
This appendix present in greater details the datasets used in this study and the additional results

Figure S1: Datasets used in this study

Table S1: Description of the ten data sets composing the database

Site name Short name # samples Ecosystem Continent Country Location Latitude Longitude Origin of the dataset

Shennongjia Natural Reserve-Forest SNNRf 43 Forest Asia China Hubei province 31.456 110.343 Shennongjia National Natural Reserve

Shennongjia Natural Reserve-Shrubland SNNRs 30 Shrubland Asia China Hubei province 31.459 110.270 Shennongjia National Natural Reserve

HAMERS elevation gradient CE 78 Grassland Asia China Qinghai province 35.202 99.089 Haibei Alpine Meadow Ecosystem Research Station (HAMERS)

HAMERS transplant experiment TB 60 Grassland Asia China Qinghai province 37.617 101.317 Haibei Alpine Meadow Ecosystem Research Station (HAMERS)

CiPHER AKC 40 Tundra North America USA Alaska 63.883 -149.226 Carbon in Permafrost Experimental Heating Project (CiPEHR)

Permafrost thaw gradient AKG 107 Tundra North America USA Alaska 63.883 -149.226 Permafrost Thaw Gradient

Jasper Ridge GC experiment JRGCE 128 Grassland North America USA California 37.403 -122.242 Jasper Ridge Global Change Experiment (JRGCE)
BioCON BC 296 Grassland North America USA Minnesota 45.403 -93.189 Biodiversity, CO2 and Nitrogen experiment (BioCON)
KAEFS warming experiment OK 12 Grassland North America USA Oklahoma 34.983 -97.517 Kessler Atmospheric and Ecological Field Station (KAEFS)

Fazenda Nova Vida AM 24 Pasture South America Brazil Rondonia state -10.164 -62.783 Fazenda Nova Vida



Table S2: Distribution of functional genes varants in the various levels of resolution used in this study

Rationale of the analytical framework

The “importance” of a function in a bin was quantified using the weight index, which was defined in order to
take into account the particularities of FGA data. Indeed, FGA are so called closed format metagenomic
approach (Zhou et al. 2015), which has two main consequences. First, that is the information retrieved from
the analysis of a microbial community DNA is predetermined by the FGA design, in other terms we won’t be
able to detect a gene for which there was not a probe on the chip. Second, that the sampling effort is not
uniformly  distributed  across  microbial  functions,  in  other  terms  certain  genes  or  genes  families  are
represented by a higher/lower number of probes on the FGA. These two aspects will influence the outcome
of data analysis. For instance, if we sample randomly a thousand variants (which correspond to probes on the
FGA), count the number of variant for each gene they encode and divide by the total number of variants (i.e.
1000), then the obtained genes proportions will be determined by the number of variant from each genes on
the FGA. Doing so we will  conclude that  the  gene with the  highest  number  of  variants  was the more
important in the community. Hence, the “importance” of each gene in this random sample corresponds to the
proportions  of  variants  it  represent  on the  FGA design and can  be considered as  a  null  model.  In  our
analytical framework (Figure 1), variant bins were defined according to variants occurrence, abundance or a
combination of both. Nonetheless, we can expect that genes with a higher number of variants are more likely
to be found in any bin. Consequently, we divided the observed proportion of the summed signal intensity of
variants within a bin corresponding to each gene (weightobserved) by the proportion expected according to the
FGA design (weightexpected), which provided us with the normalized weight.

Justification of the choice of bins number

The choice of the number of bins resulted from sensibility analyses performed prior to data analyses and has
a concrete justification that is related with the way we estimated the “importance” of functions (i.e. weight in
Fig. 1) along the abundance and occupancy gradients (i.e. within the different bins). Indeed, and as described
above,  the  weight  of  a  function  within  a  bin  is  based  on  the  estimation  of  the  proportion  of  the  total
hybridization signal in the bin that corresponds to gene variants from this particular function. If we used a
higher number of bins (e.g. 10), then it is more likely that some bins will not contain variants from some
functions and it would then be impossible to estimate the weight of such functions within these bins. On the
contrary, if we used few bins (e.g. 3) we would be able to estimate function weight in all the bins but the
rarity to commonness gradient represented by these bins would not be very informative. Hence, the choice of
6 bins appeared as an intermediate compromise between our capacity to describe variants distribution along a
gradient of abundance/occupancy and our capacity to successfully estimate function importance along this
gradient.

Broad category Gene family Genes Variants

Antibiotic resistance 3 10 1908

Carbon cycling 4 54 8871

Energy process 1 4 635

Metal resistance 15 38 5641

Nitrogen cycling 6 17 4934

Phosphorus cycling 1 3 1127

Stress 12 46 11944

Sulphur cycling 4 10 2671

Virulence 11 12 1950



Table S3. MOS test of bimodality for the occupancy-frequency distribution within each site

To test the bimodality of the FOD we used the MOS test which determines (i) whether there is a local

maximum frequency at low occupancy (i.e. 0), (ii)  whether there is a local maximum frequency at high

occupancy (i.e. 1) and (iii) whether the relationship is bimodal. 

