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Metaproteomics-informed stoichiometric
modeling reveals the responses of
wetland microbial communities to oxygen
and sulfate exposure
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Climate changes significantly impact greenhouse gas emissions from wetland soil. Specifically,
wetland soilmay be exposed to oxygen (O2) during droughts, or to sulfate (SO4

2-) as a result of sea level
rise. How these stressors – separately and together – impact microbial food webs driving carbon
cycling in thewetlands is still not understood. To investigate this, we integrated geochemical analysis,
proteogenomics, and stoichiometric modeling to characterize the impact of elevated SO4

2- and O2

levels on microbial methane (CH4) and carbon dioxide (CO2) emissions. The results uncovered the
adaptive responses of this community to changes in SO4

2- and O2 availability and identified altered
microbial guilds and metabolic processes driving CH4 and CO2 emissions. Elevated SO4

2- reduced
CH4emissions,with hydrogenotrophicmethanogenesismore suppressed thanacetoclastic. Elevated
O2 shifted the greenhouse gas emissions from CH4 to CO2. The metabolic effects of combined SO4

2-

and O2 exposures on CH4 and CO2 emissions were similar to those of O2 exposure alone. The
reduction inCH4 emissionby increasedSO4

2- andO2wasmuchgreater than the concomitant increase
inCO2emission. Thus, greater SO4

2- andO2 exposure inwetlands is expected to reduce the aggregate
warming effect of CH4 and CO2. Metaproteomics and stoichiometric modeling revealed a unique
subnetwork involving carbonmetabolism that converts lactate andSO4

2- to produceacetate,H2S, and
CO2 when SO4

2- is elevated under oxic conditions. This study provides greater quantitative resolution
of key metabolic processes necessary for the prediction of CH4 and CO2 emissions from wetlands
under future climate scenarios.

Wetlands store approximately one-third of global soil organic carbon (SOC)
and play important roles in regulating and stabilizing global climate1–3. CH4

and CO2, the two greatest contributors to the greenhouse effect, are the
dominantgaseous end-products fromthemineralizationoforganic carbon in
wetland ecosystems4,5. Carbon fluxes in a wetland ecosystem are closely
linked to its hydrological features6. Climate changes may introduce specific
hydrology-related stressors. For instance, freshwater wetlands are

increasingly vulnerable to drought events, which lower water tables and
introduce O2 into wetland soils. This leads to more frequent exposure of soil
organic matter to O2, thereby affecting the organic carbon balance7. In
addition, freshwater wetlands face perturbations as a result of seawater
intrusions. As the sea level rises, the inundation of wetlands by seawater
brings a high concentration of sulfate ions (SO4

2-), substantially altering the
sediment chemistry2,8,9. These stressors can change theproductionpatterns of
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CH4 and CO2, resulting in feedback that is poorly characterized qualitatively
in terms of the direction of the changes and quantitatively in terms of the
magnitudes of the changes. Understanding how environmental disturbances
affect the dynamic of metabolic processes and the succession of ecological
communities is critical for accurately modeling changes in greenhouse gas
emissions from wetland ecosystems in future climate scenarios.

Microbial interactions are vital in modulating organic matter
decomposition and greenhouse gas emissions within wetland
ecosystems10,11. These interactions are driven by fermentation and
respiration, coupling the oxidation of organic compounds by electron
transfer to electron acceptors12–14. In the absence of disturbance by
droughts and seawater intrusions, obligatory anaerobic fermenters
become dominant15. Syntrophic interactions among these diverse
anaerobic microorganisms facilitate the stepwise breakdown of com-
plex organic substrates into simpler, chemically stable compounds,
ultimately resulting in the production of CH4 and CO2

16. However, O2

exposure introduced during drought can promote aerobic microbial
respiration of carbon stocks, with CO2 as the primary product17. The
introduction of SO4

2- from seawater inundation as an alternative elec-
tronic acceptor leads to sulfate-reducing bacteria (SRB) to producing
more H2S, utilizing H2 and/ or organic acids as electron donors. The
competition from SRBs for H2 and organic acids may reduce methane
production by methanogens18,19. Characterizing these metabolic inter-
actions provides insight into biochemical transformations within the
community under changing redox conditions, and allows for investi-
gations into how changes in these conditions, induced by climate

change, will affect themicrobialmetabolic networks that control carbon
cycling in wetland ecosystems.

Carbon cycling and gas emissions in wetlands have been studied
extensively in both field and laboratory conditions20–23. Elevated CO2 levels,
reduced carbon accumulation, and decreased CH4 emissions have been
observed when introducing O2 into previously anoxic wetland soil22,24.
Previous studies have also demonstrated lower CH4 emissions to the
atmosphere from lacustrine wetlands following seawater intrusion [21-23].
However, few studies have characterized how the critical syntrophic inter-
actions controlling CH4 and CO2 productions respond to environmental
redox perturbations, such as increasedO2 from periods of drought or SO4

2-

from seawater intrusion.
Establishing a clear connection between environmental dis-

turbance and microbial adaptations remains a challenge, due to the
complex and dynamic nature of microbial communities25,26. In this
study, we set up laboratory microcosms to investigate the effects of
SO4

2- exposure and O2 exposure alone or in combination onmicrobial
activities and interactions, as well as the resulting fate of carbon within
wetland soil (Fig. 1). We used proteogenomics to characterize the
biochemical and physiological responses of microbial communities to
individual perturbations and their combined effects. Stoichiometric
models were employed to deconvolute carbon exchanges among the
main functional guilds. By integrating geochemical, metaproteomic,
and stoichiometric analyses, we aimed to develop a molecular
understanding of how climate change-induced stressors modulate
wetland microbial communities and greenhouse gas fluxes.

Fig. 1 | Schematic diagram of study design.
Emissions of methane and carbon dioxide from
wetland ecosystems can be severely perturbed by
climate-change-induced stressors, such as seawater
intrusions and droughts. To investigate this, we
constructed laboratory microcosms using fresh-
water wetland soils under four incubation condi-
tions, including anoxic non-sulfate addition (S-O-),
anoxic sulfate-addition (S+O-), oxic non-sulfate
addition (S-O+) and oxic sulfate-addition (S+O+)
conditions. The soil communities were character-
ized by integrating geochemical analysis, metage-
nomics, metaproteomics and stoichiometric
modeling. The results uncovered the molecular
mechanism on howwetlandmicrobial communities
modulate greenhouse gas fluxes under future cli-
mate scenarios.
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Results
SO4

2- and O2 additions changed community structure and
activities
Laboratory microcosms were constructed using lacustrine wetland soils
and incubated under four conditions: anoxic non-sulfate-addition (S-O-),
anoxic sulfate-addition (S+O-), oxic non-sulfate-addition (S-O+ ), and
oxic sulfate-addition (S+O+ ) (Fig. 1). Sterile air was introduced under
S-O+ and S+O+ conditions. The final concentration of SO4

2- following
addition under the S+O- and S+O+ conditions was approximately
7.2 mM, falling within the range of natural seawater concentration27.

