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Abstract
Global climate models predict that the frequency and intensity of precipitation events 
will increase in many regions across the world. However, the biosphere-climate feed-
back to elevated precipitation (eP) remains elusive. Here, we report a study on one 
of the longest field experiments assessing the effects of eP, alone or in combination 
with other climate change drivers such as elevated CO2 (eCO2), warming and nitrogen 
deposition. Soil total carbon (C) decreased after a decade of eP treatment, while plant 
root production decreased after 2 years. To explain this asynchrony, we found that the 
relative abundances of fungal genes associated with chitin and protein degradation 
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1  |  INTRODUC TION

The Anthropocene era has brought significant changes in Earth's 
precipitation patterns (Shaw et al.,  2002). The global hydrologic 
cycle has intensified along with climate warming (Huntington, 2006), 
leading to an increase in annual precipitation in many regions during 
1980–2019 (Gulev et al., 2021). Extreme precipitation events are an-
ticipated to become more frequent in the 21st century (Corringham 
et al.,  2019; Stevenson et al.,  2022). As water availability serves 
as a limiting factor for most terrestrial ecosystems, the precipita-
tion regime is a critical regulator of ecosystem functioning in soils, 
which comprise the Earth's largest terrestrial C reservoir (Reichstein 
et al., 2013). However, how precipitation regime shifts will affect soil 
C storage remains highly uncertain. To date, biogeochemical mod-
els have failed to reproduce precipitation-related patterns of soil C 
dynamics (Falloon et al., 2011), hampering our ability to predict how 
future scenarios of altered precipitation will influence soil C source 
or sink capacity.

The central west coast of North America, mainly in California, 
has a Mediterranean-type climate regime characterized by hot, dry 
summers, and cool, wet winters. The Jasper Ridge Global Change 
Experiment (JRGCE), which was conducted in a California annual 
grassland, demonstrated that net primary productivity (NPP) re-
sponded unimodally to variations in precipitation (Zhu et al., 2016). 
A short-term (3-year) elevated precipitation (eP) treatment in-
creased NPP, primarily due to an increase in shoot production (Shaw 

et al., 2002). However, the positive shoot responses were largely off-
set by negative root responses, resulting in an insignificant increasing 
trend in total NPP over a 5-year eP treatment (Dukes et al., 2005). In 
addition, a study conducted in another California grassland revealed 
that long-term trajectories of plant species richness and abundances 
of invertebrate herbivores and predators differed from short-term 
responses to the eP treatment (Sullivan et al., 2016), suggesting that 
long-term eP treatment could restructure ecological relationships 
that ultimately affect soils and soil biota.

Soil microorganisms respond more rapidly to changes in soil 
water content than plants due to their faster intrinsic growth rates 
(Prosser et al., 2007). In a study of California grassland, soil active 
bacterial community examined by meta-transcriptomic analy-
sis was rapidly affected by a wet-up event within 1–72 h, showing 
a consistent pattern conserved at the sub-phylum level (Placella 
et al., 2012). At the DNA level, wetting decreased the relative abun-
dance of Actinobacteria but increased that of Acidobacteria (Barnard 
et al., 2013). However, these responses to short-term wetting were 
transient, displaying marked resilience. In contrast, fungal com-
munities were largely unaffected, suggesting that fungi might be 
more resistant to changes in water availability. Furthermore, viral 
abundance in soils can be strongly influenced by water availability 
(Williamson et al., 2017).

Although numerous field experiments have explored the 
effect of short- or mid-term eP treatment on the taxonomic 
composition of microbial communities, the results have been 
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increased and were positively correlated with bacteriophage genes, suggesting a po-
tential viral shunt in C degradation. In addition, eP increased the relative abundances 
of microbial stress tolerance genes, which are essential for coping with environmental 
stressors. Microbial responses to eP were phylogenetically conserved. The effects 
of eP on soil total C, root production, and microbes were interactively affected by 
eCO2. Collectively, we demonstrate that long-term eP induces soil C loss, owing to 
changes in microbial community composition, functional traits, root production, and 
soil moisture. Our study unveils an important, previously unknown biosphere-climate 
feedback in Mediterranean-type water-limited ecosystems, namely how eP induces 
soil C loss via microbe-plant–soil interplay.

K E Y W O R D S
elevated precipitation, microbial functional trait, resource acquisition, soil carbon loss, viral 
shunt, water-limited ecosystems
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inconsistent: microbial community composition was affected 
by eP (3 years; Ochoa-Hueso et al.,  2020), or not (2–8 years; 
Docherty et al., 2011; Gutknecht et al., 2012; Qi et al., 2021). In 
addition, the functional potentials of soil microbial communities, 
which underlie ecological processes, can be altered by eP. For in-
stance, precipitation-mediated changes in microbial communities 
were strongly associated with increased soil respiration (Chou 
et al.,  2008). Soil nitrifying and denitrifying enzyme activities, 
as well as the abundances of ammonia-oxidizing bacteria and 
nitrite-oxidizing bacteria, were also altered by the eP treatment 
in the JRGCE over 2–8 years since the experiment began (Barnard 
et al., 2006; Horz et al., 2004; Le Roux et al., 2016; Niboyet, Le 
Roux, et al.,  2011). Increased soil N2O emissions were reported 
under eP, which were associated with increased denitrification 
rates (Brown et al.,  2012). Similarly, changes in the abundances 
and enzyme activities of soil denitrifiers were detected for a semi-
arid grassland in response to precipitation-mediated changes (Shi 
et al., 2021).

Most studies examining soil microbial responses have focused on 
short-term eP treatments. It remains unclear whether microbial com-
munities adapt to long-term altered soil moisture regimes as they do 
to elevated temperature (Melillo et al., 2017), or whether they con-
tinue to shift in the long-term trajectories to differ from short-term 
responses, as macrofauna and macroflora do (Sullivan et al., 2016). 
To address it, we examined plant and microbial responses (e.g., bac-
teria, fungi, and viruses) to a 14-year eP treatment (+50%) alone 
or combined with elevated CO2 (eCO2, +275 μmol mol−1), warming 
(+1.0°C in topsoils) and nitrogen (N) deposition (+7 g m−2 year−1) in 
the JRGCE, one of the longest manipulations of precipitation in a 
natural ecosystem. We hypothesized that long-term eP may lead to 
shifts in soil microbial community composition and functional traits, 
contradicting the short-term responses where eP affected micro-
bial gene expression and physiology with no or transient changes in 
microbial community composition (Barnard et al., 2013; Gutknecht 
et al., 2012). We also hypothesized that the microbial responses to 
eP might be interactively affected by other climate change factors 
such as eCO2, warming, and N deposition, as previously reported for 
plant production (Zhu et al., 2016).