Our results indicated that the occupancy-frequency distribution (OFD) is bimodal in all the sites, with two

maxima, one at low and one at high occupancy; Additionally, we observed a stronger right mode in all but

one site (higher F values for the right mode, “Max at 1”).

Site name Test F value p value

CiPEHR Max at 0 72 0.000 ***

Max at 1 57 0.000 ***

Bimodality NA 0.000 ***

Max at 0 202 0.000 ***

Max at 1 212 0.000 ***

Bimodality NA 0.000 ***

BioCON Max at 0 135 0.000 ***

Max at 1 185 0.000 ***

Bimodality NA 0.000 ***

Max at 0 78 0.000 ***

Max at 1 127 0.000 ***

Bimodality NA 0.000 ***

Max at 0 14 0.004 ***

Max at 1 32 0.000 ***

Bimodality NA 0.005 ***

Max at 0 30 0.000 ***

Max at 1 99 0.000 ***

Bimodality NA 0.000 ***

Max at 0 57 0.000 ***

Max at 1 75 0.000 ***

Bimodality NA 0.000 ***

Max at 0 80 0.000 ***

Max at 1 121 0.000 ***

Bimodality NA 0.000 ***

Max at 0 25 0.000 ***

Max at 1 46 0.000 ***

Bimodality NA 0.000 ***

Max at 0 46 0.000 ***

Max at 1 73 0.000 ***

Bimodality NA 0.000 ***
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Figure S2.  Dissimilarity in the composition of abundance bins within each site. 

This figure represents a detrended correspondence analysis (DCA) of abundance bins within each studied

site.  Differences in the composition between bins were estimated using Bray-Curtis  dissimilarity on the

matrices depicting the weight  of  gene families in each bins from each sample.  The size of the bubbles

corresponds to the rank of the bins (small for B1 corresponding to genes with low abundance and big for B6

corresponding to genes with high abundance). The centroid of each bin level is depicted with black letters (1

to 6). 

Our results indicated that bins of the same rank from different samples contain variants that correspond to

the same gene families.



Table S4: Test of composition dissimilarity between occupancy bins across soil ecosystems. 

Pairwise differences between bins were tested using pairwise PERMANOVA. 

Our results showed that (i) the sixth bins (B6) has the most different composition among all occupancy bins.

In other terms ubiquitous variants carry a significantly different set of traits than variants with a narrower

spatial distribution; (ii) this was confirmed when associating variants to different levels of resolution (genes,

gene families, and broad categories).

Broad categories Gene families Genes

pairs F value p value F value p value F value p value

B1 vs B2 1.3 0.1 0.312 2.7 0.1 0.016 * 3.0 0.1 0.001 ***

B1 vs B3 4.8 0.2 0.011 * 6.0 0.3 0.002 ** 4.0 0.2 0.001 ***

B1 vs B4 8.0 0.3 0.002 ** 7.7 0.3 0.002 ** 5.0 0.2 0.001 ***

B1 vs B5 6.9 0.3 0.002 ** 12.7 0.4 0.002 ** 7.1 0.3 0.001 ***

B1 vs B6 28.4 0.6 0.002 ** 35.1 0.7 0.002 ** 22.1 0.6 0.001 ***

B2 vs B3 1.4 0.1 0.285 1.9 0.1 0.040 * 1.6 0.1 0.009 **

B2 vs B4 4.6 0.2 0.005 ** 2.8 0.1 0.005 ** 2.0 0.1 0.003 **

B2 vs B5 5.5 0.2 0.004 ** 5.5 0.2 0.002 ** 3.5 0.2 0.001 ***

B2 vs B6 35.0 0.7 0.002 ** 20.6 0.5 0.002 ** 12.5 0.4 0.001 ***

B3 vs B4 1.0 0.1 0.495 1.4 0.1 0.128 1.4 0.1 0.035 *

B3 vs B5 2.0 0.1 0.134 2.5 0.1 0.005 ** 2.0 0.1 0.001 ***

B3 vs B6 31.9 0.6 0.002 ** 13.2 0.4 0.002 ** 9.1 0.3 0.001 ***

B4 vs B5 0.9 0.0 0.495 2.0 0.1 0.018 * 1.6 0.1 0.006 **

B4 vs B6 34.3 0.7 0.002 ** 11.8 0.4 0.002 ** 7.3 0.3 0.001 ***

B5 vs B6 24.1 0.6 0.002 ** 8.2 0.3 0.002 ** 6.1 0.3 0.001 ***

R2 R2 R2



Figure S3-S4-S5. Linear relationships between occupancy-abundance bins and genes weight. 