Metaproteomic analysis identified a total of 10598 proteins based on
assignments of unique peptide identifications to individual proteins. These
proteins originated from 807 microbial species and 50 phyla, with Pseu-
domonadota (~51% of total proteome abundance) and Euryarchaeota
(~33%of total proteome abundance) being the dominant phyla (Fig. 2a and
SupplementaryTable 2). All experimental treatments resulted in an increase
of Pseudomonadota in proteome abundance compared to the S-O- condi-
tion. However, the increase under dual exposure (S+O+ , 82%, p-value <
0.000, t-test) was more than the additive effect of the increase observed
under the S+O- condition (45%, p-value = 0.001, t-test) and S-O+ condi-
tion (7%, p-value = 0.5, t-test). This suggests a synergistic interaction
between the effects of SO4

2- and O2 on the proteome abundance of

Pseudomonadota, where their combined impact onmicrobial communities
is greater than the sumof their individual effects. Conversely,Euryarchaeota
consistently decreased in proteome abundance upon stress exposure,
although this reduction was less under dual exposure (S+O+ , 52%, p-
value = 0.0006, t-test) than the sum of the decreases under S+O- condition
(29%, p-value = 0.008, t-test) and S-O+ condition (41%, p-value = 0.001, t-
test) (Fig. 2a). This suggests an antagonistic interaction between the effects
of SO4

2- and O2 on the proteome abundance of Euryarchaeota, where their
combined impact on microbial communities is less than the sum of their
individual effects.

Compared to the S-O- condition, the metaproteome abundances of
active communities showed increased richness under both the S+O- (28%,
p-value = 0.02, t-test) and S-O+ conditions (36%, p-value = 0.0009, t-test).
There was also an increase in evenness under S+O- (5%, p-value = 0.04, t-
test) condition, S-O+ condition (8%, p-value < 0.002, t-test), and S+O+
condition (9%, p-value = 0.001, t-test) (Fig. 2b, c). This suggests that SO4

2-

and O2 exposures contributed to the proliferation of low-abundance
microbial species. Moreover, we found a negative correlation between the
increased richness and evenness of the active community and the accu-
mulationofCH4andapositive correlationwithCO2accumulation (Fig. 2d).

The primary metabolic products in the microcosm system were
quantified by carbon (Fig. 2e) and electron molarity (Fig. 2f). Under the

Fig. 2 | Effects of SO4
2- and O2 exposures on microbial community composition

and activities. a Relative proteomic abundance of microbial phyla under four
treatment scenarios. The relative proteomic abundance is expressed as the pro-
portion of total proteins attributable to each microbial species. b, c Community
species diversity indices, with b showing the richness and c the evenness across the
four experimental conditions. Significant differences with p-values determined
using Student’s t-test and adjusted for the false discovery rate, are marked by * for p-
value < 0.05, ** for p-value < 0.01 and *** for p-value < 0.001. d Correlation

between microbial species diversity and the accumulations of CH4 and CO2, where
each dot represents an experimental measurement (X-axis for geochemical mea-
surements, Y-axis for metaproteomic measurements) from the four conditions with
three replicates, and the red line displays best linear fit. r is the Pearson correlation
coefficient, and p values were determined by t-statistic. e, f Cumulative amounts of
fermentation products are measured by carbon molarity e and electron molarity
f within the microcosms. The error bars are defined as standard deviation.
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S-O- condition, the soil carbonwas fermented into 0.32 ± 0.03mmole/g dry
soil of organic acids, 0.44 ± 0.02 mmole/g dry soil of CO2, and 0.29 ± 0.01
mmole/g dry soil of CH4 over seven days of incubation. Compared to S-O-,
the SO4

2- addition increased the carbon transfer to organic acids by 94% (p-
value = 0.0003, t-test) and decreased the CH4 production by 73% (p-
value < 0.0001, t-test), and the O2 exposure decreased the carbon transfer to
organic acids by76%(p-value = 0.0002, t-test), increased that toCO2by70%
(p-value < 0.0001, t-test), and eliminated the CH4 production. Under the S-
O- condition, 1.36 ± 0.13 mmole/g dry soil of electrons was transferred to
organic acids, 0.19 ± 0.01 mmole/g dry soil to H2, and 2.32 ± 0.63 mmole/g
dry soil to CH4. In comparison, the SO4

2- addition diverted 1.44 ± 0.07
mmole/g dry soil of electrons to H2S and decreased the electron transfer to
H2 by 40% (p-value = 0.0004, t-test), and the O2 exposure decreased the
electron transfer to H2 by 55% (p-value = 0.001, t-test). The effects of the
combined exposure to both SO4

2- and O2 on the carbon and electron
transfers were similar to the effects of the O2 exposure only.

SO4
2- and O2 additions altered depolymerization of plant

polysaccharides
The formation of hydrolysis products derived from plant polysaccharides,
such as glucose, xylose, mannose, and galacturonic acid, was affected by
exposure to SO4

2- and O2 over time (Supplementary Fig. 1a – 1d). Under
both anoxic and oxic conditions, the addition of SO4

2- slowed down the
accumulation of glucose. This resulted in a 12% lower accumulation under
anoxic conditions (p-value = 0.04, t-test) and a 14% reduced glucose accu-
mulation (p-value = 0.02, t-test) under oxic conditions (Supplementary
Fig. 1). Xylose reached its peak accumulation later under anoxic conditions
compared to oxic conditions. The highest accumulation of xylose was
observed under the S-O- condition, while its accumulation was relatively
similar under the other three conditions. Mannose and galacturonic acid
continuously accumulated under anoxic conditions. Their accumulation
peaked between 16 to 23 days and then decreased under oxic conditions.

The metaproteomic analysis identified five key enzymes from species
involved in the degradation of plant polysaccharides. These species had the
highest proteome abundance under anoxic conditions. Pairwise compar-
isons of proteome richness and evenness of these species, between the S-O-
condition and the S-O+ condition, as well as between the S+O+ condition
and the S+O+ condition, revealed no significant changes under different
oxic conditions, which suggests that the actual species composition

remained relatively stable across four conditions. A strong negative corre-
lation (r = -0.70, p-value = 0.01, t-test) was observed between the total
proteome abundance of plant polysaccharide-degrading microbes and the
accumulation of CO2 (Fig. 3a). Conversely, a weak positive correlation was
observed between the total proteome abundance of these microbes and the
accumulation of CH4 (Fig. 3a).