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design and soil sampling

The JRGCE is located in an annual grassland within a 481-ha pro-
tected area along the eastern foothills of the Santa Cruz Mountains 
in northern California (37°40' N, 122°22' W). The mean annual pre-
cipitation at the study site over 45 years was 604 mm, with more 
than 80% of precipitation occurring as rain between November 
and March. The average annual air temperature over 45 years was 
13.4°C. The soil is a fine-loamy, mixed, thermic Typic Haploxeralf, 
with a pH of 6.5–7.0 and a water-holding capacity of 21% (Brown 
et al., 2012).

The JRGCE was established in October 1998 to evaluate grass-
land ecosystem responses to global change treatments. The experi-
ment consisted of eight blocks as replicates, each with four circular 
plots of 3.14 m2 area. Each plot was equally divided into four quad-
rants, resulting in a total of 128 quadrants. To simulate the projected 
future precipitation regime in the California grassland, half of the 
quadrants received an additional 50% precipitation with sprinklers 
after each natural rainfall event, and two additional watering events 
in the spring at the end of the rainy season to simulate an exten-
sion of the rainy season by 3 weeks, while ambient precipitation (aP) 
quadrants received no water addition, serving as controls. During 
the 14 years of treatments preceding our study, ambient precipita-
tion averaged 610 mm per year, and precipitation in the eP treatment 
averaged 870 mm (i.e., +42.6%, Figure S1a). In addition to elevated 
precipitation, the experiment included elevated carbon dioxide 
(ambient vs. +275 μmol mol−1 CO2), warming (ambient vs. elevated 
temperature by ~1.0°C in topsoils), and N deposition (ambient vs. 
+7 g N m−2 year−1 as Ca(NO3)2), all conducted in a full factorial design 
(Shaw et al., 2002). The treatments were arranged in a randomized 
block split-plot design, with warming and CO2 elevation at the plot 
level and N deposition and eP assigned randomly at the subplot level 
(Dahlin et al., 2013; Gutknecht et al., 2012). In 2003, an accidental 
wildfire burned two of the eight blocks. In 2011, a controlled burn 
was carried out in half of the blocks, including the two blocks burned 
in 2003, to provide a fire treatment. Since previous studies found 
that fire significantly affected microbial communities and ecosystem 
functioning across four global change treatments (Niboyet, Brown, 
et al., 2011; Strong et al., 2017; Yang et al., 2020), the burned blocks 
were excluded from the present analysis.

A total of 64 soil samples were collected on April 26 and 27, 2012, 
14 years after the initial treatments were implemented. Soil samples 
were obtained by collecting one 7 cm deep × 5 cm diameter core 
from each quadrant and thoroughly homogenizing the soil. These 
soil samples were then sieved through a 2 mm mesh and stored at 
−20°C for geochemical analyses or at −80°C for microbial analyses.

2.2  |  Environmental variables

We determined soil total C and total N by combustion analysis on a 
Carlo Erba Model 1500 CNS Analyzer (Carlo Erba Strumentazione). 
Soil C:N ratios were then calculated as mass ratios of total C to total 
N. We also collected soil total C and N data in 1998 (Year 0) and 
from 2000 (Year 2) to 2012 (Year 14) on a yearly basis. To measure 
soil temperature, we buried thermo-couples at a depth of 2 cm in 
each quadrant and recorded hourly data, which we then averaged 
over April 1–27, 2012 (Niboyet, Le Roux, et al.,  2011). We deter-
mined soil moisture by comparing the mass of a 10-g soil sub-sample 
before and after drying at 105°C for 1 week. We measured soil pH 
by suspending 5 g of soil in 10 mL of distilled water. We determined 
soil ammonium (NH4-N) and nitrate (NO3-N) concentrations by sus-
pending 5 g of soil in 50 mL of 2 M KCl solution, followed by measur-
ing filtered extracts using an Automated Segmented Flow Analyzer 
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(SEAL Analytical). We collected soil CO2 efflux data as previously 
described (Strong et al., 2017), which were measured from April 27–
29 to June 20–25, 2012.

The ecosystem NPP and its components, that is, aboveground 
NPP (ANPP) and belowground NPP (BNPP) were measured as 
previously described (Zhu et al., 2016). Specifically, we collected 
aboveground plant materials from a 141 cm2 area of each quad-
rant twice at the peak of standing biomass, once in mid-April to 
early May and again in early to late May. The biomass was ana-
lyzed using a maximum of two harvests to reduce phenological 
variation bias under different treatments. We measured the total 
aboveground biomass by clipping all aboveground biomass, sepa-
rating individual plant species into functional groups: annual grass, 
perennial grass, annual forb, and perennial forb (Gao et al., 2021). 
We determined litter biomass by collecting all senesced plant ma-
terial from the ground within the same area. After the first abo-
veground harvest, we determined belowground biomass by taking 
four soil cores (2.5 cm diameter) in the same area, with two cores 
for shallow roots (0–15 cm) and two for deep roots (15–30 cm). 
Fine roots in a depth of 0–15 cm were separated from tap roots. All 
plant materials were oven-dried at 70°C and weighed. NPP, ANPP, 
and BNPP data in 1998 and from 2000 to 2011 (BNPP and NPP 
in 1999 and 2007 not available) were also collected as previously 
described (Zhu et al., 2016).