For each of the 194 genes, we estimated their weight within occupancy-abundance bins. The first panel plot

corresponds to gene families for which the relationship was not significant. The second panel corresponds to

genes with negative relationships and the third panel corresponds to genes with positive relationships. Genes

are ranked according to the absolute value of the slope of the relationship. The name of the gene is depicted

on top of each plot, with a color code that relates to the broad category it belongs to ( purple: antibiotic

resistance, red: carbon cycling, yellow: metal resistance, cyan: stress, dark blue: sulphur cycle, light green:

nitrogen cycle, dark green: phosphorus cycle and black: virulence). 

Figure S3. Non significant relationships between occupancy-abundance bins and genes weight



Figure S4. Negative relationships between occupancy-abundance bins and genes weight



Figure S5. Positive relationships between occupancy-abundance bins and genes weight



Table S5.  Result  of  the linear models  describing the relationship between the rank of  occupancy-

abundance bins (1 to 6) and the weight of gene within the bins

Rows colored in red correspond to the 20 models with the lowest and higher slopes.

Broad category Gene family Gene Model slope p-value of model R2 Type of relation

Stress oxygen_stress perR -0.465 0 0.402 Negative

Stress heat_shock GroES -0.301 0 0.506 Negative

Metal resistance cadmium cadBD -0.266 0 0.543 Negative

Virulence toxin toxin -0.248 0 0.675 Negative

Metal resistance cobalt CorC -0.247 0 0.535 Negative

Sulphur cycling various_sulphur Blue_copper_protein -0.233 0 0.38 Negative

Sulphur cycling various_sulphur thioredoxin -0.226 0 0.435 Negative

Virulence surface_protein srt -0.221 0 0.768 Negative

Stress oxygen_limitation arcB -0.216 0 0.343 Negative

Energy process energy_process Ni_Fe_hydrogenase -0.215 0 0.48 Negative

Stress oxygen_limitation arcA -0.215 0 0.436 Negative

Stress protein_stress ctsR -0.21 0 0.633 Negative

Stress nitrogen_limitation glnR -0.206 0 0.477 Negative

Stress cold_shock cspA -0.184 0 0.242 Negative

Stress osmotic_stress opuE -0.183 0 0.296 Negative

Metal resistance aluminum Al -0.18 0 0.522 Negative

Virulence aerobactin iuc -0.18 0 0.507 Negative

Carbon cycling acetogenesis FTHFS -0.17 0 0.458 Negative

Stress phosphate_limitation phoA -0.166 0 0.622 Negative

Virulence adhesin pap -0.163 0 0.525 Negative

Metal resistance arsenic ArsA -0.162 0 0.369 Negative

Stress various_stress universal_stress_Family_protein_III -0.16 0 0.347 Negative

Stress oxygen_stress ahpC -0.153 0 0.734 Negative

Metal resistance various_metal peroxiredoxin -0.153 0 0.206 Negative

Metal resistance others SmtA -0.149 0 0.261 Negative

Virulence virulence_protein vip -0.146 0 0.251 Negative

Metal resistance tellurium TehB -0.145 0 0.606 Negative

Carbon cycling carbon_degradation amyA_Firmicutes -0.144 0 0.195 Negative

Antibiotic resistance others Van -0.14 0 0.211 Negative

Stress glucose_limitation bglH -0.139 0 0.168 Negative

Virulence pilin pilin -0.138 0 0.805 Negative

Stress oxygen_limitation cydA -0.136 0 0.42 Negative

Virulence iron_oxidation fhuE -0.13 0 0.108 Negative

Stress phosphate_limitation pstS -0.128 0 0.662 Negative

Carbon cycling carbon_degradation acetylglucosaminidase_bact_arch -0.127 0 0.301 Negative

Stress heat_shock grpE -0.127 0 0.69 Negative

Stress oxygen_limitation cydB -0.124 0 0.368 Negative

Carbon cycling methane mcrA -0.12 0 0.605 Negative

Metal resistance silver silP -0.119 0 0.141 Negative

Stress phosphate_limitation pstA -0.118 0 0.564 Negative

Metal resistance copper CusA -0.115 0 0.153 Negative

Stress sigma_factors sigma_70 -0.113 0 0.761 Negative

Stress sigma_factors sigma_38 -0.113 0 0.489 Negative

Antibiotic resistance transporter MATE_antibiotic -0.11 0 0.348 Negative

Metal resistance copper CueO -0.107 0 0.045 Negative

Nitrogen cycling ammonification gdh -0.103 0 0.356 Negative

Stress oxygen_stress ahpF -0.098 0 0.431 Negative

Nitrogen cycling anammox hzo -0.097 0 0.111 Negative

Stress heat_shock dnaK -0.097 0 0.404 Negative

Carbon cycling methane pmoA -0.095 0 0.399 Negative

Antibiotic resistance transporter Mex -0.095 0 0.179 Negative



Broad category Gene family Gene Model slope p-value of model R2 Type of relation

Carbon cycling carbon_degradation amyA_fungi -0.095 0 0.064 Negative

Metal resistance tellurium TerZ -0.095 0 0.301 Negative

Metal resistance cadmium_cobalt_zinc czcD -0.09 0 0.529 Negative

Metal resistance zinc ZitB -0.085 0 0.121 Negative

Stress phosphate_limitation phoB -0.084 0 0.445 Negative

Stress phosphate_limitation pstB -0.082 0 0.504 Negative

Stress oxygen_stress fnr -0.081 0 0.47 Negative

Virulence hemolysin hly -0.078 0 0.452 Negative

Stress nitrogen_limitation glnA -0.078 0 0.459 Negative

Carbon cycling carbon_fixation formate_hydrogenlyase_complex -0.076 0 0.055 Negative

