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• Microbial diversities were investigated 
along an elevational gradient in south-
eastern Tibet. 

• Stochastic processes played a dominant 
role in shaping bacterial and fungal 
communities. 

• Significantly positive relationships be-
tween microbial β-diversities and Rs 
were observed. 

• Soil temperature, soil moisture, and 
total nitrogen were the most important 
edaphic properties in explaining Rs. 

• Stochastic processes significantly medi-
ated the effects of microbial β-diversities 
on Rs.  
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A B S T R A C T   

The relationships between α-diversity and ecosystem functioning (BEF) have been extensively examined. How-
ever, it remains unknown how spatial heterogeneity of microbial community, i.e., microbial β-diversity within a 
region, shapes ecosystem functioning. Here, we examined microbial community compositions and soil respira-
tion (Rs) along an elevation gradient of 853–4420 m a.s.l. in the southeastern Tibetan Plateau, which is 
renowned as one of the world's biodiversity hotspots. There were significant distance-decay relationships for 
both bacterial and fungal communities. Stochastic processes played a dominant role in shaping bacterial and 
fungal community compositions, while soil temperature was the most important environmental factor that 
affected microbial communities. We evaluated BEF relationships based on α-diversity measured by species 
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richness and β-diversity measured by community dispersions, revealing significantly positive correlations be-
tween microbial β-diversities and Rs. These correlations became stronger with increasing sample size, differing 
from those between microbial α-diversities and Rs. Using Structural Equation Modeling (SEM), we found that soil 
temperature, soil moisture, and total nitrogen were the most important edaphic properties in explaining Rs. 
Meanwhile, stochastic processes (e.g., homogenous dispersal and dispersal limitation) significantly mediated 
effects between microbial β-diversities and Rs. Microbial α-diversity poorly explained Rs, directly or indirectly. In 
a nutshell, we identified a previously unknown BEF relationship between microbial β-diversity and Rs. By 
complementing common practices to examine BEF with α-diversity, we demonstrate that a focus on β-diversity 
could be leveraged to explain Rs.   

1. Introduction 

Biodiversity is important for providing and stabilizing ecosystem 
functions, which ensures the provision of various ecosystem services to 
our society (Isbell et al., 2017). Owing to its importance, the relationship 
between biodiversity and ecosystem functioning, known as the 
biodiversity-ecosystem functioning (BEF) relationship, has been widely 
studied (Loreau et al., 2001). However, those studies have primarily 
focused on α-diversity, which addresses species gain or loss within a 
local site. For example, positive effects of species richness have been 
observed on root biomass accumulation, plant gross primary produc-
tivity, and ecosystem stability in the forest, grassland, and wetland 
ecosystems (Qiu et al., 2021; Wu et al., 2022). Unlike α-diversity, β-di-
versity – a hitherto underexplored facet of biodiversity – describes the 
spatial heterogeneity of ecological communities. Loss of β-diversity (i.e., 
homogenizations of community compositions in a given area) could 
affect ecosystem functioning as strongly as, or even more strongly than, 
the effects of local species losses (Loreau et al., 2003). Therefore, 
focusing on α-diversity is not sufficient to capture the consequences of 
environmental disturbance to ecosystems for their functioning. Exam-
ining β-diversity has the potential to improve process-level under-
standing of biodiversity, which provides valuable insights for better 
predictions of natural and anthropogenic influences on diversity and 
ecosystem functioning. 

In nature, community assemblies are influenced by both determin-
istic processes (e.g., abiotic and biotic selection) and stochastic pro-
cesses (e.g., ecological drift, dispersal limitation, and homogeneous 
dispersal), whose relative importance varies in space (Ning et al., 2020; 
Yang, 2021). The β-diversities of elevational or latitudinal gradients 
often result from environmental sorting or historical constraints to infer 
ecological processes underlying microbial community assemblies (Wang 
et al., 2020). Compared to studies in plant ecology, the β-diversities of 
microbial communities are less understood. Stochastic processes, such 
as dispersal limitation, homogeneous dispersal, and ecological drift, 
were dominant in structuring spatial variations in bacterial communities 
in global wastewater treatment plants (Wu et al., 2019), but were less 
influential than deterministic processes such as environmental selection 
in other habitats, including soil, stream, and lake (Wang et al., 2013). 