2.3  |  DNA extraction, purification and 
quantification

We extracted soil DNA by freeze-grinding mechanical lysis, as 
previously described (Zhou et al.,  1996). We purified DNA with 
a 0.5% low-melting-point agarose gel electrophoresis followed 
by phenol-chloroform-butanol extraction. We assessed DNA 
quality using absorbance ratios of 260/280 nm and 260/230 nm 
(260/280 > 1.8 and 260/230 > 1.7) with a NanoDrop ND-1000 
Spectrophotometer (NanoDrop Technologies). We then quantified 
the final DNA concentration with a PicoGreen method, using an 
FLUO star Optima (BMG Labtech) as previously described (Yang 
et al., 2014).

2.4  |  MiSeq sequencing and raw data 
preprocessing

We constructed the 16S rRNA gene library and processed sequenc-
ing data as previously described (Guo et al.,  2019). We targeted 
the V4 region of the 16S rRNA gene with primers 515F (GTGCC​
AGC​MGC​CGC​GGTAA) and 806R (GGACT​ACH​VGG​GTW​TCTAAT) 
and ITS2 region between 5.8S and 28S rRNA genes with primers 
gITS7 (GTGAR​TCA​TCG​ART​CTTTG) and ITS4 (TCCTC​CGC​TTA​TTG​
ATATGC) in PCR amplification. We then sequenced PCR products by 
2 × 250 bp paired-end sequencing with a MiSeq instrument (Illumina). 
We identified paired-end raw sequences by paired barcodes and 

combined them using FLASH (Magoč & Salzberg, 2011). We further 
trimmed sequences to the length of >245 bp for the 16S rRNA gene 
or >220 bp for the ITS. We generated amplicon sequence variants 
(ASVs), also known as zero-radius operational taxonomic units or 
unique sequence variants, by UNOISE3 (Edgar, 2018). We annotated 
the representative sequence taxonomy using the QIIME2 Naive 
Bayes classifier trained for the V4 region of the 16S rRNA gene 
(version Silva-132-99-515-806) and ITS based on UNITE QIIME re-
lease (version ver8_97_10.05.2021; Abarenkov et al.,  2021; Quast 
et al., 2013). We removed the singlet ASVs and those classified as 
mitochondria and chloroplasts to improve data reliability. We re-
trieved 3,391,680 high-quality sequences for the 16S rRNA gene 
and 661,632 high-quality sequences for ITS. Then, we resampled 16S 
rRNA gene sequences at a depth of 31,441 reads and ITS sequences 
at a depth of 17,397 reads for each of the 64 samples (Figure S2). The 
representative 16S rRNA gene sequences were aligned using MAFFT 
and used for constructing phylogenetic trees by FastTree on QIIME2 
(Bolyen et al., 2019). Although the ITS2 region has a high resolution 
for identifying evolutionarily close taxa, the high rate of insertion 
and deletion makes the evolutionarily distant taxa vary greatly and 
difficult to be aligned. Therefore, we constructed the fungal phylo-
genetic tree by specifying constraint alignment in FastTree v2.1.10 
(Price et al.,  2010). The constraint alignment was converted from 
a guide tree constructed using ghost-tree (Fouquier et al.,  2016), 
which grafted the taxonomically assigned ITS sequences to a refer-
ence foundation tree (Silva Ver. SSU 138) by mapping genus names.

2.5  |  GeoChip experiments and raw data 
preprocessing

We carried out DNA labeling with Cy3 and hybridization with 
the functional array GeoChip 4.6, as previously described (Wang 
et al., 2018). We scanned the fluorescent intensities of each probe 
on GeoChip, using a NimbleGen MS 200 Microarray Scanner with 
100% laser power and 100% photomultiplier tube (Roche). We dis-
carded spots with a signal-to-noise ratio of less than 2.0. Probe sig-
nals that were detected only once among four biological replicates 
were also excluded. As a result, a total of 60,619 probes, including 
53,748 probes derived from bacteria, 4661 probes from eukary-
otes, 1821 probes from archaea, and 389 from viruses, were de-
tected. We performed a natural logarithmic transformation of each 
detected probe (aij) (probe j ∈

[

1, 60,619
]

, sample i ∈
[

1, 64
]

) to get 
bij = ln

(

aij + 1
)

 (we added 1 to aij because the natural logarithm of 
zero is not defined). We normalized bij by dividing the average signal 
intensity of all probes in the sample i to get cij = bij ∕Avg

m

j=1
bij (m is the 

total number of probes, i.e., 60,619).

2.6  |  Statistical analyses

All statistical analyses were performed in R version 3.5.2 (http://
www.r-proje​ct.org) unless otherwise specified. p-values <.050 are 
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considered to be statistically significant. p-values between .050 
and  .100 are considered to be marginally significant, given the large 
variations among blocks. p-values >.100 are not considered to be 
statistically significant.

2.6.1  |  Diversity analyses

We calculated the α-diversity of the Shannon index for taxonomic 
diversity (based on rarefied ASV tables) and functional gene diver-
sity (based on functional genes of GeoChip), and Faith's phyloge-
netic diversity. We utilized the vegan and picante packages for these 
analyses.

2.6.2  |  Treatment effect analyses

To assess the treatment effect, we calculated the effect size of 
precipitation as follows: % effect = 100% × (eP−aP)/aP (n = 64 
under eP and aP for data in 1998 and 2000–2003 before the 2003 
fire, n = 48 for data in 2004–2011 before the 2011 fire, and n = 32 
for data in 2012). The statistical significance of the treatment ef-
fect was tested by split-plot ANOVA using aov function in R. We 
applied log or square root transformations to improve normality 
when necessary. To analyze the treatment effect on functional 
and taxonomic compositions of microbial communities, we per-
formed split-plot PERMANOVA with PRIMER 6 + PERMANOVA 
software (Marti et al., 2008). We used negative binomial models 
in the DESeq2 package to identify significantly changed ASVs 
with eP (baseMean >10, log2 fold change >0.5, and FDR adjusted 
p < .050), and examined the significance with Wald tests (Love 
et al., 2014). Using DESeq2 and split-plot ANOVA, we also exam-
ined the effects of the eP treatment across different taxonomic 
levels to determine whether the alterations in taxonomic lineages 
were phylogenetically clustered. We adjusted p-values using the 
FDR method when conducting multiple comparisons, such as as-
sessing the eP effect on multiple functional genes and taxonomic 
lineages.

