through the population, underscoring how improvements to
syntrophic interactions occurred through multiple distinct
trajectories in terms of the order and combinations of
mutation selection. In other words, this cross-species
selective sweep occurred only in HS3, suggesting one of
several features unique to this line was responsible,
including simultaneous selection of mutations in DVU2394,
DVU2451, and DVU1862, the overall mutational landscape
of HS3 between generations 500 and 780, or mutations
unique to HS3. Interestingly, fixed mutations that were
observed only in HS3 were in Mm (MMP0952, MMP1077,
MMP1479) and their appearance coincided with the selec-
tive sweep between 500 and 780 generations. Regardless of
the mechanism, it is interesting that a new mutation(s) in
Mm appears to have selectively swept high G-score muta-
tions across both interacting organisms, strongly suggesting
that the newMm genotype conferred a fitness advantage to a
specific lineage of genotypes in Dv that were in low
abundance prior to the sweep.

Characterization of evolutionary lineages and
interspecies interactions in minimal assemblages at
single-cell resolution

We performed EPDs from the 1 K generation of HR2 and
UE3 lines to generate simplified sub-communities that

represented minimal sets of genotypes with growth phe-
notypes comparable to the 1 K culture (see “Methods”
section). While two EPDs from each line represented the
dominant SR− subpopulation of the 1 K evolved line, we
also recovered an SR+ subpopulation that co-existed
within each line albeit at much lower abundance and
below the detection limit of bulk mutation analysis of the
parental culture (Fig. 4). Finally, we isolated evolved
clones of each organism by streaking EPDs on agar plates
containing nalidixic acid and neomycin, taking advantage
of chromosomally integrated selection markers in Dv and
Mm, respectively. Altogether, three clones of Dv and Mm
from each EPD were isolated and re-sequenced. The
distribution of unique mutations across EPDs and clonal
isolates added evidence for coexistence of distinct linea-
ges of one or both organisms within each evolved line.
Logically, all high-frequency mutations in an asexual
population must be linked on the same genetic back-
ground. As expected, all 15 high-frequency mutations
detected in the 1 K generation of UE3 were present only in
sub-communities with the SR− mutations (EPD-03 and
EPD-10). By contrast, at least 11 mutated loci (ten genic
and one intergenic) in the SR+ sub-community (EPD-09)
were not detected in the SR− sub-communities or in 1 K
bulk sequencing of UE3, demonstrating that the EPD-09
assemblage was made up of rare Dv lineages (Fig. 4A and
Supplementary Table S2). Strikingly, both Dv and Mm
lineages in the SR+ assemblage of HR2 were distinct
from lineages in the SR− EPDs, and below detection limit
in 1 K bulk sequencing (Fig. 4B, Supplementary Fig 1 and
Supplementary Table S2). Thus, the existence of geno-
typically distinct subpopulations of Dv and Mm with the
parental growth phenotype suggested that specific inter-
actions across multiple evolved genotypes of the two
organisms could have emerged during their syntrophic
evolution.

We further investigated the evidence for specific
interactions among evolved genotypes using single-cell
sequencing of SR− (EPD-03) and SR+ (EPD-09)
assemblages from UE3. We sorted, amplified, and re-
sequenced the genomes of single cells of Dv (94 from
EPD-03, and 94 from EPD-09) and Mm (87 from EPD-03,
and 72 from EPD-09) to reconstruct lineages of both
organisms within each EPD ([32] and “Methods” section,
Supplementary Table S3). Using stringent cutoffs (fold
coverage ≥ 8, number of cells with mutation ≥2, fre-
quency ≥ 80%) and consensus mutation calling using
varscan [33], GATK [34], and Samtools [35], we identi-
fied across single cells of Dv 16 of 17 and 3 of 12
mutations detected in bulk sequencing of EPD-03 and
EPD-09, respectively. Similarly, we identified across Mm
single cells seven of seven and six of seven mutations
from bulk EPD-03 and EPD-09, respectively.
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Using a mutation lineage inference algorithm SCITE
[36] and cross-referencing with longitudinal sequencing
data from 100, 300, 500, 780, and 1000 generations, bulk
sequencing of EPDs, single-cell sequencing, and
sequencing of clonal isolates, we reconstructed the line-
age and timeline of mutations that shaped the evolution of
syntrophy in SR− and SR+ communities within UE3 (see
“Methods” section) (Fig. 5 and Supplementary Figs. 2–3).
As expected, the two EPDs shared a core lineage of
events that included sequential accumulation of high
G-score mutations in the early stages of evolution in both