In this study, we examined whether a positive BEF relationship 
existed between microbial β-diversity and soil respiration (Rs), a crucial 
soil function of carbon cycling closely related to microorganisms in bulk 
soil or rhizosphere (Lei et al., 2021). High variability of Rs within a small 
area is common due to differences in edaphic properties and microbial 
community composition (Rodeghiero and Cescatti, 2008). Therefore, we 
conducted an intensive sampling campaign across a range of elevations 
in the southeastern Tibetan Plateau, including the Hengduan Mountains. 
This campaign spanned from 853 m to 4420 m and included 12 eleva-
tions, including dry-hot valley, evergreen forest, mixed forest, conif-
erous forest, and alpine meadow (Table S1). The total region was over 
25,000 km2, which was chosen because it is a biodiversity hotspot but 
has been seldom sampled due to its remoteness (Hughes, 2017). Using a 
hierarchically nested, spatially explicit design (Fig. S1), we collected 11 
soil samples per elevation in July 2019. Elevations were treated as 
continuous patches with similar environmental conditions (Fig. S2). To 

assess the community heterogeneity within each elevation, we 
computed the distance of each sample to the centroid of 11 samples, 
representing the community dispersion (Anderson et al., 2006). This 
measure can serve as an alternative to pairwise sample distances for 
characterizing the β-diversity of the individual sample within the same 
elevation (Anderson et al., 2011). We hypothesized that microbial 
β-diversity had a positive effect on Rs. Since microbial communities 
within a short distance might be highly dissimilar even though envi-
ronmental conditions were similar (O'Brien et al., 2016), we also hy-
pothesized that stochastic processes played a significant role in 
mediating microbial β-diversity - Rs relationship. 

2. Materials and methods 

2.1. Site description and a hierarchical sampling scheme 

Sampling sites are distributed along the Nujiang and Lancang River 
Basins (96–99◦E, 25–29◦N) in the Tibet Autonomous Region and 
Yunnan Province, China (Fig. S1 and Table S1), with the mean annual 
air temperature ranging from 4.5 to 25 ◦C. We collected 11 soil cores in a 
100 × 100 m2 L-shape at 12 elevations, resulting in a total of 132 
samples. To collect the soil cores, we established a grid origin with 100 
m x- and y-axes, and then collected five samples along each axis at 5 m, 
10 m, 25 m, 50 m, and 100 m from the grid origin. For each sample, 
three soil cores were collected with a sterilized soil auger from a 0–20 
cm depth and 5.0 cm diameter and then mixed completely to make a 
composite sample. Soil samples were stored at 4 ◦C in a portable 
refrigerator when transporting them to the laboratory. 

2.2. Measurements of Rs and edaphic properties 

CO2 effluxes were measured for each soil core before sampling, 
resulting in a total of 132 CO2 efflux data. To measure soil CO2 efflux, we 
used the portable system LI-8100 (LI-COR Inc., Lincoln, NE, USA) and 
conducted in situ measurements from 9:00 a.m. to 2:00 pm during our 
sampling period in July 2019. The soil chamber was set up by inserting 
PVC collars (20 cm in inner diameter and 11 cm in height) into the soil at 
2.5 cm depth, after removing aboveground vegetation manually without 
disturbing the soil. Rs was measured for 2 min at flux-balance status in 
the chamber. Soil temperature at a depth of 10 cm was recorded using 
probes attached to the soil chamber (LI-COR Inc., Lincoln, NE, USA). Soil 
moisture at a depth of 10 cm was recorded using Shunkeda TR-6 soil 
moisture sensor (Shunkeda Inc., Beijing, China). 

Soil pH was measured in a soil: water (1:5) extract with a Mettler 
Toledo S220 pH meter (Mettler Toledo Inc., Colombus, OH, USA). Soil 
organic carbon and total nitrogen were measured using the Walkley- 
Black and Kjeldahl method. Soil NH4

+ and NO3
− were measured using a 

continuous flow analyzer (AutoAnalyzer-AA3, Seal Analytical, Norder-
stedt, Germany) after extraction with 1 mol L− 1 KCl. The values of Rs 
and edaphic properties are shown in Fig. S2. 