Carbon cycling carbon_degradation nplT -0.073 0 0.206 Negative

Stress radiation_stress obgE -0.072 0 0.529 Negative

Carbon cycling carbon_degradation exoglucanase_fungi -0.071 0 0.038 Negative

Antibiotic resistance transporter SMR_antibiotics -0.067 0 0.35 Negative

Stress protein_stress clpC -0.064 0 0.317 Negative

Virulence invasion inv -0.061 0 0.051 Negative

Stress phosphate_limitation pstC -0.059 0 0.297 Negative

Stress osmotic_stress proX -0.058 0 0.056 Negative

Metal resistance arsenic arsB -0.058 0 0.081 Negative

Stress glucose_limitation bglP -0.055 0.001 0.018 Negative

Nitrogen cycling anammox hao -0.054 0 0.032 Negative

Carbon cycling carbon_fixation aclB -0.053 0 0.172 Negative

Carbon cycling carbon_degradation apu -0.053 0 0.039 Negative

Stress osmotic_stress proV -0.051 0 0.159 Negative

Sulphur cycling adenylylsulfate_reductase APS_AprB -0.037 0 0.071 Negative

Virulence capsule cap -0.037 0 0.12 Negative

Nitrogen cycling dissimilatory_n_reduction napA -0.036 0 0.142 Negative

Stress heat_shock heat_shock_protein -0.035 0 0.032 Negative

Metal resistance tellurium TerD -0.031 0 0.059 Negative

Sulphur cycling sulfite_reductase dsrA -0.029 0 0.269 Negative

Stress oxygen_stress cat_bac -0.028 0.021 0.009 Negative

Metal resistance arsenic arsenic_resistance_gene -0.025 0.184 0.004 No relation

Antibiotic resistance others Tet -0.023 0 0.042 Negative

Carbon cycling carbon_degradation amyX -0.023 0.028 0.011 Negative

Stress oxygen_stress katE -0.021 0 0.058 Negative

Nitrogen cycling dissimilatory_n_reduction nrfA -0.021 0 0.04 Negative

Metal resistance tellurium TerC -0.019 0 0.03 Negative

Stress oxygen_stress oxyR -0.019 0.001 0.017 Negative

Sulphur cycling sulfite_reductase dsrB -0.018 0 0.074 Negative

Carbon cycling carbon_degradation xylanase -0.017 0.001 0.018 Negative

Carbon cycling carbon_degradation mnp -0.017 0.057 0.006 No relation

Carbon cycling carbon_degradation AssA -0.016 0.351 0.002 No relation

Metal resistance chromium ChrA -0.016 0 0.044 Negative

Carbon cycling carbon_degradation ferroxidase_high_affinity -0.011 0.601 0 No relation

Carbon cycling methane mmoX -0.011 0.197 0.003 No relation

Carbon cycling carbon_degradation amyA_other -0.009 0.174 0.003 No relation

Metal resistance zinc ZntA -0.006 0.09 0.005 No relation

Stress sigma_factors sigma_32 -0.005 0.258 0.002 No relation

Carbon cycling carbon_degradation mannanase -0.005 0.427 0.001 No relation

Nitrogen cycling nitrogen_fixation nifH -0.003 0.422 0.001 No relation



Broad category Gene family Gene Model slope p-value of model R2 Type of relation

Carbon cycling carbon_degradation acetylglucosaminidase -0.003 0.542 0.001 No relation

Sulphur cycling adenylylsulfate_reductase APS_AprA -0.003 0.671 0 No relation

Stress oxygen_limitation narJ -0.002 0.833 0 No relation

Metal resistance silver SilA 0.003 0.777 0 No relation

Carbon cycling carbon_degradation amyA_Proteobacteria 0.005 0.674 0 No relation

Antibiotic resistance transporter MFS_antibiotic 0.005 0.136 0.004 No relation

Stress sigma_factors sigma_24 0.008 0.008 0.012 Positive

Metal resistance mercury merP 0.008 0.399 0.001 No relation

Metal resistance arsenic ArsC 0.009 0.018 0.009 Positive

Metal resistance nickel nreB 0.009 0.585 0.001 No relation

Stress osmotic_stress proW 0.009 0.617 0.001 No relation

Metal resistance copper CopA 0.009 0.027 0.008 Positive

Energy process energy_process cytochrome 0.009 0.007 0.012 Positive

Carbon cycling carbon_degradation cellobiase_bact_arch 0.01 0.22 0.003 No relation