organisms. While the Mm lineages across EPDs had few
differences, lineages of Dv were strikingly different
across the SR− and SR+ communities. The SR− muta-
tions in the EPD-03 lineage were followed by selection
of mutations in at least six regulators, and complex
radiating branches with many coexisting sub-clones,
suggesting that loss of SR in the EPD-03 line might have
promoted the selection of mutations in regulatory genes.
Altogether, the observation that dominant lineages were
excluded in the minimal community assemblages of
EPD-09, demonstrates the coexistence of distinct high
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abundance (SR−) and low abundance (SR+) lineages
within the same evolved population (Figs. 4 and 5 and
Supplementary Figs. 1–3). A surprising observation is
that the SR+ clone that remained in the population

subsequent to the evolution of SR− was not simply the
dominant clone without the SR− mutation. Instead, it was
a rare genotype with different mutations from the domi-
nant population.
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Fig. 5 Lineage map of mutational events deciphered through
sequencing of up to 96 single cells of (A) Dv and (B) Mm from
EPD-03 and EPD-09, cross-referenced with longitudinal bulk
sequencing of UE3, EPDs and sequencing of clonal isolates. Tem-
poral ordering of mutations in the trunk is based on their order of
appearance in longitudinal sequencing data across generations. Unique
mutations within each lineage are shown together with frequency
(length of bars). The single-cell lineage tree for each EPD was con-
structed using the algorithm SCITE and shown in the context of the
parent EPD and linked to clonal isolates. (See Supplementary Figs. 2
and 3 for details). Mutation names for regulatory or signal transduction
genes are colored in blue and SR-related genes are indicated with an

orange shaded box. An asterisk indicates mutation in a plasmid gene
that was not detected in single cells potentially due to loss of plasmid.
Of the total 11 high G-score Dv genes in the 1 K generation of UE3,
just three were observed in both EPDs. Note, the three high G-score
genes DVU1862, DVU2394, and DVU0799 had mutations in different
locations in the two EPDs. High G-score genes that were only
observed in EPD-03 were DVU2451, DVU1260, and DVU1092, and
those unique to EPD-09 were DVU2395, DVU2210, and DVU1214.
In addition, SR− mutations in DVU0846 and DVU1295 were unique
to EPD-03, appearing after 780 generations, and were present across
single cells and all clonal isolates.
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Investigation of cooperativity and synergistic interspecies
interactions

We performed a density dilution assay to investigate the
evidence for improved cooperativity due to interactions
among specific genotypes of Dv and Mm within microbial
community assemblages of the two EPDs [37, 38]. Briefly,
we generated a dilution series of both EPD and ancestral
cell lines in 96-well plates and determined growth rate,
carrying capacity, and a minimal cell density that supported
syntrophic population growth (See “Methods” section,
Supplementary Fig. 4). Both EPDs could initiate growth at
significantly lower cell density relative to the ancestral
coculture. EPD-03 initiated growth at a 1.5-fold lower cell
density with faster growth rate and lower carrying capacity
relative to EPD-09, explaining how the two EPDs co-
existed in vastly different proportions in UE3 (>80% EPD-
03 vs, <1% EPD-09, Fig. 6A). These data make a com-
pelling case for the emergence of increased cooperativity
among Dv and Mm lineages during the evolution of
syntrophy.

We investigated whether the increased cooperativity
could have emerged through synergistic interactions
between Dv and Mm lineages by characterizing individual
and combined contributions of the two evolved partners
towards improved growth characteristics. By comparing
pairs of evolved and ancestral clones (DvEV ×MmEV,
DvAc ×MmEv and DvEv ×MmAc, DvAc ×MmAc), we deter-
mined that each evolved clonal isolate had contributed
individually to significant improvement in growth rate and
yield (Fig. 6B and Supplementary Table S4). The
improvements were maximal, and comparable to growth

characteristics of the parental EPD, when both partners
in the interacting pair were evolved clonal isolates
(DvEv ×MmEv). This result demonstrated unequivocally
that increased cooperativity had emerged from synergistic
interactions between the evolutionary changes in both
species within each EPD, with proportional antagonistic
effect on growth yield [39] (Fig. 6C). The higher growth
rate of EPD-03 and higher carrying capacity of EPD-09
(both relative to the other EPD) gives mechanistic insight
into coexistence of SR− and SR+ sub-communities as a
r- and K-strategists, respectively (Fig. 6D, Supplementary
Fig. 4). Notably, the few mutations that differentiate
genotypes of each clonal isolate appear to manifest in
variation in growth rate and yield, demonstrating that
productivity of DvEV ×MmEV interactions are genotype-
specific, even within the same EPD (Fig. 6D, Supple-
mentary Fig. 5, Supplementary Table S2).