2.3. DNA extraction, Illumina sequencing, and raw data processing 

DNA was extracted from each soil sample by Mobio Powersoil DNA 
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extraction Kits (Qiagen Inc., Hilden, Germany), whose quality and 
quantity were examined by the A260/A280 and A260/A230 ratios. The 
ribosomal marker genes were amplified and sequenced under the pro-
tocol of the Earth Microbiome Project (EMP) (Gilbert et al., 2018). Two 
rounds of PCRs were performed before sequencing, with a common 
primer pair to target the V4 hypervariable region of the bacterial 16S 
rRNA gene (515f: 5-GTGYCAGCMGCCGCGGTAA-3′; 907r: 5-CCGY-
CAATTYMTTTRAGTTT-3′) and internal transcribed spacer (ITS) region 
of fungal genomes (ITS1F: 5-CTTGGTCATTTAGAGGAAGTAA-3′/ITS2: 
5-GCTGCGTTCTTCATCGATGC-3′). The 2 × 250 bp paired-end 
sequencing of PCR products was performed on an Illumina HiSeq plat-
form (Illumina Inc., San Diego, CA, USA). Raw sequences of pair-end 
reads were merged and dereplicated using USEARCH11, with the 
maximum expected error set to 1.0 for quality control. To achieve fine 
taxonomic resolution, the error-correcting algorithm UNOISE was used 
to identify amplicon sequence variants (ASV) (Edgar, 2016). Sequence- 
clustering algorithm UPARSE at the 97 % sequence identity level was 
also used for comparison analysis (Edgar, 2013). Bacterial taxonomic 
assignments were annotated by using the RDP classifier trained on the 
Silva database of version 132 (Quast et al., 2013), while fungal taxo-
nomic assignments were annotated by the Unite database of version 8 
(Nilsson et al., 2019). Only 0.3 % of ASVs belonged to archaea. There-
fore, they were removed without further analyses. To investigate the 
effects of taxonomic resolutions, we used ASV as the finest taxonomic 
resolution in our study, followed by the OTU. Then, ASV tables were 
conglomerated from genus to phylum based on the annotations, which 
allowed us to generate coarser taxonomic resolutions than ASV and 
OTU. We amalgamated ASV read abundances, taxonomic assignments, 
and sample meta-data using the R package phyloseq (McMurdie and 
Holmes, 2013). 

2.4. Statistical analyses 

To examine distance-decay relationships of microbial communities, 
we calculated the dissimilarity matrix of microbial communities based 
on Bray-Curtis distance and edaphic properties based on the Euclidean 
distance and then used multivariate-distance regression matrix (MRM) 
modeling to quantify slopes (i.e., species turnover rate) and explained 
variance of these models (Martiny et al., 2011). We validated model 
results by 999 permutations of the dissimilarity matrix, as described in a 
previous study (Gao et al., 2019). The β-diversities of each sample were 
evaluated by community dispersions with multiple β-diversity distances 
and taxonomic resolutions (Anderson et al., 2006). We examined their 
positive relationship with Rs by using the linear regression model and 
non-parametric Spearman correlation analysis. The robustness of those 
relationships was examined by bootstrap resampling examination (Fie-
berg et al., 2020). Since sample size might affect our results (McGill 
et al., 2007), we randomly selected samples for 1000 times using a 
sample size from 3 to 9 per elevation. All sub-datasets resulting from 
resampling were used to calculated correlations between microbial di-
versities and Rs, thereby generating distributions of P-values that could 
be used for testing the robustness of correlations. 

To measure the proportions of the stochasticity of community as-
sembly, we used normalized stochastic ratio (NST) calculated by Bray- 
Curtis distance (Ning et al., 2019). After generating a randomly 
distributed matrix of distance as the null model, NST values were pair-
wise calculated among samples, whose averages were then assigned to 
each sample or each elevation. As NST values ranged between 0 and 1, 
we set 0.5 as the cutoff, with 0.5–1.0 being more stochastic and 0–0.5 
being more deterministic. The deviation of NST values was examined by 
1000 times bootstrap examination on the level of elevations against the 
default “PF” null model. We used phylogenetic binning-based iCAMP 
methods to determine the contributions of different ecological processes 
of community assemblies (Ning et al., 2020). Proportions of ecological 
processes were calculated for each sample within each elevation. All 
parameters of iCAMP were set by default (distance measurement, Bray- 