The identified carbohydrate-active enzymes (CAZymes), including
pectate lyase, beta-glucosidase, xylosidase, beta-galactosidase, and starch
phosphorylase, showed the highest total abundance under the S-O- con-
dition, and the lowest abundance under the S+O+ condition (Fig. 3b). This
indicates that elevated SO4

2- and O2 levels suppressed the activities of plant
polysaccharide degradation.

Among the identified CAZymes, beta-glucosidase was detected across
all conditions, with the highest abundance observed under the S+O- con-
dition (fold change > 4.0, q-value < 0.007). Xylosidase, involved in xylan
degradation, showed higher abundance under the S+O- condition (fold
change > 3.2, q-value < 0.0001) (Supplementary Table 3), indicating
enhanced cellulose and xylan degradation capacity under this condition.
Beta-galactosidase was only detected under the S+O+ condition (Supple-
mentary Table 3). This enzyme can release galactose from hemicellulose,
which enters the glycolysis pathway after conversion into glucose
1-phosphate by glucuronate isomerase (UXA). The highest abundance of
UXA proteins was detected under the S+O+ condition (fold change > 1.7,
q-value < 0.0001) (Supplementary Table 3), suggesting enhanced hemi-
cellulose utilization under this condition. These observations collectively
demonstrate that changes in SO4

2- andO2 levels altered the preference of the
microbial community in degrading plant polysaccharides. Specifically, the
enzymes enriched under oxic conditions use more complex structural
substrates (e.g., hemicellulose) compared to those enriched under anoxic
conditions (e.g., cellulose).

SO4
2- andO2decreasedmethanogenesisandpromotedmethane

oxidation
Under the S-O- condition, the microbial community continuously pro-
duced CH4 (0.29 ± 0.007 mmole/g dry soil) and CO2 (0.44 ± 0.02 mmole/g
dry soil) throughout the experiment (Fig. 4a, b). The two-way ANOVA
indicated a significant interaction between SO4

2- and O2 on CH4 accumu-
lation (F (1,8) = 1590, p-value < 0.0001). CH4 release was reduced by 73%
(p-value < 0.0001, t-test) under the S+O- condition, and by 97% (p-

Fig. 3 | Effects of SO4
2- and O2 exposures on plant polysaccharide degradation.

aCorrelation analysis between the relative abundances of plant polymer degradation
species and CAZymes with the accumulation of CH4 and CO2, where each dot
represents experimental measurements (X-axis for geochemical measurements,

Y-axis for metaproteomic measurements) from four conditions with three repli-
cates, and the red line is the result of linear fitting. r is the Pearson correlation
coefficient, and p values were determined by t-test. b Protein abundances of
CAZymeunder the four conditions. The error bars are defined as standard deviation.
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Fig. 4 | Modulation of methane metabolism by SO4
2- and O2 exposures.

a, bChanges inmolarmass of CH4 a andCO2 b under the four conditions, over a 30-
day incubation. c–e Comparison of methanogens and methanotrophs in terms of
relative abundance c, richness d, and evenness e under the four conditions. Relative
abundance is quantified as the aggregate of protein abundances attributable to a
specific species. f Schematic representation of methane metabolic pathways. The
boxes in the pathwaymap, arranged from left to right, correspond to the S-O-, S+O-,

S-O+ and S+O+ conditions. The color gradient from red to blue represents the
relative abundance ranking of proteins among the four conditions, with red indi-
cating the highest ranked relative abundance and blue the lowest. The gray color
indicates proteins not detected by LC-MS/MS. Significant differences with p-values
determined using Student’s t-test, and adjusted for the false discovery rate, are
marked by * for p-value < 0.05, ** for p-value < 0.01 and *** for p-value < 0.001. The
error bars are defined as standard deviation.
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value < 0.000, t-test) under the S-O+ condition (Fig. 4a and Table 1),
highlighting the higher sensitivity of CH4 accumulation toO2 than to SO4

2-.
However, the same analysis showedno significant interaction between SO4

2-

andO2 (F (1, 8) = 0.1, p-value = 0.75). Themain effects were observed, CO2

accumulation increased by 11% higher under the S+O- condition
(p-value = 0.03, t-test), by 70% higher under the S-O+ condition (p-
value < 0.0001, t-test), and by 83% higher under the S+O+ condition (p-
value = 0.0002, t-test), compared to the S-O- condition (Fig. 4b), suggesting
an additive effect of SO4

2- and O2 on CO2 accumulations.
Metaproteomic analysis identified 634 proteins from methanogens

(SupplementaryTable 1). Thesemethanogens showed thehighest proteome
abundance under the S-O- condition, constituting 22% of the total meta-
proteome (Supplementary Table 1). The addition of SO4

2- and O2, either
individually or in combination, led to a reduction in the proteome abun-
dance (p-value < 0.0001, one-wayANOVA), richness (p-value = 0.005, one-
way ANOVA), and evenness (p-value = 0.008, one-way ANOVA) of
methanogenic populations (Fig. 4c–e). Furthermore, strong positive cor-
relations were observed between the CH4 accumulation and the proteome
abundance (r = 0.9, p-value < 0.0001, t-test), richness (r = 0.9, p-value =
0.0001, t-test), as well as evenness (r = 0.8, p-value = 0.002, t-test) of
methanogens (Supplementary Fig. 2). In summary, the observed relation-
ships among SO4

2- and O2 availability, CH4 accumulation, and the com-
position of methanogen populations could serve as diagnostics for more
predictive climate modeling.