Discussion

We sought to understand the evolutionary trajectories that
increase the productivity of interspecies interactions of Dv
with Mm in an obligate syntrophic association, while
retaining a small subpopulation that can respire sulfate. To
do so, we combined a broad survey of all the mutations
accumulated over the first 1000 generations of nine inde-
pendently evolved communities with an in-depth study of
the genotypic structure of one community down to the
single-cell level. These data showed a high level of paral-
lelism across communities despite considerable variance
across populations in their evolutionary trajectories. A

Fig. 6 Growth rate, yield and cooperativity of EPDs, and clonal
isolate pairings. A A stacked barplot showing the number of repli-
cates exhibiting growth for each EPD and the ancestral cocultures
across a dilution series. B Growth rate and carrying capacity of pair-
ings of ancestral and evolved clonal isolates of Dv and Mm from EPD-

03 and EPD-09. C Excess-Over-Bliss analysis for estimating syner-
gistic and antagonistic interactions of Dv/Mm clonal isolate pairings. D
Growth rate and yield for three evolved Dv/Mm pairings from
each EPD.
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detailed view of one community revealed the perseverance
and evolution of a rare lineage that maintained its ability to
respire sulfate while the rest of the population did not.
Growth experiments with clones and subpopulations
demonstrated that the SR+ and SR− Dv subpopulations
both cooperate more efficiently with corresponding evolved
Mm partners, allowing them to grow at lower starting
densities than the ancestors. The collective action of clones
within each subpopulation has a synergistic effect on
population growth rate and an antagonistic effect on yield.
Finally, the different growth dynamics of SR− and SR+
evolved communities is consistent with how the two com-
munities might coexist in vastly different proportions, likely
as r- and K-strategists.

The evolutionary trajectory of a microbial population
depends on the order in which mutations occur (chance),
and the relative effects of the pool of mutations on fitness
(selection) [40]. If the effects of each beneficial mutation are
constant, meaning they do not vary in the presence of other
polymorphisms or species, then all populations would
eventually acquire the same mutations, even if they occur
and are, therefore, selected in a different order. However,
the effect of an allele on fitness may depend on epistasis,
where the effect of an allele changes depending on alleles at
other loci in the same genome [41]. In this case, the order in
which mutations occur in different populations could affect
their overall trajectories. This relationship between fitness
and the possible combinations of genetic variants is called
an adaptive landscape, and has been the subject of intense
research [42–45].

In the present work, we investigated evolutionary tra-
jectories of not just one but two species that rely on one
another for survival. One might expect the interaction to
amplify the effects of chance if the adaptive landscape is
affected by genetic changes in the partner population
(coevolution; [46, 47]), and those partner genetic changes
depend on chance. In an extreme case, this situation could
send each population down completely different trajec-
tories, with very little parallelism. However, that is not the
result that was observed here. The discovery of high G-
score mutations in both Dv and Mm made a compelling case
that parallel evolution was a dominant driver of productive
obligate syntrophy (Fig. 2). It is important to emphasize that
in order to increase statistical power, our assessment of
parallelism was based on the analysis of all mutations
pooled from two different evolution environments (U:
Uniform and H: Heterogenous). While the two treatments
were different in terms of mixing, there were also many
similarities, including the chemical composition of the
media, the incubation temperature, and the fact that the
species were forced to rely on syntrophy for survival instead
of growing alone with different metabolism. In fact,
observation of similar numbers of mutations in both U and

H lines suggests that substantial adaptation happened in
both environments. That being said, we also detected par-
allelism, albeit with lower statistical significance, when the
analysis was repeated with either U or H lines, separately
(Supplementary Fig. 1). Genes associated with parallel
evolution are usually under strong selection [48], and
implicated as a major driver of evolution of bacteria [49],
phages [50] and microbial communities [51–54]. To our
knowledge, this is the first demonstration of a role for
parallel evolution in driving mutualism across metabolically
coupled species.