Curtis; minimum taxa number of phylogenetic bins, 48; distance 
threshold for binning, 0.20; Spearman correlation to estimate phyloge-
netic signals). To examine the effect paths of β-diversity on Rs, Structural 
Equation Modeling (SEM) was used to examine the direct effect of 
β-diversity and indirect effects via edaphic properties and stochastic 
processes of community assemblies. We constructed a priori model that 
included the following types of hypothesized relationships. (i) Edaphic 
properties were correlated with microbial diversities. (ii) Edaphic 
properties and microbial diversities were correlated with stochastic 
ecological processes. (iii) Edaphic properties, microbial diversities, and 
stochastic ecological processes were correlated with Rs. We pruned links 
to optimize modeling performance by stepwise selection of Akaike in-
formation criterion (AIC) (Yamashita et al., 2007). The SEM analysis was 
carried out by the R package lavaan (Rosseel, 2012). All data processing 
and statistical analyses were performed in the R statistical software 
version 3.6.3 (R Development Core Team, 2018). 

3. Results and discussions 

3.1. Microbial biogeographical patterns along the elevational gradient 

We obtained 56,320 bacterial ASVs and 17,580 fungal ASVs after 
rarefying 40,000 high-quality reads per sample. The α-diversities of both 
bacterial and fungal communities decreased with increasing elevation 
(P < 0.050, Fig. 1A and B), as measured by species richness and Shannon 
indices. The most abundant bacterial phylum was Proteobacteria (27.4 
% ± 8.3 %, Fig. S3), followed by Acidobacteria (24.7 % ± 6.4) and 
Bacteroidetes (11.8 % ± 5.4 %). The most abundant fungal phylum was 
Ascomycota (49.0 % ± 17.0 %, Fig. S4), followed by Basidiomycota 
(26.4 % ± 22.2 %). 

We estimated β-diversities of microbial communities by measuring 
community dispersions within each elevation. The β-diversities in fungal 
communities exhibited a significantly decreasing trend (P < 0.050, 
Fig. 1C), while no significant trend was detected in bacterial commu-
nities. The largest dispersion for bacterial communities was detected at 
the elevation of 2810 m (0.463 ± 0.77, Fig. 1C), while that for fungal 
communities was detected at the elevation of 2629 m (0.591 ± 0.62, 
Fig. 1C). There were significant distance-decay relationships for bacte-
rial (R2 = 0.218, P < 0.001, Fig. 1D) and fungal communities (R2 =

0.151, P < 0.001, Fig. 1D). The slope was steeper for bacterial com-
munities (slope = − 0.088, P < 0.001, Fig. 1D) than fungal communities 
(slope = − 0.067, P < 0.001, Fig. 1D), suggesting a faster bacterial 
community turnover. Due to the spatial hierarchy design of the sampling 
scheme, we also analyzed the distance-decay relationship for samples 
within each elevation as the local scale, which contrasted with the 
regional scale that pooled samples from all elevations (Fig. 1D). Sig-
nificant distance-decay relationships (P < 0.050) were detected at the 
local scale in 8 elevations for bacterial communities (with slopes ranging 
from − 0.041 to − 0.144, Fig. S5) and in 4 elevations for fungal com-
munities (with slopes ranging from − 0.080 to − 0.172, Fig. S6). 

3.2. Deterministic and stochastic processes underlie microbial 
biogeographic patterns 

Both geographic distance and the measured edaphic properties 
jointly explained 42.6 % of the bacterial community variations and 31.7 
% of the fungal community variations (Table 1). Among all measured 
edaphic properties, soil temperature was the most important driver for 
both bacterial (13.7 %) and fungal communities (8.6 %), followed by 
soil moisture (bacterial community: 4.2 %; fungal community: 1.5 %, 
Table 1). 

Geographic distance remained significant after controlling edaphic 
properties, explaining 20.9 % of bacterial community variations and 
13.9 % of fungal community variations (Table 1). As geographic dis-
tance is an important factor relating to stochastic processes (Gao et al., 
2019), we measured the stochastic process of the community assembly 
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by taxonomic-based normalized stochasticity ratios (NST). The sto-
chastic process dominated bacterial community assembly (61.7–85.8 %) 
within each elevation, while there was a trend of increased stochasticity 
for fungal community assembly along the elevation gradient, reaching 
95.1 % at the highest elevation of 4420 m (Fig. 2A). 