Metaproteomics revealed significant suppression of both hydro-
genotrophic and acetoclastic methanogenesis by SO4

2- and O2. Many
marker proteins involved in methanogenesis, including methyl-coenzyme
M reductase (Mcr), 5,10-methylenetetrahydromethanopterin reductase
(Mer), tetrahydromethanopterin S-methyltransferase (Mtr), acetyl-CoA
decarbonylase/synthetase (CdhA) andmethylenetetrahydromethanopterin
dehydrogenase (Mtd) were most abundant under S-O- condition (Fig. 4f
and Table 2). The addition of SO4

2- and O2, either individually or in com-
bination, led to a significant decrease in the abundance of these proteins
(Fig. 4f). This decrease coincided with the decrease in CH4 emissions
observed when exposed to SO4

2- and O2 stressors (Fig. 4a).
Furthermore, the SO4

2- and O2 exposures suppressed hydro-
genotrophicmethanogenesismuchmore than acetoclasticmethanogenesis.
Specifically, after SO4

2- addition to the anoxic sediment, the abundance of
acetyl-CoA decarbonylase/synthetase essential for acetoclastic methano-
genesis, decreased by 1.2-fold (q-value = 0.0001). And there was a more
pronounced decrease in proteins for hydrogenotrophic methanogenesis
(Fig. 4f, Table 2), including a 3.4-fold decrease of the 5,10-methylenete-
trahydromethanopterin reductase (q-value = 0.003) and a 5.8-fold decrease

of the tetrahydromethanopterin S-methyltransferase (q-value < 0.0001).
This indicated a stronger suppression of hydrogenotrophicmethanogenesis
by SO4

2-. Under S-O+ condition, we observed a decrease in proteins for
both the acetoclastic and hydrogenotrophic pathways of methanogenesis
when compared to S-O- condition. In the acetoclastic pathway, there was a
2.6-fold decrease in acetyl-CoA synthetase (Acs) (q-value = 0.01) and a 2.1-
fold decrease in methyl-coenzyme M reductase (q-value < 0.0001) (Fig. 4f,
Table 2). In the hydrogenotrophic pathway, there was a 7.0-fold decrease in
the methylenetetrahydromethanopterin dehydrogenase (q-value < 0.0001)
and a 3.1-fold decrease in methyl-coenzyme M reductase (q-value = 0.02).
Similarly, under S+O+ condition, compared to the S+O- condition, there
was a more substantial decrease in key enzymes associated with hydro-
genotrophic methanogenesis, including a 9.2-fold decrease in 5,10-methy-
lenetetrahydromethanopterin reductase (q-value < 0.0001) and a 5.0-fold
decrease in tetrahydromethanopterin S-methyltransferase (q-value < 0.01),
compared to a 1.5-fold decrease in acetyl-CoAdecarbonylase/synthetase (q-
value = 0.006). These results highlight that O2 had a greater suppression of
hydrogenotrophic methanogenesis than acetoclastic methanogenesis.
Moreover, compared to the S-O- condition, under S+O+ condition, the
abundance of methyl-coenzyme M reductase decreased by 1.7-fold (q-
value = 0.01), and the abundance of tetrahydromethanopterin
S-methyltransferase decreased by 8.7-fold (q-value < 0.0001). This suggests
that the combined addition of SO4

2- and O2 had a more significant impact
on hydrogenotrophic methanogenesis compared to acetoclastic
methanogenesis.

In addition, metaproteomics identified 208 proteins from methano-
trophs (Supplementary Table 1). Under the S+O+ condition, methano-
trophs showed the highest richness (p-value = 0.0001, one-way ANOVA),
and evenness (p-value = 0.0004, one-way ANOVA) (Fig. 4c–e). Moreover,
significant negative correlations were found among the CH4 accumulation
and proteome abundance (r = -0.7, p-value = 0.02, t-test), richness (r = -0.9,
p-value < 0.0001, t-test), and evenness (r = -0.8, p-value = 0.002, t-test) of
active methanotrophs (Supplementary Fig. 2).

Key enzymes involved in methane oxidation, including methane/
ammonia monooxygenase (Pmo) and lanthanide-dependent methanol
dehydrogenase (XoxF), showed distinct responses to elevated SO4

2- and O2

(Fig. 4f and Table 2). Under the anoxic condition, SO4
2- addition increased

the abundance of methane/ammonia monooxygenase and lanthanide-
dependentmethanol dehydrogenase by 2.3-fold (q-value < 0.0001) and 1.4-
fold (q-value = 0.0002), respectively. However, under the oxic conditions,
SO4

2- addition decreased the abundance of lanthanide-dependentmethanol
dehydrogenase by 1.7-fold (q-value = 0.005). Oxygen addition led to an
increase in the abundance of methane/ammonia monooxygenase and
lanthanide-dependent methanol dehydrogenase by 3.9-fold (q-value <
0.0001) and 2.5-fold (q-value = 0.006), respectively, under the non-sulfate-
addition condition. Under the sulfate-addition condition, their abundance
increased by 1.7-fold (q-value = 0.005) and 3.0-fold (q-value < 0.0001),
respectively. Furthermore, when compared to S-O- condition, the abun-
dance of methane/ammonia monooxygenase and lanthanide-dependent
methanol dehydrogenase increased by 4.2-fold (q-value < 0.0001) and by
3.9-fold (q-value = 0.001) under S+O+ condition (Fig. 4f, Table 2).

SO4
2- and O2 additions changed metabolic behaviors of sulfate-

reducing bacteria
Under the sulfate-limited conditions, some sulfate-reducing bacteria (SRB)
functionas syntrophic oxidizers,metabolizing lactate toproduce acetate,H2,

andCO2.With added SO4
2-, SRBmayoxidize lactate to acetate andCO2 and

concurrently reduce SO4
2- to H2S

28. Two-way ANOVA indicated a sig-
nificant interaction between SO4

2- and O2 on lactate accumulation (F
(1,8) = 66.51, p-value < 0.0001), with significant main effects of SO4

2- (F (1,
8) = 55.4, p-value < 0.0001) and O2 (F (1, 8) = 74.76, p-value < 0.0001).
Under the S-O- condition, lactate substantially accumulated, reaching its
peak of 0.033 ± 0.004 mmole/g dry soil on day 9, and then decreased to
0.018 ± 0.002 mmole/g dry soil over the next 7 days. Under the S+O-
condition, lactate accumulation continually increased, reaching

Table 1 | Accumulation of metabolic products in the micro-
cosms under the four incubation conditions

Conditions

Metabolites
(mmole/g
dry soil)

S-O- S+O- S-O+ S+O+

Glucose 0.023 ± 0.003 0.02 ± 0.002 0.02 ± 0.001 0.016 ± 0.001

Xylose 0.033 ± 0.001 0.023 ± 0.004 0.02 ± 0.002 0.02 ± 0.001

Mannose 0.008 ± 0.001 0.008 ± 0.001 0.011 ± 0.001 0.011 ± 0.001

Galacturonic acid 0.015 ± 0.003 0.016 ± 0.002 0.019 ± 0.001 0.015 ± 0.001

H2 0.096 ± 0.005 0.058 ± 0.003 0.044 ± 0.009 0.037 ± 0.001

CO2 0.44 ± 0.02 0.49 ± 0.02 0.75 ± 0.008 0.81 ± 0.04

CH4 0.29 ± 0.007 0.079 ± 0.006 0.009 ± 0.001 0.008 ± 0.001

H2S 0 0.18 ± 0.008 0 0.003 ± 0.001

Acetate 0.11 ± 0.012 0.21 ± 0.013 0.021 ± 0.002 0.022 ± 0.004

Lactate 0.01 ± 0.002 0.037 ± 0.004 0.012 ± 0.002 0.013 ± 0.002

Butyrate 0.02 ± 0.002 0.012 ± 0.004 0 0
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0.037 ± 0.004 mmole/g dry soil at the end of incubation. Under oxic con-
ditions, lactate accumulation remained consistently low at less than
0.012 ± 0.004mmole/g dry soil over 30 days (Fig. 5a). Similarly, the two-way
ANOVA for H2S accumulation revealed a significant interaction between
SO4