2.6.3  |  ConsenTRAIT analysis

We performed consenTRAIT analysis to determine whether the 
responses of bacteria and fungi to eP were phylogenetically con-
served, using the castor package (Louca & Doebeli, 2018; Martiny 
et al.,  2013). Since FastTree only estimates branch lengths by in-
ferring approximately-maximum-likelihood phylogenetic trees, we 
constructed a maximum likelihood (ML) tree of the 16S rRNA gene 
sequences to obtain accurate branch lengths for the consenTRAIT 
analysis. For ITS sequences, it is difficult to align the sequences and 
construct an ML tree because of high variations, we constructed 
the phylogenetic tree using constrained FastTree's topology search 
instead.

2.6.4  |  Ecological process analyses

Microbial community assemblies are shaped by ecological pro-
cesses, including both stochastic processes (e.g., dispersal, birth-
death events, and ecology drift) and deterministic processes (e.g., 
environmental filtering; Hubbell, 2001; Ning et al., 2019). We esti-
mated the stochastic ratio using a modified method based on null-
model algorithms with taxonomic metrics (Sorensen) as previously 
described (Guo et al., 2018; Ning et al., 2019). The effect of the eP 
treatment on the estimated stochastic ratio was evaluated by split-
plot permutational multivariate analysis of variance (PERMANOVA).

2.6.5  |  Structural equation modeling and 
aggregated boosted tree analyses

Structural equation modeling (SEM) was employed to reveal how 
biotic and abiotic variables affect soil total C across aP and eP quad-
rants. Since soil total C was altered by both eP and N deposition 
(Table S1), only samples under the ambient N condition (a total of 32 
samples) were used for SEM analysis to exclude the effect of N depo-
sition. The community compositions were represented by PC1 from 
the principal coordinate analysis based on the Bray–Curtis dissimi-
larity of the ASV matrix, which captured 9.3%–15.5% variations of 
microbial community composition. We first established a full model 
with all reasonable pathways (Figure S3), and then we used a step-
wise approach to remove non-significant pathways with the highest 
p-value at each step until the final model was obtained. The SEM 
analysis was performed using the lavaan R package (Rosseel, 2012).

We performed the aggregated boosted tree (ABT) analysis, a 
machine learning algorithm, to investigate the relative influences of 
biotic and abiotic variables in regulating soil total C (De'ath, 2007). 
We first established a hyper grid of parameters, including learning 
rate (shrinkage), interaction depth, the minimum number of obser-
vations in the terminal nodes of trees (n.minobsinnode), and sub-
sampling fraction (bag.fraction), for tree training and tuning (Data 
S1). However, when shrinkage was set to 0.001, the optimal trees 
became too large, which might lead to overfitting of the ABT mod-
els. Therefore, we opted for the optimal combination of parameters, 
which included shrinkage = 0.01, interaction depth = 1, n.minob-
sinnode = 3, and bag.fraction = 0.8. Finally, we evaluated the model 
by 10-fold cross-validation. ABT models were built by gbm function 
in gbm R package, and model evaluation was performed by train 
function in caret R package.

3  |  RESULTS

3.1  |  Edaphic and plant variables

The eP treatment did not change soil total C in the early phase of the 
2nd–9th year since the experiment began (Figure 1a and Table S2). 
In the late phase of the 10th–14th year, eP decreased soil total C by 
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4.2% (p < .001, Figure 1a and Table S2), with significant eP effects 
on soil total C in the 10th, 13th, and 14th year (p < .021, Figure S1b). 
Soil total N was not altered by eP alone (Figure 1b and Table S2). As 
a result, the C:N ratio was significantly decreased by eP (p = .002, 
Figure  1c and Table  S2). Treatment effects on other soil variables 
were described in Supplementary Text A.

Aboveground net primary production (ANPP) was increased 
from 591 g m−2 year−1 in ambient precipitation (aP) quadrants to 
632 g m−2 year−1 in eP quadrants throughout the 2nd–14th year 
(p = .018, Figure 1d and Table S2). In contrast, BNPP was decreased 
from 463 g m−2 year−1 in aP quadrants to 401 g m−2 year−1 in eP quad-
rants (p < .001, Figure 1d and Table S2). The decline in BNPP counter-
balanced the increase in ANPP, resulting in an unchanged NPP by the 
eP treatment (Figure 1d). However, eP effects on ANPP and BNPP 
varied considerably by year (Figure S1c,d). ANPP was significantly 
increased in only 2 years of the 14-year observations (Figure S1c), 
while BNPP was significantly decreased by 14.9%–25.2% during the 
first 2nd–5th years (p < .021, Figure  S1d). However, the decline in 

BNPP was only observed in 3 years during the late 6th–14th years 
(Figure S1d).

There was an interactive effect of precipitation × warming on soil 
total C (p = .048, Table S2), which was decreased by eP when the tem-
perature was ambient but was unaltered by eP when the temperature 
was elevated (Figure 1e). In the early phase of the 2nd–9th year, soil total 
C was not altered by eP alone or combined with other global change 
factors (Table S2). In contrast, soil total C was interactively affected by 
precipitation × CO2 × warming in the late phase of the 10th–14th year 
(p = .008, Table S2), leading to a decline in soil total C under eP when CO2 
or temperature was elevated (Figure 1f). Soil CO2 efflux was measured 
in the 14th year of the experiment. Soil CO2 efflux was interactively 
affected by precipitation × CO2 × N deposition (p = .022, Table S3), with 
eP increasing CO2 efflux when CO2 was elevated and N was ambient 
(Figure 1g). Soil total N was interactively affected by precipitation × N 
deposition × warming (p = .047, Table S2), with eP decreasing soil total 
N only under N deposition and ambient temperature (Figure 1b). BNPP 
and NPP were interactively affected by precipitation × CO2 × warming 