To disentangle ecological processes that contribute to community 
assemblies, we adopted a recently developed algorithm named iCAMP 
(Ning et al., 2019). For bacterial communities, dispersal limitation 
contributed to 24.7 % of total community variations, drift contributed to 
20.7 % of total community variations, and homogeneous dispersal 
contributed to 10.2 % of total community variations (Fig. 2B). For fungal 
communities, dispersal limitation contributed to 37.9 % of total com-
munity variations, drift contributed to 13.4 % of total community var-
iations, and homogeneous dispersal contributed to 5.2 % of total 
community variations (Fig. 2B). 

Fig. 1. Microbial geographic patterns along the elevational gradient of the southeastern Tibetan Plateau. Patterns of α-diversities were characterized by (A) species 
richness and (B) Shannon index. Patterns of β-diversities were characterized by (C) community dispersions of Bray-Curtis dissimilarities within each elevation and (D) 
distance-decay relationships. Elevational trends were examined by the linear fitting model and noted with the fitting formula and R2. Slopes (i.e., the decay rate) and 
R2 accounting for geographic distance were calculated by the multivariate distance-matrix regression model. The significance level is labeled by: *, P < 0.050; **, P 
< 0.010; ***, P < 0.001. The dashed line represents an insignificant trend (P > 0.050). 

Table 1 
Coefficients and partial R2 of geographic distance and edaphic properties for 
community dissimilarities.   

Bacterial community Fungal community 

Coefficient Partial R2 Coefficient Partial R2 

Distance 0.410 0.209 0.351 0.139 
Soil temperature 0.321 0.137 0.270 0.086 
pH 0.068 0.007 0.036 0.002 
Soil moisture 0.163 0.042 0.105 0.015 
Soil organic carbon 0.040 0.001 0.121 0.008 
Total Nitrogen 0.128 0.009 0.067 0.002 
NO3

− 0.088 0.010 0.102 0.012 
NH4

+ − 0.022 <0.001 \ \ 
Full model Total R2: 0.426 Total R2: 0.317 

Note: Coefficients were standardized in the multivariate distance-matrix 
regression model. Only significant (P < 0.050) variables are shown. 

Fig. 2. The stochasticity of ecological processes of community assemblies along the elevational gradient. (A) Proportions of the stochasticity measured by the 
normalized stochastic ratio (NST). Bray-Curtis distances of samples were compared with the null model with random distributions of distances. Error bars refer to the 
standard deviation of 1000 times bootstrap examination. (B) Proportions of two deterministic processes and three stochastic processes quantified by the iCAMP 
method with phylogenetic distances. 
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3.3. The positive relationships between microbial β-diversity and Rs 

We found that microbial β-diversities characterized by community 
dispersions were positively correlated with Rs (coefficient of bacteria: 
3.489, coefficient of fungi: 3.615; P < 0.050 in linear regression models, 
Fig. 3). Positive correlations were also detected when changing the 
distance measures of dispersions from Bray-Curtis to Jaccard, Sorensen, 
and Morista-Horn (P < 0.050 in non-parametric Spearman test, 
Table S2), indicating that correlations were robust to measure types. In 
contrast, significant correlations between microbial α-diversity and Rs 
were only observed when using species richness as α-diversity instead of 
the Shannon index and inverse Simpson index (Table S2). When shifting 
taxonomic resolutions (from ASVs to Phyla) in correlations between 
microbial β-diversities and Rs, significant correlations were detected 
from ASVs to orders in bacterial communities and from ASVs to classes 
in fungal communities (Table S3). However, correlations between mi-
crobial α-diversities and Rs were only detected in ASVs, genera, and 
families of bacterial communities and families of fungal communities 
(Table S3). We also examined the effects of β-diversities and their 
components (turnover and nestedness) (Baselga, 2010; Podani et al., 
2013) on Rs by partial Mantel test. Turnover, defined as the species 
replacement by other samples, showed a significant correlation with Rs 

variation (Mantel r = 0.066–0.084, P < 0.050, Table S4). However, 
there were no significant correlations for nestedness, which was defined 
as nested degree against other species-richer samples (Baselga, 2010). 
To date, potential degradation of ecosystem functions and services has 
been observed in response to a decline in microbial α-diversity (Wu 
et al., 2022). Recently developed measurements of biodiversity (e.g., 
multivariate decomposition of the diversity matrix) or ecosystem func-
tions (e.g., ecosystem multifunctionality) have significantly extended 
our understanding of BEF relationships in soil and aquatic environments 
(Qiu et al., 2021; Wang et al., 2022; Zhang et al., 2021). However, 
similar investigations are still widely lacking for disentangling the ef-
fects of community heterogeneity evaluated by microbial β-diversity. 
Since the loss of β-diversity is not equivalent to a loss of local species 
richness (Mori et al., 2015), herein we provide empirical evidence that 
β-diversities can reveal the role of ecological processes in explaining Rs 
(Fig. 5), which is an important ecosystem functioning closely related to 
climate change and soil fertility. Unlike α-diversity, β-diversity can 
reveal compositional changes, which provides a new facet in explaining 
BEF relationships (Wang and Loreau, 2014). 