2- andO2 (F (1, 8) = 1222,p-value < 0.0001),with significantmain effects
for both SO4

2- and O2. Specifically, a substantial accumulation of H2S
(0.18 ± 0.008 mmole/g dry soil) was observed under the S+O- condition,
while only trace amounts of H2S (0.003 ± 0.0002 mmole/g dry soil) were
detected under the S+O+ condition (Fig. 5b).

Metaproteomics identified a total of 145 proteins from SRB species,
with the highest SRB proteome abundance observed under S+O- condition
(fold change > 1.3, p-value < 0.006, t-test) (Fig. 5c, Supplementary Table 1).
SO4

2- addition enhanced the activities of both lactate oxidation and dis-
similatory sulfate reduction within this community (Fig. 5d–f and Table 2).
In the lactate oxidation pathway, SO4

2- addition resulted in an 8.0-fold
increase in the abundance of pyruvate ferredoxin oxidoreductase (Por) (q-
value < 0.0001) and a 5.3-fold increase in acetyl-CoA synthetase (q-value <
0.0001). In the dissimilatory sulfate reduction pathway, the abundance of
adenylylsulfate reductase (Apr) increased by 1.8-fold (q-value < 0.0001),
sulfate adenylyltransferase (Sat) increased by 1.4-fold (q-value = 0.002), and
dissimilatory sulfate reductase (Dsr) increased by 1.5-fold (q-value = 0.005)
following SO4

2- addition (Fig. 5f, Table 2).
Oxygen addition significantly suppressed the activities of lactate oxi-

dation and dissimilatory sulfate reduction. The response of key proteins in
both pathways to O2 varied with the availability of SO4

2-. In the lactate
oxidation pathway, the reduction in the abundance of acetyl-CoA synthe-
tase was more significant when comparing S-O- to S-O+ condition (2.6-
fold decrease, q-value = 0.01), than when comparing S+O- to the S+O+
condition (1.5-fold decrease, q-value = 0.006). A 1.4-fold reduction
(q-value < 0.0001) inpyruvate ferredoxinoxidoreductasewasobservedonly
when comparing S-O- to S-O+ condition, suggesting that O2 showed a
stronger suppressive effect under the sulfate-sufficient condition. Con-
versely, in thedissimilatory sulfate reductionpathway, the suppressive effect
of O2 was intensified under sulfate-limited conditions, as indicated by a

larger decrease in the abundance of sulfate adenylyltransferase when
comparing S-O- to S-O+ condition (2.3-fold decrease, q-value = 0.007),
than when comparing S+O- to S+O+ condition (1.2-fold decrease,
q-value = 0.01). Additionally, a 1.4-fold (q-value = 0.0001) decrease in the
abundance of dissimilatory sulfate reductase was only observed when
comparing S-O- to S-O+ condition (Fig. 5f, Table 2) and no significant
change when comparing S+O- to S+O+ condition.

Furthermore,metaproteomics analysis identifieda total of 779proteins
from sulfide/sulfur-oxidizing bacteria (SOB), with the highest SOB pro-
teome abundance observed under S+O+ condition (Fig. 5c and Supple-
mentary Table 1). The proteome abundance of SOBs was negatively
correlated with the CH4 accumulation (r = -0.7, p-value = 0.01, t-test), while
the evenness of SOBs showed a positive correlation with the CH4 accu-
mulation (r = 0.8, p-value = 0.0006, t-test) (Supplementary Fig. 2).

Modeling of carbon and energy flow through the microbial
communities
A stoichiometric model was constructed to model the fluxes through the
primary carbon metabolism and energy conservation pathways among the
predominant microbial guilds in the wetland communities. The overall
model comprised nine reactions, including aerobic heterotrophy, lactate
fermentation, hydrogenic acetogenesis, sulfidogenic lactate oxidation, sul-
fidogenic hydrogen oxidation, hydrogenotrophic methanogenesis, acet-
oclastic methanogenesis, methane oxidation, and butyrate production
(Supplementary Fig. 3). The fluxes of these reactions were fitted to the
cumulative amounts of acetate, lactate, butyrate, H2, CO2, CH4, and H2S
produced or consumed over the 30 days of incubation. The correlation
coefficient R2, exceeded 0.9 in all four conditions (Supplementary Fig. 4).
The consistency between the experimental data and the modeling results
indicated a plausible estimation of the carbon and energy flows.

Under the S-O- condition, the primary reactions involved were
hydrogenic acetogenesis, hydrogenotrophic methanogenesis, and acet-
oclasticmethanogenesis. SO4

2- addition significantly increased theflux from
0 to 0.33 ± 0.005mmole/g dry soil through sulfidogenic hydrogen oxidation

Table 2 | Key proteins in methane metabolism and sulfate reduction pathways

Processes Enzymes Symbol Comparison

S-O- vs.
S+O-

S-O+vs. S
+O+

S-O- vs. S-
O+

S+O- vs. S
+O+

S-O- vs. S
+O+

Fold
Change
(padj)

Fold
Change
(padj)

Fold
Change
(padj)

Fold
Change
(padj)

Fold
Change
(padj)

methyl-coenzyme M reductase Mcr — — 3.1 (*)▼ — —

Hydrogenotrophic
Methanogenesis

5,10-methylenetetrahydromethanopterin
reductase

Mer 3.4 (**) ▼ — — 9.2 (***) ▼ —

tetrahydromethanopterin S-methyltransferase Mtr 5.8 (***)▼ — — 5.0 (*)▼ 8.7 (***) ▼

methylenetetrahydromethanopterin
dehydrogenase

Mtd — — 7.0 (***) ▼ — —

Acetoclastic
Methanogenesis

acetyl-CoA decarbonylase/synthetase CdhA 1.2 (***)▼ —

acetyl-CoA synthetase Acs — — 2.6 (*)▼ 1.5 (**) ▼ —

methyl-coenzyme M reductase Mcr — — 2.1 (***) ▼ - 1.7 (*)▼

Methane Oxidation methane/ammonia monooxygenase Pmo 2.3 (***)▲ — 3.9 (***) ▲ 1.7 (**) ▲ 3.9 (**) ▲

lanthanide-dependentmethanol dehydrogenase XoxF 1.4 (***)▲ 1.7 (**) ▲ 2.5 (**) ▲ 3.0 (***) ▲ 4.2 (***) ▲