Stress oxygen_limitation narI 0.011 0.037 0.007 Positive

Stress heat_shock hrcA 0.011 0.003 0.015 Positive

Nitrogen cycling nitrogen_fixation nifH_uncult_bact 0.013 0.366 0.002 No relation

Carbon cycling carbon_degradation phenol_oxidase 0.016 0 0.03 Positive

Carbon cycling carbon_degradation exoglucanase 0.016 0.007 0.012 Positive

Carbon cycling carbon_degradation endochitinase 0.016 0 0.023 Positive

Carbon cycling carbon_degradation glucoamylase 0.017 0 0.021 Positive

Virulence secretion type_III_secretion 0.018 0.02 0.011 Positive

Carbon cycling carbon_degradation cda 0.019 0 0.029 Positive

Metal resistance lead pbrT 0.02 0.331 0.002 No relation

Stress heat_shock groEL 0.02 0.002 0.017 Positive

Phosphorus cycling phosphorus_utilization ppx 0.027 0 0.123 Positive

Nitrogen cycling denitrification nirS 0.03 0 0.129 Positive

Metal resistance cadmium_cobalt_zinc czcA 0.034 0 0.096 Positive

Carbon cycling carbon_degradation ara_fungi 0.034 0 0.064 Positive

Carbon cycling carbon_degradation ara 0.034 0 0.072 Positive

Carbon cycling carbon_degradation phenol_oxidase_fungi 0.035 0 0.023 Positive

Antibiotic resistance beta_lactamases B_lactamase 0.036 0.001 0.018 Positive

Carbon cycling carbon_fixation rubisco 0.037 0 0.154 Positive

Stress oxygen_stress cat_fun 0.038 0.001 0.02 Positive

Carbon cycling carbon_degradation exochitinase 0.039 0 0.048 Positive

Virulence iron_oxidation iro 0.042 0 0.154 Positive

Carbon cycling carbon_degradation amyA 0.047 0 0.228 Positive

Sulphur cycling various_sulphur related_thiosulfate_gene 0.048 0.027 0.018 Positive

Antibiotic resistance beta_lactamases B_lactamase_A 0.049 0 0.133 Positive

Carbon cycling carbon_degradation xylA 0.05 0 0.217 Positive

Metal resistance arsenic arsM 0.052 0 0.05 Positive

Metal resistance mercury metC 0.053 0.001 0.023 Positive

Phosphorus cycling phosphorus_utilization ppk 0.053 0 0.235 Positive

Energy process energy_process P450 0.054 0 0.045 Positive

Carbon cycling carbon_degradation cellobiase 0.058 0 0.238 Positive

Sulphur cycling adenylylsulfate_reductase AprA 0.062 0 0.17 Positive

Stress cold_shock cspB 0.064 0.003 0.017 Positive

Stress oxygen_limitation narH 0.066 0 0.119 Positive

Carbon cycling carbon_degradation pectinase 0.066 0 0.125 Positive

Carbon cycling carbon_degradation AceA 0.069 0 0.363 Positive



Broad category Gene family Gene Model slope p-value of model R2 Type of relation

Metal resistance mercury merT 0.069 0 0.039 Positive

Carbon cycling carbon_fixation cbb 0.072 0 0.08 Positive

Stress oxygen_stress katA 0.073 0 0.12 Positive

Metal resistance cadmium CadA 0.076 0 0.386 Positive

Metal resistance copper CusF 0.08 0.009 0.016 Positive

Metal resistance various_metal antioxidant 0.084 0 0.051 Positive

Antibiotic resistance beta_lactamases B_lactamase_C 0.086 0 0.341 Positive

Carbon cycling carbon_degradation endoglucanase 0.087 0 0.24 Positive

Carbon cycling carbon_degradation chitinase_general_bact_arch 0.089 0 0.203 Positive

Carbon cycling carbon_degradation glx 0.089 0 0.242 Positive

Phosphorus cycling phosphorus_utilization phytase 0.091 0 0.166 Positive

Carbon cycling carbon_degradation pulA 0.092 0 0.377 Positive

Metal resistance arsenic aoxB 0.092 0 0.194 Positive

Antibiotic resistance transporter ABC_antibiotic_transporter 0.097 0 0.295 Positive