F I G U R E  1  The effects of the eP treatment on soil total C, soil total N, CO2 efflux, and plant variables in the 2nd–14th year after the 
experiment treatment began. (a) Soil total C in phase I over the 2nd–9th years and in phase II over the 10th–14th years. (b) Soil total N. (c), 
Soil C:N ratio, calculated as the mass ratio of soil total C to N. (d) ANPP, BNPP, and NPP. As BNPP in the 9th year was not measured, only 
data in Years 2nd–8th and 10th–14th are displayed. (e) Soil total C under different warming treatments. (f) Soil total C in phase II over 10th–
14th years under different CO2 and warming treatments. (g) Soil CO2 efflux in the 14th year. (h) BNPP under different CO2 and warming 
treatments. (i) NPP under different CO2 and warming treatments. Means and standard errors are indicated. Treatments: all, across other 
climate change factors; aC, ambient CO2; eC, elevated CO2; aW, ambient temperature, eW, warming; aN, ambient N; eN, N deposition. 
***p < .001, **p < .010, *p < .050, and #p < .100. BNPP, belowground NPP; NPP, net primary productivity. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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(p < .037, Table S2), with eP decreasing BNPP when CO2 and tempera-
ture were elevated (Figure 1h) and decreasing NPP when CO2 was ele-
vated and the temperature was ambient (Figure 1i).

3.2  |  Microbial functional genes

To examine the shifts in microbial communities by long-term eP, we 
analyzed microbial functional potentials with functional gene array 
(GeoChip 4.6) and prokaryotic and fungal community compositions 
with targeted amplicon sequencing, using soil samples collected in 
the 14th year of the experiment. Microbial functional gene composi-
tion differed between the aP and eP quadrants (p = .050, Table S4), 
though functional gene α-diversity remained similar (Table  S5). 
There were interactive effects of precipitation × CO2 on functional 
gene composition and α-diversity (Tables  S4 and S5). Functional 
gene α-diversity increased with eP when CO2 was elevated, while it 
was not affected by eP when CO2 was ambient (Figure S4).

The relative abundances of genes associated with the degrada-
tion of pectin (pme) and cellulose (the gene encoding endoglucanase 
derived from bacteria) were decreased in the eP quadrants (p < .025, 
Figure  2a). In contrast, the relative abundances of fungal genes 

encoding enzymes related to the degradation of N-rich compounds, 
such as chitin (endochitinase) and protein (aspartate protease and 
serine protease), were increased by 4.4%–18.1% with eP (p < .025, 
Figure 2a). In addition, the relative abundance of the marker gene for 
methanogenesis (mcrA) increased (p = .017) under eP, while those of 
methane oxidation genes mmoX and pmoA were unaltered (Figure S5a). 
There were interactive effects of precipitation × CO2 on C degradation 
genes, but not methane cycling genes (Data S2). Notably, the increase 
in relative abundances of genes associated with degrading N-rich 
compounds was greater when CO2 was elevated (Figure S6a). Taken 
together, these results suggest that eP substantially altered soil micro-
bial C cycling potentials, especially when CO2 was elevated.

Since bacteriophages play an important role in regulating micro-
bial C dynamics, we investigated 221 bacteriophage genes detected 
in our samples. The relative abundances of bacteriophage genes as-
sociated with viral structure and replication increased by 4.7%–9.5% 
in eP quadrants (p < .040, Figure 2b), suggesting that eP may stimu-
late bacteriophage growth. In contrast, the total abundances of 101 
eukaryotic viral genes detected in our samples remained unaltered 
(Figure 2b). There were interactive effects of precipitation × CO2 on 
bacteriophage genes (Data S2), whose gene abundances increased 
with eP when CO2 was elevated (Figure S6b).

F I G U R E  2  The effects of the long-term eP treatment on C degradation genes, viral genes, and stress response genes. (a) Percent 
changes of individual C degradation genes. Labels represent targeted substrates. The percent change represents the effect size of relative 
abundances calculated as follows: % effect = 100% × (eP−aP)/aP. (b) Percent changes of functional subcategories for prokaryotic and 
eukaryotic viral genes. (c) Percent changes of individual stress response genes. Only significantly and marginally significantly changed genes 
(FDR corrected p < .100) are shown. The error bar represents the standard error (n = 32). ***p < .001, **p < .010, *p < .050, and #p < .100. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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Since long-term eP decreased soil total C, we investigated 
whether microbial stress responses were stimulated. The relative 
abundances of eight stress response genes were significantly in-
creased with eP (Figure 2c), including those associated with glucose 
limitation, oxygen limitation, phosphate limitation, oxidative stress, 
and sigma factors (see Supplementary Text B for details). There were 
interactive effects of precipitation × CO2 on phosphate limitation 
and sigma factor genes (Data S2), whose gene abundances increased 
with eP when CO2 was elevated and the temperature was ambient 
(Figure S6c,d).

3.3  |  Microbial taxonomic composition

We identified 4649 to 14,940 prokaryotic ASVs and 719 to 1757 
fungal ASVs per sample (Figure S2). Their taxonomic compositions 
were different between the eP and aP quadrants (p = .001) but were 
barely affected by the interaction of precipitation and other climate 
change treatments (Table  S4). The taxonomic and phylogenetic 

α-diversities remained unaltered between the eP and aP quadrants 
(Table S5).

Positive eP responders of bacteria, that is, bacterial 
ASVs increased by eP, were clustered within Bacteroidetes, 
Gammaproteobacteria, the order Sphingomonadales of 

F I G U R E  3  The phylogenetic tree of bacterial ASVs significantly changed by eP. The inner colored ring represents the phylum of each 
ASV. The middle ring of colored bars represents the relative log2-fold change of each ASV in eP quadrants compared with aP quadrants. The 
outer ring displays the mean relative abundance of each ASV. The colored branches represent the phylogenetically clustered groups (families 
and higher taxonomic level clades), with orange branches indicating increased groups and blue-green branches indicating decreased groups. 
[Colour figure can be viewed at wileyonlinelibrary.com]
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TA B L E  1  The consenTRAIT analysis showing phylogenetic 
conservation of microbial responses to eP.