Sulfate Reduction pyruvate ferredoxin oxidoreductase Por 8.0 (***)▲ 1.8 (**) ▲ 1.4 (***) ▼ 5.7 (***)

acetyl-CoA synthetase Acs 5.3 (***)▲ 2.4 (***)▲ 3.2 (***) ▼ 2.0 (***) ▼ —

sulfate adenylyltransferase Sat 1.4 (**) ▲ 2.8 (***)▲ 2.3 (**) ▼ 1.2 (*)▼ 1.2 (***) ▼

adenylylsulfate reductase Apr 1.8 (***)▲ - 1.3 (**) ▼ 1.5 (**) ▼ 1.2 (**) ▼

dissimilatory sulfite reductase Dsr 1.5 (**) ▲ 1.6 (***)▲ 1.4 (***) ▼ — —

▲ significant increase, ▼ significant decrease, - no significant changes were observed.
* for padj < 0.05, ** for padj < 0.01 and *** for padj < 0.001.
The enzymes listed in the table have shown significant changes in at least one of the five comparison groups.
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Fig. 5 | Effects of SO4
2- and O2 exposures on sulfate reduction and sulfite/sulfide

oxidation processes. a, b Changes in molar mass of lactate a and H2S b over the
30 days of incubation. c–e Relative abundances c, richness d, and evenness e of
sulfate-reducing bacteria (SRB) and sulfide/sulfur-oxidizing bacteria (SOB). Sig-
nificant differences with p-values determined using Student’s t-test, and adjusted for
the false discovery rate, are marked by * for p-value < 0.05, ** for p-value < 0.01 and

*** for p-value < 0.001. f Sulfur metabolism pathways. The boxes in the pathway
map, arranged from left to right, correspond to the S-O-, S+O-, S-O+ and S+O+
conditions. The color gradient from red to blue represents the relative abundance
ranking of proteins among the four conditions, with red indicating the highest
ranked relative abundance and blue the lowest. The gray color indicates proteins not
detected by LC-MS/MS. The error bars are defined as standard deviation.
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(Fig. 6a, b). This observationwas consistentwith the increased abundanceof
functional proteins, including sulfate adenylyltransferase (1.4-fold, q-
value = 0.002), adenylylsulfate reductase (1.8-fold, q-value < 0.001) and
dissimilatory sulfate reductase (1.5-fold, q-value = 0.001) in the dissim-
ilatory sulfate reduction pathway (Fig. 5c). Furthermore, SO4

2- addition
halted hydrogenotrophicmethanogenesis and significantly reduced the flux
by 1.7- folds through acetoclastic methanogenesis (p-value = 0.0014, Wald
type II χ² tests) (Fig. 6b). These reductions were supported by the fact that
the abundance of functional proteins for hydrogenotrophicmethanogenesis
decreasedmuchmore than for acetoclastic methanogenesis. Under the two
oxic conditions, the dominant reaction shifted to aerobic heterotrophy. The
fluxes through dominant reactions observed under anoxic conditions were
consistently lower than oxic conditions, such as hydrogenic acetogenesis
(fold change > 3.9, p-value = 0.000,Wald type II χ² tests), hydrogenotrophic
methanogenesis (fold change = 6.0, p-value = 0.004, Wald type II χ² tests),
and acetoclastic methanogenesis (fold change > 35.4, p-value = 0.0003,
Wald type II χ² tests). Moreover, O2 also eliminated sulfidogenic hydrogen
oxidation and butyrate production (Fig. 6c, d). Under S+O+ condition,
sulfidogenic lactate oxidation replaced sulfidogenic hydrogen oxidation for
sulfate reduction compared to S+O- condition (Fig. 6b, d). These findings
indicate that the addition of SO4

2- and O2 restructured the carbon flows
across the metabolic network of the wetland community.

The models estimated the contributions of each reaction to the CO2

and CH4 accumulations. Under S-O- condition –where CO2 accumulation
was lowest – it was estimated 51% of CO2 was derived from hydrogenic
acetogenesis (0.28 ± 0.01 mmole/g dry soil), 32% from acetoclastic metha-
nogenesis (0.18 ± 0.002 mmole/g dry soil), and 17% from butyrate pro-
duction (0.091 ± 0.01mmole/g dry soil). Additionally, 0.14 ± 0.008mmole/
g dry soil CO2 was used for hydrogenotrophic methanogenesis to produce
CH4. SO4

2- addition reduced the contributions of butyrate production
(0.064 ± 0.014 mmole/g dry soil) and acetoclastic methanogenesis
(0.099 ± 0.002 mmole/g dry soil) to CO2 accumulation by 31% and 45%,
respectively. However, the contribution of CO2 accumulation from
hydrogenotrophic acetogenesis increased by 13%, and no flux was detected

from hydrogenotrophic methanogenesis using CO2 to produce CH4.
These overall changes resulted in a 16% increase in total CO2 accumula-
tion. The highest CH4 accumulation was observed under S-O- condition,
with acetoclastic methanogenesis contributing 56.6% (0.18 ± 0.002
mmole/g dry soil) and hydrogenotrophic methanogenesis contributing
43.4% (0.14 ± 0.008 mmole/g dry soil) (Fig. 6e). Under the S+O- condi-
tion, only acetoclastic methanogenesis contributed to CH4 accumulation,
and the total CH4 accumulation decreased by 69% compared to the S-O-
condition (Fig. 6f). Under the two oxic conditions, aerobic heterotrophs
contributed 94%and96%of theCO2producedunder non-sulfate addition
and sulfate addition conditions, respectively (Fig. 6g, h).