We used bootstrap resampling to assess whether the sample size at 
each elevation was sufficient for capturing correlations between mi-
crobial diversities and Rs. Among all sub-datasets generated from 1000 

Fig. 3. Correlations between microbial β-diversity and soil Rs. Community dispersions of (A) bacteria and (B) fungi were examined by the Adonis test and visualized 
by Nonmetric multidimensional scaling (NMDS). Correlations between community dispersions and Rs were examined by the linear fitting model (**, P < 0.010; ***, 
P < 0.001). Larger circles correspond to increased Rs. 
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bootstrap resampling iterations, only 13.0 % to 47.0 % exhibited sig-
nificant correlations (p < 0.050) with increasing sample sizes in terms of 
bacteria α-diversities (Fig. 4A). When considering fungal α-diversities, 
the recaptured correlations were consistently low, ranging from 6.0 % - 
9.0 % and irrelevant with increasing sample size (Fig. 4B). In contrast, 
positive correlations between fungal β-diversity and Rs were detected in 
all sub-datasets when the sample size was >8, suggesting that the cor-
relations were robust (Fig. 4D). When sample sizes exceeded 5, at least 
50 % of correlations between β-diversities and Rs were re-captured, 
suggesting that the sample size was important. Together, we revealed 
the positive relationship between microbial β-diversity and Rs under 
different β-diversity measures and multiple taxonomic resolutions 
(Fig. 3 and Table S2 and S3), demonstrating the robustness of our 
findings. Real-world communities are subjected to patchy patterns with 
substantial species heterogeneity, which are influenced by chance 
events. As a result, species richness may not always be an accurate in-
dicator of ecosystem functions. Moreover, positive α-BEF relationships 
may not be detectable due to functional redundancy (Louca et al., 2018). 
A region with a higher β-diversity can accommodate more heteroge-
neous communities, generating a form of ‘spatial stability’ of ecosystem 
functioning that is known as the spatial insurance effect (Yachi and 
Loreau, 1999). When different species are favored under different 
environmental conditions, they would show compensatory fluctuations 
in contributing to ecosystem function since some species' contributions 
may decrease while others' contributions may increase. Therefore, 
spatial complementarity between species, arising from the local selec-
tion of species that is best adapted to the local environmental conditions, 
can provide spatial insurance of ecosystem functioning. The β-diversity 

plays a key role in preserving the spatial stability of ecosystem func-
tioning by promoting niche complementarity, which allows the best- 
performing species to flourish in the right place. 

3.4. Differences of microbial diversities in explaining Rs patterns 

We used structural equation modeling as a path analysis to quantify 
the contributions of microbial diversities in explaining Rs patterns. The a 
priori model (Fig. 5A) hypothesized that Rs might be influenced by 
edaphic properties, microbial diversities, and ecological stochastic 
processes. Stochastic processes might mediate indirect effects between 
microbial diversities and Rs. After pruning non-informatic links 
(Table S5), we found that Rs exhibited significant correlations with 
stochastic processes (ρ of homogenous dispersal: − 0.444; ρ of dispersal 
limitation: − 0.199 - -0.370; Fig. 5B and C) in addition to the effects from 
edaphic properties (ρ of total nitrogen: 0.256–0.347; ρ of soil moisture: 
0.197–0.220; ρ of soil temperature: 0.150–0.276; Fig. 5B and C). Bac-
terial α-diversity indirectly explained Rs through dispersal limitation (ρ 
= − 0.342, Fig. 5B), while fungal α-diversity had no significant effect. 
Bacterial β-diversity explained Rs by two significantly indirect effects via 
stochastic processes, i.e., homogenous dispersal (ρ = − 0.609, Fig. 5A) 
and dispersal limitation (ρ = 0.594, Fig. 5A). Fungal β-diversity had a 
significant direct effect in explaining Rs (ρ = 0.276, Fig. 5B). Fungal 
β-diversity also had an indirect effect on Rs via dispersal limitation (ρ =
0.339, Fig. 5B). In addition, our models also estimated the effects of 
edaphic properties on microbial diversities. Total nitrogen was the most 
important factor for both bacterial α-diversity (ρ = 0.634, Table S6) and 
fungal α-diversity (ρ = 0.704, Table S6). In contrast, bacterial β-diversity 