Carbon cycling carbon_degradation AceB 0.102 0 0.483 Positive

Nitrogen cycling denitrification nosZ 0.11 0 0.467 Positive

Metal resistance mercury mer 0.113 0 0.678 Positive

Nitrogen cycling denitrification nirK 0.119 0 0.599 Positive

Metal resistance cadmium_cobalt_zinc czcC 0.122 0 0.207 Positive

Carbon cycling carbon_degradation endochitinase_fungi 0.122 0 0.132 Positive

Nitrogen cycling assimilatory_n_reduction NirB 0.126 0 0.295 Positive

Sulphur cycling sulphur_oxidation soxY 0.146 0 0.141 Positive

Nitrogen cycling assimilatory_n_reduction nasA 0.148 0 0.585 Positive

Metal resistance mercury merB 0.173 0 0.253 Positive

Energy process energy_process hydrogenase 0.174 0 0.475 Positive

Nitrogen cycling ammonification ureC 0.177 0 0.637 Positive

Sulphur cycling sulphur_oxidation sox 0.183 0 0.668 Positive

Nitrogen cycling assimilatory_n_reduction NiR 0.188 0 0.689 Positive

Metal resistance silver silC 0.189 0 0.513 Positive

Carbon cycling carbon_fixation pcc 0.199 0 0.661 Positive

Carbon cycling carbon_degradation limEH 0.2 0 0.273 Positive

Carbon cycling carbon_degradation vdh 0.204 0 0.548 Positive

Carbon cycling carbon_degradation lip 0.208 0 0.261 Positive

Nitrogen cycling assimilatory_n_reduction nirA 0.221 0 0.438 Positive

Carbon cycling carbon_degradation endoglucanase_fungi 0.228 0 0.257 Positive

Carbon cycling carbon_degradation vanA 0.235 0 0.632 Positive

Carbon cycling carbon_degradation amyA_Actinobacteria 0.253 0 0.376 Positive

Carbon cycling carbon_fixation CODH 0.254 0 0.782 Positive

Metal resistance lead pbrA 0.256 0 0.351 Positive

Nitrogen cycling denitrification norB 0.259 0 0.694 Positive

Nitrogen cycling denitrification narG 0.3 0 0.873 Positive

Carbon cycling carbon_degradation CDH 0.464 0 0.676 Positive

Carbon cycling carbon_degradation CDH_2_carveol_dehydrogenase 0.553 0 0.487 Positive



Figure S6.   Slopes of  the relationships between the weight  of  genes in a bin and the rank of  the

occupancy-abundance bin. 

For each of the 194 gene, we fitted linear models explaining the weight of gene in eachoccupancy-abundance

bin in function of the bin rank. Negative relationships (significant negative slopes) corresponded to gene

over-represented in rare variants whereas positive ones (significant positive slopes) corresponded to gene

over-represented in abundant variants. This figure is similar to the Figure 5B of the main text except that

model slopes are classified by gene families and not broad categories. 



Alaskan datasets: Permafrost thaw gradient and CiPEHR

The two Alaskan datasets represented tundra ecosystems and originated from the Eight Mile Lake study area
in Alaska. They corresponded to the Carbon in Permafrost Experimental Heating Project (CiPEHR) and the
Permafrost Thaw Gradient experiment.

Eight Mile Lake
https://www2.nau.edu/schuurlab-p/EightMileLake.html
The Eight Mile Lake study area is upland tundra located in the northern foothills of the Alaska range about
14 km west of Healy, Alaska (63º 52' 42”N, 149º15' 12”W). The site is situated on moist acidic tundra on a
relatively well-drained gentle northeast-facing slope. The active layer (ground which thaws annually during
the growing season) is ~ 50–80 cm thick and is situated above a perennially frozen permafrost layer. Mean
monthly temperatures range from -16°C in December to +15°C in July, with a mean annual temperature
(1976-2009) of -1.0°C. These soils hold substantial amounts of organic carbon in the top meter, ranging from
55  to  69  kg  C  m-2.  Permafrost  temperatures  in  this  region  are  currently  around  -1°C  and  therefore
susceptible  to  thaw.  Vegetation  at  the  site  is  dominated  by  the  tussock-forming  sedge,  Eriophorum
vaginatum, and deciduous shrub, Vaccinium uliginosum. 

The Carbon in Permafrost Experimental Heating Project (CiPEHR)
https://www2.nau.edu/schuurlab-p/CiPEHR.html
The  Carbon in  Permafrost  Experimental  Heating  Research  (CiPEHR) project  is  an  ecosystem warming
experiment  that  was  established  in  2008 to  test  hypotheses  about  changes in  the  carbon cycle  that  are
expected as a result of warming temperatures and permafrost thaw. The CiPEHR project uses snow fences
coupled with spring snow removal to increase soil and permafrost temperatures and open-top chambers to
increase growing season air temperatures.
The soil warming treatment, hereafter called winter warming, was achieved using six replicate snow fences
(1.5 m tall  × 8 m long) that  trap insulating layers of snow. Each winter  warming treatment and winter
warming control area contains two summer warming plots and two summer warming control plots. Summer
warming is achieved using 0.36 m2 × 0.5 m tall open-top chambers, which are set out during the snow-free
period, between the first week in May and the last week of September.