Discussion
Climate change will result in increased hydrological challenges to
wetlands, including seawater intrusion and changing regional regimes
of drought and flooding. These stressors lead to recurrent perturba-
tions in wetland microbial communities, primarily due to elevated O2

during periods of drought and elevated SO4
2- from seawater

intrusion22,29. Our findings demonstrated that the addition of SO4
2-

and O2 diminished CH4 emissions and increased CO2 emissions,
which is consistent with observations in natural wetland ecosystems
exposed to increased seawater and O2

1,30,31. However, it remains
challenging in natural wetland soil to determine how SO4

2- and O2

shape microbial processes that ultimately impact CH4 and CO2

emissions32,33. In this study, we developed a conceptual food web
connecting the metabolic activities of key microbial populations to
CH4 and CO2 emissions, under the perturbation of elevated SO4

2- and
O2 (Fig. 7). Our findings indicated that elevated availabilities of SO4

2-

and O2 changed the compositions of functional guilds and their
metabolic activities, including plant polymer breakdown, methane
production and oxidation, as well as sulfide/sulfur oxidation. Elevated
SO4

2- reduced CH4 emission by 3.7-fold and increased CO2 emission
by 1.1-fold. Exposure to O2 resulted in a 33.3-fold decrease in CH4

emission and only a 1.7-fold increase in CO2 emission. Because the

Fig. 6 | Stoichiometric modeling of the wetland microbial community. a–d fluxes of the key reactions under four experimental conditions. e–h Production (+) and
consumption (-) of CO2 and CH4 by these reactions. The error bars are defined as standard deviation.
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warming effect of CH4 is approximately 28-36 times greater than that
of CO2

34, the elevated SO4
2- and O2 exposures may reduce the overall

warming effect of gas emissions from wetlands.
The reduction in the CH4 production by SO4

2- exposure was attributed
primarily to the sharp decrease in H2 available for hydrogenotrophic
methanogenesis and acetate needed for acetoclastic methanogenesis.
Notably, hydrogenotrophic methanogenesis appeared to be more sensitive
to elevated SO4

2- compared to acetoclastic methanogenesis. This sensitivity
is rooted in the thermodynamic basis of competition for H2 and carbon by
methanogenic consortia and SRB, as hydrogenotrophic sulfate reduction is
more energetically favorable than either hydrogenotrophicmethanogenesis
or acetoclastic methanogenesis22,35,36. Even under oxic conditions, SO4

2-

addition facilitated the co-existence of SOB and SRB. Oxygen consumed by
sulfide-oxidizing SOB fosters the growth of anaerobic sulfide-generating
SRB. In contrast, acetoclastic methanogens do not directly compete with
SRB, as most SRBs have an incomplete TCA cycle, which prevents them
from completing the oxidation of acetate toCO2

37,38. In addition, our results
indicated that a key factor contributing to the increase in CO2 emission due
to the addition of SO4

2- is the inhibition of hydrogenotrophic

methanogenesis, which consumes CO2. SO4
2- addition reorganized carbon

fluxes through the community due to SRBoutcompeting hydrogenotrophic
methanogens, in turn driving accumulation of short-chain fatty acids and
increasing CO2 emissions.

O2 suppressed both hydrogenotrophic methanogenesis and acet-
oclastic methanogenesis. In the absence of SO4

2-, elevated O2 suppressed
reactions that produce H2, such as hydrogenic acetogenesis. The decreased
H2 production constrained the hydrogenotrophicmethanogenesis39. Under
the sulfate addition conditions, the introduction ofO2was found to enhance
the consumptionofH2Sby SOB.Consequently, this promotedH2uptake by
sulfate reduction and intensified the competition between hydro-
genotrophic methanogens and SRB38. The proteomic abundances of car-
bohydrate degradation enzymes also indicated that O2 altered the
preference for the degradation of plant polysaccharides. Exposure to O2

favored microbial communities that hydrolyze polysaccharides with more
complex structures. Upon recovery from oxic conditions, this may lead to
prolonged release of CO2

24.
Approximately 80% of the studies investigating the impact of

anthropogenic pressures on ecosystem functions have primarily focused on

Fig. 7 | Conceptual food web responding to SO4
2-

andO2 perturbations.The S-O- condition serves as
the baseline. Circle size corresponds to the relative
abundance of marker proteins within the reaction,
with larger circles indicating higher abundance, and
smaller circles denoting lower abundance. Numbers
alongside circles indicate the fold change in meta-
bolic fluxes as inferred from stoichiometric models
relative to the control. Edge thickness represents the
magnitude of fluxes that consume or produce
metabolites. Dashed lines indicate fluxes for nearly
eliminated hydrogenotrophic methanogenesis post-
treatment. Statistical significance was assessed by
Wald type II χ² tests, with p-values adjusted for the
false discovery rate indicated by: *** p < 0.001, **
p < 0.01, * p < 0.05.
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analyzing the effect of individual stressors in isolation40,41. However, climate
change may introduce many co-occurring stressors, which need to be
investigated in combination. In this study, we found an antagonistic
interactionbetween the effects of sulfate andO2onCH4, andCO2emissions,
where the reduction inCH4 accumulation and the increase in CO2 resulting
from the combined treatment of SO4

2- and O2 was less pronounced com-
pared to the sum of individual effects. This non-additive effect can be
attributed to the high functional redundancy stemming from extra-
ordinarily diverse functional guilds in soils41–43. Furthermore, both SO4

2- and
O2 affect certain metabolic processes in a similar manner. For instance,
elevated levels of either SO4

2- or O2 nearly completely halted hydro-
genotrophicmethanogenesis, resulting in a reduction inCH4 accumulation.
Therefore, when SO4

2- and O2 exposures are combined, the observed
methanogenesis decrease is not additive.

In this study, we generated a functional understanding of the decreased
CH4 and increased CO2 emissions in wetland microcosms subjected to
SO4

2- andO2 pressure by integrating geochemical analysis, proteogenomics,
and stoichiometric modeling. The geochemical analysis quantified the end-
products’ accumulation levels and the intermediates’ standing levels in the
metabolic network, which were used by the stoichiometric modeling to
estimate the flux rates across key metabolic processes under different con-
ditions. Many of the changes in the estimated flux rates were supported by
the concordant changes in the protein abundances of enzymes involved in
those metabolic processes. The obtained results may enable climate models
to better estimate greenhouse gas emissions under changing environmental
conditions.

Methods
Sampling and soil microcosm set up
Triplicate soil samples were collected from a seasonally flooded urban
freshwater wetland connected to Lake Washington in Seattle, WA, USA
(Coordinates: 47.642196oN, -122.296236oW) in May 2022 using a soil core
sampler with 2” x 6” plastic liners (AMS, Inc., American Falls, ID). The core
sampler was forced approximately 60 cm into the sediment bed with a slide
hammer to cut roots and other plant material. The three replicate soil cores
were collected approximately one meter apart from each other, avoiding
large tree branches or roots. The broader location was selected based on its
variably submerged nature, with the water table generally being below the
surface during the fall and winter months and above the surface during the
spring and summer months. At the time of sampling, the water table was
above the soil surface and the soil was completely saturated with water. The
coreswere sealed air-tight upon removal from the natural habitat, to protect
the redox state of samples. Samples were then transported to the lab on ice,
for immediate processing.