Kingdom Response τD
a p-valueb

Bacteria Increase 0.116 <.001

Decrease 0.063 <.001

Fungi Increase 0.190 .211

Decrease 0.267 .004

aτD is the mean phylogenetic depth at which the response is conserved 
across clades.
bSignificance values were estimated using 999 randomizations (p < .050 
in bold). A significant value indicates a greater mean depth than 
randomization, indicating deeper-rooting conservation across clades.
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Alphaproteobacteria, and the order Blastocatellales of 
Acidobacteria (Figure  3 and Data  S3, see Supplementary Text C 
for details). Negative eP responders of bacteria, that is, bacte-
rial ASVs decreased by eP, were clustered within Actinobacteria, 
Verrucomicrobia, Chloroflexi, subgroup6 of Acidobacteria, and 
the family Beijerinckiaceae of Alphaproteobacteria (Figure  3 and 
Data  S3). The positive and negative eP responders were phylo-
genetically clustered in these clades at a greater depth than ex-
pected in a null model of consenTRAIT analysis (p < .001, Table 1), 
suggesting that the bacterial community's response to long-term 
eP was phylogenetically conserved.

Positive eP responders of fungi were clustered within the class 
Sordariomycetes and the order Eurotiales of Ascomycota (Figure 4 and 
Data S4). Negative eP responders of fungi were clustered in the class 
Archaeorhizomycetes, the order Onygenales, Helotiales, and Orbiliales, 
the family Periconiaceae and Herpotrichiellaceae of Ascomycota, and the 
order Agaricales of Basidiomycota (Figure 4 and Data S4). The nega-
tive eP responders of fungi were phylogenetically conserved in deep-
rooting clades (p = .003), however, the positive eP responders were 
not, as indicated by the absence of significant phylogenetic conserva-
tion (Table 1).

3.4  |  Ecological processes in shaping microbial 
community assembly

The phylogenetically conserved response of microbial communities to 
eP implies that environmental filtering, a deterministic process, may 
be important under eP. To test this, we estimated the relative impor-
tance of stochastic and deterministic processes using a null model 
analysis. There were interactive effects of precipitation × CO2 on the 
stochastic ratios of bacterial communities (p = .004), which decreased 
with eP when CO2 was elevated (p = .031) but remained unaltered 
with eP when CO2 was ambient (Figure  5a). In contrast, stochastic 
ratios of fungal community decreased with eP regardless of CO2 con-
ditions (Figure 5b), showing higher environmental selection.

To identify the deterministic factors that affect microbial com-
munity composition, we conducted Mantel tests to examine the link-
ages between environmental variables and microbial eP responders. 
The positive eP responders of fungi and negative eP responders of 
bacteria were both correlated with soil moisture and soil CO2 efflux 
(Mantel's r = .149–.203, p < .015, Figure  5c). In contrast, the nega-
tive eP responders of fungi and positive eP responders of bacteria 
were correlated with environmental variables to a lesser degree (see 

F I G U R E  5  Stochastic and deterministic factors influencing microbial communities. (a) The estimated stochastic ratio in prokaryotic 
community assembly. The significance of the effect for each treatment was tested by split-plot PERMANOVA. P: precipitation, C: CO2. The 
significance of the eP treatment under different CO2 regimes was tested by t-test. (b) The estimated stochastic ratio in fungal community 
assembly. (c) Environmental variables driving composition changes of ASVs and stress genes significantly altered by the eP treatment. The 
color gradient represents Pearson's correlation coefficients of pairwise correlations of environmental variables. The edge width corresponds 
to the Mantel correlation coefficients, and the edge color denotes the statistical significance of the Mantel tests. SRoot, shallow root 
biomass (0–15 cm); FRoot, fine root biomass (0–15 cm); DRoot, deep root biomass (15–30 cm); TRoot, total root biomass; AG, annual grass 
biomass; AF, annual forb biomass; PG, perennial grass biomass; PF, perennial forb biomass; AGB, aboveground biomass; TC, soil total C; TN, 
soil total N; Soil T, soil temperature. [Colour figure can be viewed at wileyonlinelibrary.com]
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Supplementary Text D for details). We also examined the linkages be-
tween environmental variables and stress response genes and found 
that stress response genes were correlated with soil total C, soil total 
N, and litter biomass (Mantel's r = .101–.267, p < .050, Figure 5c).

3.5  |  Biotic and abiotic variables linking to soil total C

Since soil total C decreased with long-term eP, we identified bi-
otic and abiotic variables that could be major drivers of soil total 
C. SEM analyses were performed with the presumed relationships 
(Figure S3) among the selected subsets of edaphic and plant vari-
ables that were least correlated (see Section 2 for details of model 
selection). Soil total C was negatively affected by soil moisture but 
positively affected by fine root biomass (Figure 6a). Soil total C was 
significantly correlated with fungal community composition, which 
was, in turn, correlated with relative abundances of genes associ-
ated with the degradation of N-rich chitin and protein. The relative 
abundances of bacteriophage genes had a strong correlation with 
those of C degradation genes, likely revealing an important role of 
viral shunt on soil C cycling. Overall, these variables explain 54% of 
the variations in soil total C (Figure 6a). Among all the tested inde-
pendent variables, soil moisture, fine root biomass, and fungal com-
munity composition played essential roles in mediating soil total C, 
as revealed by both SEM and ABT analysis (Figure 6a,b). Soil pH and 
enriched microbial C degradation genes influenced soil total C to 
lesser extents. These results indicate that soil, plant, and microbial 
variables explain a similar proportion of soil total C dynamics.

4  |  DISCUSSION

Understanding how long-term climate changes affect soil microbial 
communities and underlying ecosystem processes is essential for 
better predicting the terrestrial responses to climate change (Tiedje 
et al.,  2022). By examining the effects of 14-years eP on edaphic 
variables, plants, bacteria, fungi, and viruses, our study provides ex-
plicit evidence that long-term eP, either alone or in combination with 
other climate change drivers, can alter ecosystem compositions and 
functional traits linked to soil C loss.