The Permafrost Thaw Gradient
https://www2.nau.edu/schuurlab-p/Gradient.html
The thaw gradient contains three sites named minimal,  moderate,  and  extensive thaw for the amount of
vegetation change, active layer thickening, and thermokarst formation they have undergone due to different
durations of permafrost thaw. At the extensive thaw site, permafrost thaw has been documented for the past
two decades but likely began earlier. Extensive thaw has more shrubs than moderate and minimal thaw and
has an undulating terrain with high, dry areas next to low, wet areas as a result of permafrost thaw. Next to
moderate thaw is a 30 m deep borehole that has been used to measure permafrost temperatures since 1985.
The goal  of  research at  the permafrost  thaw gradient has been to investigate the source and strength of
feedbacks between permafrost warming and climate change. As permafrost soils thaw, their large carbon
pools become vulnerable to microbial degradation, releasing CO2 into the atmosphere, which is a positive
feedback to climate change.
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Grassland datasets

The five datasets representing grassland ecosystems originated from North America and China.

BioCON: Biodiversity, CO2, and Nitrogen: BC
https://cbs-cedarcreek.oit.umn.edu/research/experiments/e141
http://www.biocon.umn.edu/experiments/
BioCON is located at the Cedar Creek Ecoscience Reserve in east central Minnesota, USA about 50 km
north of Minneapolis/St. Paul (Lat. 45N, Long. 93W). The site is located on a glacial outwash sandplain and
production is nitrogen limited. The experiment was set up in a secondary successional old field after the
existing vegetation was cleared. Plots were planted in 1997. BioCON consists of 371 2-meter x 2-meter
plots, arranged into 6 circular areas or “rings” (20 meter diameter),  each containing 61, 62, or 63 plots.
Sixteen species of herbaceous perennial prairie species, native or naturalized to the Cedar Creek area, were
planted in the experiment.

BioCON is a split-plot arrangement of treatments in a completely randomized design. CO2 treatment is the
whole-plot factor and is replicated three times among the six rings. The subplot factors of species nmber and
N treatment were assigned randomly and replicated in individual plots among the six rings. For each of the
four combinations of CO2 and N levels, pooled across all rings, there were 32 randomly assigned replicates
for the plots plant to 1 species (2 replicates per species), 15 for those planted to 4 species, 15 for 9 species,
and 12 for 16 species (Reich et al., 2001). This arrangement applies to the “main” experiment which utilizes
296 plots.
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The Jasper Ridge Global Change Experiment
http://globalecology.stanford.edu/DGE/Dukes/JRGCE/home.html
The Jasper Ridge Global Change Project examines the response of California grassland to four components
of global change: elevated atmospheric carbon dioxide, elevated temperature, increased precipitation, and
increased nitrogen deposition. Initially funded by a grant from the National Science Foundation to Professors
Christopher Field and Harold Mooney, this is the first  experimental study to address this broad suite of
interacting global changes in the field.
The experimental design includes 8 replicate quarter-circle plots for all possible combinations of the four
treatments (128 total) and an additional 8 sampling sites that control for the effects of project infrastructure.
Studies  focus  on  four  integrated  components  of  ecosystem  response  to  the  treatments:  plant  primary
production, soil carbon storage, soil nutrient availability, and species or functional-group composition. The
combination  of  a  complete  factorial  design  for  the  treatments  together  with  measurements  on  multiple,
related response variables, provides a test of the experiment's null hypothesis that responses to warming and
elevated CO2 in combination are essentially additive, i.e. the sum of the responses to the individual factors.
The JRGCE is currently funded by grants from the David and Lucile Packard Foundation and from NSF.
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The  KAEFS warming experiment
http://www.ou.edu/content/ieg/facilities/field-sites.html
The  Kessler  Atmospheric  and Ecological  Field Station (KEAFS)  is  a  360 acre  (146 ha)  environmental
research  and education  facility  located  approximately  28  km southwest  of  the  University  of  Oklahoma
campus. It is home to a number of long-term meteorological and biological experiments. The mixed grass
prairie ecosystem at KEAFS includes a diverse landscape with mixed and tall grass prairie, woodlands, and
riparian communities. This site is an example of the predominant land use in the southern Great Plains and
has a land use legacy commonly seen in this area.
A long-term global warming experiment under the direction of Dr. Yiqi Luo has taken place at KAEFS since
November, 1999. This project consists of 6 paired plots, one warmed continuously by a quartz heater and the
other with a dummy heater. Within each plot are nested subplots, either clipped annually or left unclipped to
mimic one of the dominant land use practices in the area, mowing for hay. Warming. Work on the project has
included studies on plant and microbial responses, phenology, ecosystem fluxes, mycorrhizal fungi and soil
structure.
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The  elevation experiment and the Tibetan plateau datasets
https://data.lter-europe.net/deims/site/lter-eap-cn-28
The national field observation station of Haibei Alpine Meadow Ecosystem Research Station in Qinghai
province  (Haibei  Station)  was  founded in  1976 by  Northwest  Plateau  Institute  of  Biology,  the  Chinese
Academy of Sciences (CAS). It was located in the northeast of Tibet in a large valley surrounded by the
Qilian Mountains at latitude 37°29' - 37°45'N and longitude 101°12' - 101°23'E. The average altitude of the
mountain area is 4000 m, and 2900 – 3500 m for the valley area. It is 160 km from Xining City. It belongs to
a typical plateau continental climate which is dominated by the southeast monsoon in summer and high
pressure from Siberia in winter. There is no obvious seasonal changes, except only a short cool summer and
a long severe cold winter.  The annual  average air  temperature is  -1.7  with extremes of maximum at℃ with extremes of maximum at
27.6  and minimum at -37.1 . The annual precipitation ranges from 426 mm to 860 mm, 80% of which℃ with extremes of maximum at ℃ with extremes of maximum at
falls in the growing season from May to September. Haibei Research Station has become one of the open
stations of Chinese Ecosystem Research Network (CERN) since 1989, and one of the key stations of CERN
since 1992. Moreover, it has become one of the field observation and testing stations of State Department of
Science and Technology in China since 2001 and become a formal member in 2006. It is now a national and
international important research base on alpine terrestrial ecosystem.
The CE dataset originates from a grassland transplant experiment across various elevations (3200, 3400,
3600 and 3800 m). The TB dataset originates from a grazing experiment on the Tibetan plateau.
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Pasture dataset