While the high number of G-score mutations suggests
that parallel changes conferred fitness benefits across a
range of genotypes [50], in some populations these high G-
score mutations were selected in a different order, sug-
gesting epistasis did not substantially constrain the timing of
selection of a given high G-score mutation. Many differ-
ences between populations in mutation order could have
occurred due to the chance occurrence of mutations at dif-
ferent times in different populations [55]. However, we
cannot rule out the possibility that epistasis and evolu-
tionary history caused some of the differences between
populations [56, 57]. For example, it is possible that a
mutation unique to HS3 precluded or significantly delayed
erosion of SR in this coculture.

Intergenomic epistasis is a pre-requisite for coevolution
and the synergistic epistasis observed in this study could
have caused or resulted from coevolution. There are a few
reasons to believe that each species is not evolving inde-
pendently in a constant environment consisting of another
species, and that some evolutionary changes likely resulted
from genetic interactions between specific evolved geno-
types of Dv and Mm. The most striking example was
observed in community HS3. In this community, it seems
that one or more new mutations in one partner affected the
fitness of the dominant clone of the other partner, causing it
to decrease in frequency below the limits of detection, while
a new clone arose. A plausible hypothesis for this inter-
genomic epistasis is that the selective sweep likely occurred
due to the loss of function mutations in MMP1077, a
putative phosphomannomutase, which re-directed mono-
saccharides towards synthesis of exopolysaccharides to
promote intercellular interactions through clumping or
flocculation [58]. Regardless of the mechanism, the inter-
esting observation is that both Dv and Mm clones that were
in low frequency swept through the entire population,
indicating preferential interactions among those clones. This
two-population selective sweep suggests epistasis between
specific genotypes of the two interacting species. This
hypothesis of partner choice was also supported by the
observation that growth rates and yields differed between
some pairings of clones within a population, demonstrating
variation in effectiveness of cooperation.
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While most adaptive mutations rose to fixation, SR
mutations did not show complete penetrance. In fact, pre-
viously we reported that SR+ populations were readily
obtained from every evolved coculture even after 1300
generations [5] and through characterization of EPDs and
single cells we have re-confirmed the presence of rare SR+
subpopulations in most evolved populations. One explana-
tion could be that SR+ cells persist because the main-
tenance of SR machinery allows them to produce a costly
but essential metabolite. Leaking of this metabolite could
allow SR− cells to survive without paying the cost of
production, allowing them to flourish as long as SR+ cells
and the leaked resource do not become scarce. In other
words, these SR+ cells might act as “helpers” for the
“beneficiary” SR− cells as stated by BQH [9]. High
expression of SR genes even under syntrophic conditions
[59] supports this hypothesis. However, a minimal assem-
blage that is entirely composed of SR− cells (EPD-03 of
UE3 line) does better than assemblage of SR+ cells (EPD-
09 of the same line) in cooperativity assays with no
apparent growth defect indicating that SR+ cells do not
play an essential role in supporting syntrophic growth of the
population. In fact, the poor performance of EPD-09 rela-
tive to EPD-03 suggests that SR is too expensive to main-
tain and, therefore, undesirable during syntrophy.
Moreover, individual SR− clonal isolates synergistically
improved growth characteristics of cocultures upon pairing
with evolved Mm further demonstrating that coexistence of
SR+ and SR− populations cannot be explained solely by
the BQH.

Alternatively, SR+ and SR− cells may be adapted to
different niches that arise as a result of the seasonal changes
in resources that recur in each transfer-cycle of the evolu-
tion experiment [8]. Specifically, growth dynamics of the
two EPDs [higher growth rate (r) of EPD-03 and higher
carrying capacity (K) of EPD-09] suggest that the faster-
growing SR− lineages (r-strategists) can initiate growth at
lower cell density and are, therefore, favored in early
growth phase when resources are plentiful but fluctuating.
The slower growing SR+ lineages (K-strategists) are
favored in later stages of growth when the resources are
limited but stable, and cell density is high [6]. Hence, these
growth dynamics based on r/K tradeoffs might explain why
SR+ populations are retained in the absence of sulfate. In
the natural world, where sulfate availability varies over
time, persistence of SR+ genotypes in the absence of sul-
fate may stabilize sulfate-reducing populations overall. In
other words, it may be a bet-hedging strategy (similar to
maintenance of subpopulations with COO hydrogenase
polymorphisms [11, 60]) that might contribute to the suc-
cess of Dv as a generalist that can conditionally switch
between SR and syntrophy without the need for expensive
gene regulatory changes [3].