4.1  |  The long-term eP treatment shifts microbial 
community compositions and functional traits

Although the short- or mid-term (3–8 years) eP treatment in the 
JRGCE did not alter microbial community composition (Docherty 
et al.,  2011; Gutknecht et al.,  2012), we found that bacterial and 
fungal community compositions were significantly changed after 
14-year eP treatment (Table S4). This result supports our hypothesis 
that microbial communities continue to shift in the long-term tra-
jectories, differing from short-term responses (Sullivan et al., 2016). 
However, this discrepancy could also be attributed to technical 
differences. Previous studies, which relied on low-resolution mi-
crobial community fingerprinting based on lipid biomarker analy-
sis, may not unveil variations in microbial community composition 
(Docherty et al., 2011; Gutknecht et al., 2012). Our analysis offers 
supporting evidence that microbial responses to water availability 

F I G U R E  6  Biotic and abiotic drivers in regulating soil total C content. (a) The structural equation model (SEM) showing the influences 
of the eP treatment (grey rectangle), environmental variables and microbial profiles on soil total C. Red arrows represent significant and 
marginally significant positive pathways, and blue arrows represent significant and marginally significant negative pathways. The width of 
each arrow is proportional to the strength of the relationship and numbers near the pathway represent the standardized path coefficients. 
Bootstrap-based p-values for path coefficients are indicated by ***when p < .001, **when p < .010, *when p < .050, and #when p < .100. R2 
represents the proportion of variance explained for soil total C. (b) Standardized total effects (direct and indirect effects) based on SEM. 
(c), The relative influences of biotic and abiotic variables in affecting soil total C, as revealed by aggregated boosted tree (ABT) analysis. 
Enriched C degra. gene represents the relative abundances of increased C degradation genes shown in Figure 2a, including those in the 
degradation of chitin and protein. Fungal comm. comp. refers to fungal community composition, as represented by the PC1 from the principal 
coordinate analysis based on the Bray-Curtis distance of the fungal ASV matrix. [Colour figure can be viewed at wileyonlinelibrary.com]
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are phylogenetically clustered (Table  1; Placella et al.,  2012; Xu 
et al.,  2018), which could reflect the fundamental differences in 
microbial life strategies, that is, traits driving survival, growth, 
and reproduction responses to environmental conditions (Barnard 
et al., 2013).

The phylogenetic conservation of microbial communities 
could be attributed to stress tolerance and competition-related 
traits (Goberna et al., 2014). In support of stronger stresses, the 
stochastic ratios of prokaryotic and fungal communities were de-
creased by the eP treatment (Figure 5a,b). In addition, stress tol-
erance genes increased in relative abundances with long-term eP 
(Figure 2c), reflecting higher environmental stress. For example, 
increases in oxygen limitation gene abundances might result from 
less oxygen in soil pore space or diffusing in the water film under 
eP (Schuur & Matson, 2001), while oxidative stress levels could 
be increased when microbes are under stress (Ernst et al., 2022).

The functional traits related to C degradation were shifted towards 
the degradation of N-rich compounds (such as chitin and protein), but 
not chemically C-rich compounds (such as starch, pectin, and hemicel-
lulose, Figure 2a). These results were consistent with previous results 
in the JRGCE showing that 6-year eP treatment decreased hydrolase 
activity in degrading starch, xylan, and cellulose, but was inconsistent 
with a previous result of decreased chitin hydrolase activity (Henry 
et al., 2005). The discrepancies in chitin degradation might be due to 
variations in C degradation trait over different time scales or technical 
differences since our results reflect the genetic potentials for these 
processes, while enzyme activities reflect the maximum potential 
under ideal conditions. Degradation of N-rich molecules, including 
chitin and proteins, also increased along a precipitation gradient from 
arid to semi-arid grasslands (Feng et al., 2018), which could reflect a 
microbial need for acquiring N nutrients.

Viral shunt, which releases organic matter from microbial cells, 
plays an important role in regulating C and N cycling across differ-
ent ecosystems such as marine and anaerobic digesters (Coutinho 
et al.,  2017; Zhang et al.,  2017). Consistently, the relative abun-
dance of bacteriophage genes was increased with eP (Figure  2b 
and Figure S5b), and were positively correlated with genes associ-
ated with the degradation of chitin and protein and consequently 
affected soil total C (Figure 6a). Those results suggest that bacte-
riophages might play an important role in C cycling of our annual 
grassland ecosystem. However, we cannot yet identify the host of 
the bacteriophages, hindering closer examinations of interactions 
between bacteria and bacteriophages.

4.2  |  The long-term eP treatment effects are 
interactively affected by elevated CO2 and warming

Elevated CO2 enhanced eP effects on microbial functional traits 
and bacterial community assemblies in this study (Figure 5a and 
Figure S6). One possible explanation is that CO2 fertilization could 
induce higher shortages for other resources such as N and phos-
phorus, according to the ecological framework of (co)limitation 

by multiple resources (Ma et al.,  2019). Also, both eCO2 and eP 
could decrease root biomass (Iwasa & Roughgarden, 1984; Shaw 
et al., 2002), consequently reducing root input to the soil and caus-
ing soil nutrient limitation (Mason et al., 2022; Shaw et al., 2002). 
Consistently, we found that eP in combination with eCO2 de-
creased BNPP and even NPP (Figure  1h,i). Nitrogen and phos-
phorus limitation was supported because we revealed enhanced 
degradation of N-rich compounds (Figure  S6a) and decreased N 
cycling under eP when CO2 was elevated (Figure  S7), as well as 
increased phosphate limitation genes (Figure S6c). Alternatively, it 
is possible that eCO2 decreases evapotranspiration, prolongs the 
period of water conserved in the soil, and increased soil moisture, 
as already observed in JRGCE and semi-arid shortgrass steppe of 
Colorado (Nelson et al.,  2004; Zavaleta et al.,  2003), hence en-
hancing the eP effect on microbial communities and ecosystem 
functioning.

Warming mitigated eP effects on soil total C and precipita-
tion × CO2 effects on plant root production and phosphate limita-
tion genes (Figure 1e,I and Figure S6c). This could happen because 
increased evapotranspiration under warming could reduce water 
availability and the duration of water conserved in soil. Meanwhile, 
warming could enhance organic phosphorus and N mineraliza-
tion to ameliorate nutrient limitation (Liu et al.,  2017; Shaw & 
Cleveland, 2020), although the increase in N mineralization rate in 
response to warming has not yet been observed at our study site 
(Gao et al., 2021; Niboyet, Le Roux, et al., 2011).