Fig. 4. Bootstrap resampling examinations showing the robustness of correlations between microbial diversities and Rs. Sub-datasets were randomly resampled 1000 
times without replacement at a given sample size within each elevation. P-value distributions were generated by linear regression correlations between Rs and 
microbial diversity of each sub-dataset. (A and B) Taxon richness was used as the metric of α-diversity, while (C and D) community dispersion was used as the metric 
of β-diversity. Proportions of significant correlations (P < 0.050) in all iterations are shown at the top of the panels. 
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exhibited a stronger correlation with soil moisture (ρ = 0.238, Table S6), 
while fungal β-diversity was more correlated to soil organic carbon (ρ =
0.512, Table S6). These patterns aligned with the distinct life strategies 
of bacteria and fungi (Ho et al., 2017) and the high preference of fungi 
for carbohydrates as a food source (Liu et al., 2015). 

Fungal correlation with Rs was detected in the most abundant 
phylum of Ascomycota (Table S2), which dominates soil fungal com-
munities worldwide and is enriched in genes related to carbohydrate 
metabolism (Egidi et al., 2019). Considering environmental heteroge-
neity, species interactions, and stochastic processes that affect species 
assembly, microbial β-diversity could be essential in understanding how 
naturally diverse communities are organized, and how such ecological 
processes underlie ecosystem functioning. Both deterministic and sto-
chastic processes of community assemblies underlie the positive rela-
tionship between microbial β-diversity and Rs (Fig. 4). Niche theory 
postulates that competing species within guilds will undergo diver-
gence, resulting in a reduction of niche overlap (MacArthur, 1970). 
Otherwise, all but one of the competing species will be driven extinct, i. 
e., competitive exclusion. The ubiquity of ecological niches explains the 
positive relationship between β-diversity and ecosystem functioning: 
competitive divergence leads to the niche partitioning of species in a 
community, collectively contributing to ecosystem functioning (Craven 

et al., 2018). 

4. Conclusions 

Microbial β-diversity can serve as a reliable estimator of Rs and can 
play an irreplaceable role due to its biodiversity-insurance effect and 
assembly indicators (Loreau et al., 2021). Given that numerous 
biogeographical patterns are frequently influenced by deterministic 
factors originating from environments, extending β-BEF to diverse 
ecosystem functions can provide practical significance in the conserva-
tion of biodiversity amidst the challenges posed by habitat fragmenta-
tion and global climate change. Anthropogenic disturbances often cause 
biotic homogenization and a loss of β-diversity, while natural distur-
bances often increase β-diversity since they tend to be patchy, complex, 
and variable in severity. Consequently, anthropogenic disturbances 
often hinder ecosystem functioning, while natural disturbances create 
opportunities for various taxa by preventing competitive exclusion 
among species. This fosters the preservation of biological diversity and 
sustains ecosystem functioning that relies on biodiversity. 

Fig. 5. Structural equation modeling (SEMs) showing the effects of microbial diversities on Rs. (A) The a priori model was pruned to remove non-informative links by 
the Akaike information criterion (AIC) for (B) bacterial diversities and (C) fungal diversities. The effects of α-diversity (measured by species richness), β-diversities 
(measured by community dispersions), stochastic processes, and edaphic properties were examined in the final model. The coefficient (ρ) on the arrow indicates the 
standardized effect size (*, P < 0.050; **, P < 0.010; ***, P < 0.001), which is proportional to the arrow width. Solid lines represent positive effects and dashed lines 
represent negative effects. The root mean square error of approximation (RMSEA), comparative fit index (CFI), and Tucker–Lewis index (TLI) are displayed as 
performance parameters (Table S5). For simplicity, coefficients of edaphic properties on microbial diversities and stochastic processes are shown in Table S6 instead 
of this figure. 
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