It was significant that each of the two EPDs segregated a
subset of high G-score mutations into simplified assem-
blages but retained growth rate and carrying capacity of the
parental evolved population. This result demonstrated that
multiple independent evolutionary strategies can coexist in
the same population, albeit in vastly different proportions.
Whether the distinct sets of Dv and Mm mutations within
each EPD reflect coevolution will require additional
experiments, including pairing with evolved populations
from preceding generations [47]. Notwithstanding that
caveat, the ability of evolved isolates of Dv and Mm to
synergistically improve growth characteristics lends cred-
ibility to the claim that complementary genetic changes
(e.g., in transport, regulation, and motility) enhanced
metabolic coupling and cross-feeding between the two
interacting organisms, significantly increasing their
cooperativity.

The nature of cooperation in this syntrophic mutualism is
unclear. On the surface, it seems like the fitness of Dv and
Mm would be aligned and exploitation unlikely [61–63]
because the production of hydrogen is a necessary bypro-
duct of metabolism for Dv and the only energy source
available for Mm. Efficient transfer of electrons through
hydrogen is in the best interests of both species [64].
However, evolution could hypothetically change this
situation by altering mechanisms of electron transfer, or
through the evolution of new dependencies that are costly
[47, 65]. One high G-score mutation in Mm (MMP1511)
could reflect the evolution of a new costly dependency.
Alanine was earlier shown to be exchanged between the two
interacting partners during syntrophic growth, likely at a
cost to the producer (Dv) and of energetic advantage to Mm
[66]. Alanine production by Dv provides a mechanism to re-
oxidize reduced internal cofactors during syntrophic
growth, but at the cost of a high-energy phosphate bond. In
turn, alanine taken up and converted to pyruvate and
ammonia by Mm serves as both a carbon and a nitrogen
source, alleviating complete dependency on energetically
costly autotrophic growth with hydrogen. A cheater popu-
lation, e.g., one with a loss of function mutation in
MMP1511, might consume additional alanine through
passive transport and therefore consume less hydrogen to
maintain lactate consumption by Dv. Indeed, mutations in
MMP1511 rose to fixation in six out of nine lines, and we
cannot rule out if minor MMP1511 mutant populations also
exist in low frequency in the other lines, including UE3.

The observation that interactions among some genotypes
were more productive than other pairings suggests that the
enhanced cooperativity of evolved communities could have
occurred through the selection of complementary mutations
across Dv and Mm, invoking the possibility of partner
choice and partner fidelity feedback [67]. Furthermore, each
EPD had significantly better growth characteristics than any
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of the pairings of their member clonal isolates, demon-
strating the emergence of increased cooperativity from
guilds or “collections of genotypes” of Dv and Mm. In
conclusion, the multiscale dissection of independent
laboratory evolution lines has demonstrated that selection of
complementary mutations across Dv andMm synergistically
increased the cooperativity and productivity of syntrophic
interactions within both SR− and SR+ communities, while
supporting their coexistence in vastly different proportions
as r- and K-strategists, respectively.

Methods

Strains and culture conditions

All the strains, culture conditions, and the setup of the
laboratory evolution experiment were the same as described
before [4, 5]. (See Supplementary Methods for details).

Sequencing of evolved cocultures

DNA was extracted with Masterpure Kit (Epicentre, WI,
USA), processed for sequencing using Nextera DNA library
preparation kit (Illumina, CA, USA) and sequenced on
Illumina Hiseq with 100 bp paired-end sequencing or on
Illumina MiSeq in the paired-end mode producing 2 × 250
bp long reads as described before [5].

Identification of mutations in evolved cocultures

Mutations in populations were determined using a custom
sequence alignment and variant calling pipeline (https://
github.com/sturkarslan/evolution-of-syntrophy) (Supple-
mentary Methods). Variant calling was performed with
GATK UnifiedGenotyper [34], Varscan [33] (version 2.3.9)
and bcftools from Samtools [68] package. Variants identi-
fied by each caller were collated and filtered for variant
frequency ≥20%. Variants called by at least two algorithms
were included for further analysis, including annotation
using SnpEff (version 4.3) [69].

Single-cell sequencing

Single cells of Dv and Mm from mid-log phase EPD cul-
tures were sorted into wells of a 96-well plate and lysed by
using a freeze-and-thaw cycle. Whole Genome Amplifica-
tion from single cells was performed using REPLI-G Sin-
gle-Cell kit (Qiagen, MD, USA). We screened single
amplified genomes (SAGs) with 16S universal primers for
Dv and Mm, and used AmpPure XP magnetic beads
(Beckman-Coulter, CA, USA) to clean and purify con-
firmed SAGs; QC was performed with Bioanalyzer. DNA

concentrations were determined using Quant-iT PicoGreen
dsDNA assay kit (Thermofisher, MA, USA). Sequencing
was performed as described above.