4.3  |  Microbe-plant–soil interplay is essential for 
mediating eP-induced soil C loss

The eP treatment reduced soil total C in the JRGCE from the 10th 
year of the experiment, with only a reduction in the free light frac-
tion of soil organic matter—mainly root materials—being observed 
after the 6-year eP treatment (Henry et al.,  2005), indicating that 
long-term eP exacerbated soil C loss. Since soil inorganic C content 
is stable in areas where mean annual precipitation is greater than 
600 mm, and an increase in water availability has little effect on soil 
inorganic C in acidic or neutral soils (Dang et al., 2022), the decrease 
in soil total C in this study might be mainly attributed to the decrease 
in soil organic C. This result contradicts the increase in soil organic C 
pools with higher precipitation on the North American Great Plains 
(Derner & Schuman, 2007; Morrow et al., 2017). A possible explana-
tion is that the eP effect on soil C is mediated by primary produc-
tion. Increased precipitation on the Great Plains led to soil C gain 
by supporting plant photosynthesis (Flanagan et al., 2002), but the 
NPP in the JRGCE was not altered by the eP treatment due to de-
creases in root production, offsetting increases in shoot production 
(Figure 1d) (Dukes et al., 2005). Root production may decline due to 
reduced allocation to roots as soil resources become more available 
according to the optimal shoot-root C allocation theory (Iwasa & 
Roughgarden, 1984). Alternatively, it might be due to the suppressed 
root respiration as soils occasionally become waterlogged in the eP 
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treatment (Dukes et al., 2005). Since root exudates and decompos-
ing root residues are large contributors to soil C pool, the decrease in 
root production likely explained the observed decrease in soil total 
C in our study (Figure 6). Notably, the decrease in root production 
was consistent only during the first few years (2nd–5th years) of eP 
treatment but not over longer terms (6th–14th years, Figure  S1d). 
The decoupled decreases in root production and soil C (Figure S1) 
may indicate a legacy effect of root biomass on soil total C via C-
aggregate and C-mineral associations (Sokol et al., 2022).

Microbial traits, such as resource acquisition and stress tolerance, 
can mediate soil C cycling (Malik et al., 2020). In resource-limited and 
abiotic-stressed environments, microbes tend to prioritize costly re-
source acquisition or stress tolerance over high growth yield, result-
ing in polymer decomposition and soil C loss observed in this study 
(Figures 5c and 6) and elsewhere (Malik et al., 2018, 2020). In addition, 
the enhanced microbial decomposition of soil C under eP may be re-
sponsible for soil C loss (Nielsen & Ball, 2015). Heterotrophic respi-
ration could be positively affected by eP, especially under eCO2 and 
ambient N deposition (Figure 1f). Increased water availability can stim-
ulate microbial activity, growth, and respiration, leading to a lasting ef-
fect on soil C loss (Nielsen & Ball, 2015; Wang et al., 2015). Moreover, 
the eP treatment altered microbial community composition, consistent 
with changes in microbial community preference for different C sub-
strates (Zhou et al., 2012). Higher abundances of fungal taxa (Figure 4 
and Data S4) and C-degrading genes (Figure 2a and Figure S8) suggest 
that fungi become increasingly important for degrading C under the 
long-term eP treatment, as supported by the SEM and ABT analyses 
(Figure  6). Consistently, the abundances of Eurotiales and Sordaiales, 
the positive eP responders of fungi observed in this study (Figure 4 
and Data S4), were positively correlated with the soil organic C min-
eralization rate, while those of Agaricales and Helotiales, the negative 
eP responders of fungi, were negatively correlated (Wang et al., 2021; 
Zhang et al., 2021). Our results coincided with the finding that poten-
tial activities of fungi-mediated C degradation enzymes, such as those 
degrading chitin, phosphodiester, lignin, cellulose, and xylan, were pos-
itively correlated with soil moisture (A'Bear et al., 2014). Intriguingly, 
the role of fungal community composition in regulating soil C was 
linked to the C degradation genes enriched under eP and bacterio-
phage genes (Figure 6a), implying possible complex interplay among 
bacteriophages, bacteria, and fungi in mediating the response of soil C 
turnover to long-term eP.

Alternatively, nutrient leaching, occurring through soil erosion 
or soil C migration from terrestrial to riverine ecosystems, can also 
contribute to soil C loss (Frank et al., 2015), though we do not sus-
pect this to be the main cause of decreased soil C in this experi-
ment. Although we did not measure the magnitude of C leaching 
directly, we could estimate it by analyzing soil N data because soil C 
and N leaching often happen simultaneously (He et al., 2017). The eP 
treatment itself did not alter N inputs either, since the supplemental 
water was from the domestic water supply and was added through 
drip irrigation and overhead sprinklers without flushing atmospheric 
N. Soil total N was not decreased by eP unless N deposition was 
elevated and the temperature was ambient (Figure 1b), suggesting 

that N leaching might be only evident when more N was added to 
soil. Therefore, change in leaching, if any, might have played a minor 
role in soil C loss under eP as compared to aP.

4.4  |  Implications and future directions

Our findings have important implications for predicting the eco-
logical consequences of climate change. Long-term eP altered both 
microbial compositions and functional traits, which differed from 
short-term effects (Docherty et al., 2011; Gutknecht et al., 2012). 
Therefore, the effects of long-term climate change on ecosystems 
are crucial for future studies (Melillo et al.,  2017). In addition, we 
revealed a potential role of the viral shunt in regulating soil C cy-
cling, underscoring the importance of including soil viruses in mi-
crobial analysis. Although numerous studies have reported that eP 
increases soil C storage, our results demonstrate that long-term eP 
combined with eCO2 induced soil C loss in this type of water-limited 
annual grassland via microbe-plant–soil interplay. Therefore, a long-
term increase in precipitation and CO2 induced by climate change 
in some regions could generate a previously unexpected loss of soil 
C. This could represent an important positive feedback to climate 
change that has been overlooked so far. However, further research 
is necessary to determine whether soil C loss and associated regu-
lating mechanisms will persist for longer time scales or in other 
ecosystems.
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