The two datasets representing forest ecosystems originated from South America and China.

Amazon Rainforest Microbial Observatory (ARMO)
The study was performed at the Amazon Rainforest Microbial Observatory (ARMO; Rodrigues et al. 2013),
located at the Fazenda Nova Vida (10o10′5″S and 62o49′27″W), a 22 000-ha cattle ranch in the State of
Rondônia,  Brazil.  The  ARMO was  established  in  2009  to  study  the  effect  of  land  use  change  on  the
biodiversity of microorganisms. In particular, ARMO is focused on understanding how conversion of the
Amazon  Rainforest  to  agricultural  uses  impacts  the  biodiversity  of  microorganisms.  ARMO  has  three
overarching goals: to search for biological novelty, to describe the microbial communities of the Amazon
Rainforest, and to determine the effect of agricultural conversion on these communities. Sampling occurred
at the end of the rainy season, March 2010 for the following sites: a primary forest (F), two pastures that had
been continuously managed for 6 (P6) and 38 (P38) years and a 13-year-old secondary forest (S), which was
established in 1997 after pasture abandonment. All pastures were established following the same procedures
(details of pasture establishment and management practices are described in the Supporting Information). A
100-m2 transect was placed at each site, and nested transects of 10 m, 1 m and 0.1 m were made sharing the
same point of origin, for a total of 12 sampling points, as described in Rodrigues et  al. (2013). After the
removal of the litter layer, a 5-cm diameter soil core was collected from 0 to 10 cm depth, homogenized and
passed through a 2-mm mesh sieve. Samples for total DNA extraction were kept at −80°C, while samples for
physicochemical analysis were stored at 4°C.Total carbon and nitrogen were determined with auto analyzer
LECO Truspec CN (St. Joseph, MI, USA) at the Centro de Energia Nuclear na Agricultura, University of Sao
Paulo, Brazil. Elemental concentrations and soil fertility parameters were analysed according to the methods
described by Van Raij  et al.  (2001),  and soil  granulometry was determined according to Camargo et al.
(1986).
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Forest dataset

Shennongjia National Nature Reserve Forest
The study sites, located in Shennongjia Mountain, had a mean annual air temperature of 7.2 °C and annual
precipitation of about 1,500 mm, most of which falls during summer. The unique vertical distribution of
vegetation on Shennongjia Mountain transforms from evergreen broadleaved forest elevations below 1,300
m, deciduous broadleaved forest between 1,500 and 2,200 m, coniferous forest between 2,200 and 2,600 m,
and sub-alpine shrubs above 2,600 m; the plant communities here are generally undisturbed by man. In this
study,  the  plant  survey and soil  collected  were  permitted  by  the  administrative  bureau  of  Shennongjia
National Nature Reserve. Three typical plant community types along the elevation gradient from 1000 to
2800 m were selected,  including evergreen broadleaved forest  (EBF1050),  deciduous broadleaved forest
(DBF1750) and coniferous forest (CF2550). The dominant plant communities are Cyclobalanopsis oxyodon
(Miq.) Oerst, Cyclobalanopsis myrsinaefolia (Blume) in EBF1050,  Carpinus viminea,  Quercus aliena var.
acuteserrata,  Fagus engleriana  in DBF1750,  Abies fargesii  Franch in CF2550. Samples of the mountain
yellow brown soil were collected in September, 2011. At each site, eight 20 × 20 m plots were established
with about 20 meters between adjacent plots. In each plot, fifteen 0 - 10 cm deep soil cores were collected
and composited to obtain about 400 g soil in total; these were mixed thoroughly and plant roots and stones
were removed. Soil samples were preserved at - 80 °C until being thawed for DNA extraction.
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Shrubland dataset

The dataset representing shrubland ecosystems originated from China and was collected in the frame of the
same  project  as  the  SNNRf  dataset.  Samples  were  collected  in  a  subalpine  shrub  dominated  by
Rhododendron oreodoxa.
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