Single-cell lineage tree building

Variants detected in at least two cells at >80% frequency
were converted into a matrix (1=mutation present, 0=
mutation absent, or 3= not enough reads) with unique
mutation in rows and single cells in columns. Mutation his-
tories of single cells were determined using the SCITE
algorithm [36] with parameters -r 1 -l 90,0000 -fd 6.04e-5 -ad
0.21545 0.21545 -cc 1.299164e-05. Temporal ordering of
mutations was cross-referenced with longitudinal sequencing
data for the UE3 line, especially when there was ambiguity
due to noisy and missing data.

Calculation of G-scores

G-score (“goodness-of-fit”) for each gene was calculated
based on the frequency of observed nonsynonymous
mutations (normalized to gene length and genome size)
across 13 evolved lines, as described before [18]. G-scores
for all genes in the genome of each organism were summed
to get the “total observed G-statistic” and compared to the
simulated “total expected G-statistic” by calculating a Z-
score as described in Supplementary Methods and in [18].

Density dilution assay

Ancestral cocultures and EPDs were grown anaerobically in
balch tubes containing coculture medium A (CCMA) [64]
with 80%:20% N2:CO2 headspace at 30 °C without shaking.
All stationary phase cultures were diluted to the same OD600

value and subjected to a 1.5-fold dilution series in 96-well
plates. Blank media were included in the first column of
each 96-well plate to rule out contamination. All steps were
performed in a Coy Anaerobic Chamber with 95%:5% N2:
H2. Growth measurements were performed in a plate reader
(BioTek, VT, USA). See Supplementary Methods for more
details.

Clonal isolate pairings and measurement of growth
rate and yield

All Dv clonal isolates were revived anaerobically in balch
tubes containing CCMA flushed with 80%:20% N2:CO2.
Mm isolates were revived in balch tubes pressurized to 30
psig with 80%:20% H2:CO2. Aliquots (0.1–0.2 ml) of sta-
tionary phase cultures (after two transfers) of Dv and Mm
were combined in 20 ml of CCMA containing 30 mM
sodium lactate in balch tubes flushed with 80%:20% N2:
CO2, and incubated at 37 °C with shaking at 300 rpm.
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Growth parameters were estimated by analyzing changes in
cell density (OD600nm) using grofit [70].

Excess over Bliss analysis for measuring synergy

Synergistic, additive, and antagonistic effects of clonal
isolate pairings was determined using the Bliss Indepen-
dence model [71]. The experimentally measured fractional
growth rate and yield for Dv (fDv) and Mm (fMm) was
determined by pairing evolved clonal isolates with ancestral
clones. The expected fractional effect on growth rate and
yield fDvMm, induced by the combined effect of evolved
isolates was calculated as:

fDvMm ¼ 1 � 1 � fDvð Þ � 1 � fMmð Þ ¼ fDv þ fMm � fDv � fMm

Excess over Bliss (EOB) was determined by computing
the difference in fractional improvement of growth rate or
yield induced by combination, fz, and the expected frac-
tional inhibition, fDvMm.

EOB ¼ fz � fDvMmð Þ � 100

A clonal isolate pair combination for which EOB ≈ 0 has
an additive behavior, whereas a pair with positive or
negative EOB values has synergistic or antagonistic beha-
vior, respectively. Error was computed by propagating the
standard deviation of fractional effects.

Statistical analysis of mutation emergence across
evolutionary trajectories

To quantify the likelihood of observing a mutated gene
given another one mutated, we generated a background
distribution assuming a mutation in a particular gene as an
independent event. We simulated a large random set of
mutational trajectory experiments maintaining the number
of mutations per evolutionary line and the mutational fre-
quency observed for each gene. We computed an empirical
P value of an experimental observation as P= (s+ 1)/(n+
1), where s is the number of the simulation instances with
equal or stronger association as observed experimentally
and n is the number of simulated mutational trajectory
experiments (n= 1 × 106).

Data availability

All sequencing data are available in NCBI Bioproject
database (accession number: PRJNA248017).

Code availability

Custom R and Python codes are available on GitHub
(https://github.com/sturkarslan/evolution-of-syntrophy).
Annotated mutations within the context of other functional

and regulatory genome information can be explored through
Syntrophy Portal (http://networks.systemsbiology.net/
syntrophy/).
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