Microcosms were set up by filling 160mL bottles with 40 g fresh
sediment soil slurry in an anaerobic chamber. The chamber gas contained
N2 : H2 (97:3). All bottles were preincubated for five days at room tem-
perature and then incubated at 30 °C for 30 days. Soil microcosms were
divided into four groups,with eachgroup receiving specific treatments every
two days: anoxic non-sulfate-addition, anoxic sulfate-addition (resulting in
a final SO4

2- concentration of approximately 7.2mM), oxic non-sulfate-
addition (where half of the gas phase was replaced by sterile air), and oxic
sulfate-addition, whichwas treatedwith both SO4

2- and sterile air. Sampling
was conducted on days 2, 9, 16, 23, and 30, with each group sacrificing three
bottles for sampling at the indicated time points. During sampling, 10mLof
gas phase products were collected in vacuumed Labco exetainer gas vails for
later analysis. Then 10ml of PBS buffer was injected into the bottle, and
shaken at 200 rpm for 10min, after which 10ml of well-shaken culture
liquid was sampled, and stored at -80 °C for subsequent analysis.

Chemical analysis
Headspace pressurewasmeasuredusing a pressure gauge (Cole Parmer SK-
68900-24) before sampling. pHmeasurementswere taken immediately after
sampling. Analysis of H2, CO2 and CH4 was carried out using a gas chro-
matograph (GC-8A, Shimadzu, Japan). H2S in the gas phase was measured

by anH2Smonitor (Forensics, FD-103-H2S,US), theH2Sdissolved in slurry
was calculated based on the pH and the amount of H2S in the gas phase.
Absolute gas composition was calculated with the ideal gas law. The soluble
sugars (glucose, xylose, mannose and galacturonic acid) and fermentation
products (acetate, lactate, and butyrate) in the slurry were analyzed by high-
performance liquid chromatography (HPLC) as reported previously44. The
metabolicmeasurements were standardized using the gramof dry soil at the
endpoint, which constitutes 22.9 ± 0.1% of soil slurry.

DNA extraction and metagenomic sequencing
Only the initial soils from the field were sequenced using metagenomic
analysis. The total DNA in the triplicate field soil samples was extracted
using the PowerMaxSoil DNA isolation kit as described previously45.
Metagenomic library preparation and DNA sequencing were performed at
the Joint Genome Institute. The metagenomic libraries were prepared for
sequencing using 2 × 151-bp lanes on the Illumina NovaSeq S4 platform. A
total of 404,050,411 ± 23,970,278 sequence reads were obtained.

Metagenomic data processing
Metagenomic reads were preprocessed using BBTools for removing adap-
tors, trimming reads, and sequencing error correction46. The pre-processed
reads from three replicates were co-assembled into a combined metagen-
omewith SPAdes v3.15.547, A total of 857,101 scaffoldswith a length> 1 kbp
were retained. The total length and L50 of the assembly were
1,939,450,947 bp and 2420 bp, respectively. The percentage of sequencing
reads mapped onto the scaffolds is 87%. Genes were called from these
retained scaffolds using the Prodigal algorithm48. A total of 26,768,938 genes
were identified. Gene functions were annotated using Kofamscan49. Taxo-
nomic classification was carried out at the scaffold level using Kaiju, based
on reference species in the NCBI RefSeq50. Metagenome-assembled gen-
omes (MAGs) were obtained using MetaBAT v2.12.1 with default
parameters51. ThequalityofMAGswas estimatedusingCheckMv1.1.2.The
MAGs obtained were classified into high-quality MAGs with complete-
ness > = 50% and contamination < 5%. The taxonomy classifications of
high-quality MAGs were inferred using GTDB-Tk v2.3.252.

Metaproteomics measurement
Soil cultures at the end of the experimentwere analyzed bymetaproteomics.
Proteins were extracted as described previously. Briefly, soil samples were
suspended in lysis buffer (containing 10mM tris-HCl, 4% SDS and 10mm
dithiothreitol), boiled for 5min and further disrupted by sonication for a
2min 10%pulse 5 times. The supernatantwas collected by centrifugation at
14,000 g for 10min. Proteinswere thenprecipitatedbyTCA(trichloroacetic
acid) overnight and pelleted by centrifugation. Protein pellets were washed
with ice-cold acetone three times and resuspended in guanidine buffer.
Protein concentrations were quantified by Bicinchoninic Acid Assay.
Twenty mg samples of proteins were processed using FASP (filter-aided
sample preparation) and digested by Trypsin/LysC mixture. Each sample
was analyzed using 2D-LC-MS/MS (two-dimensional liquid
chromatography-tandem mass spectrometry) on an Orbitrap Fusion Tri-
brid mass spectrometer (Thermo Fisher Scientific, USA) at the IDeA
National Resource for Quantitative Proteomics. Tryptic peptides were
separated into 46 fractions on a 100 × 1.0mm Acquity BEH C18 column
(Waters) using an UltiMate 3000 UHPLC system (Thermo) with a 50min
gradient from99:1 to 60:40 buffer A:B ratio under basic pH conditions, then
consolidated into 12 super-fractions. Each super-fraction was then sepa-
rated by reverse phase XSelect CSHC18 2.5 um resin (Waters) on an in-line
120 × 0.075mm column using an UltiMate 3000 RSLCnano system
(Thermo). Peptides were eluted using a 60min gradient from 98:2 to 65:35
buffer A:B ratio. Eluted peptides were ionized by electrospray (2.4 kV)
followedbymass spectrometric analysis onanOrbitrapFusionTribridmass
spectrometer (Thermo).MSdatawere acquiredusing the FTMS analyzer in
profile mode at a resolution of 240,000 over a range of 375 to 1500m/z.
Following HCD activation, MS/MS data were acquired using the ion trap
analyzer in centroidmode andnormalmass rangewithnormalized collision
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energy of 28–31% depending on charge state and precursor selection range.
Protein identification and quantification followed established procedures.
Briefly, mass spectrometry spectra were searched using Sipros Ensemble
against a protein database constructed from the metagenome. Raw search
results were filtered to achieve 1% FDR (false discovery rate) at the peptide
level, which was estimated using the target-decoy approach. Peptide iden-
tifications are assigned to protein or protein groups in accordance with the
parsimonious rule. To avoid ambiguity in data analysis, protein groupswere
excluded from biological analysis. Protein quantification was achieved
through Intensity-based label-free analysis using ProRata14. Protein abun-
dances were quantified by the total peak height of all quantified peptides
from a protein, normalized against the average total of all data sets53–55.

Following previously described methods56–58, the taxonomic annota-
tions were assigned to the identified peptides based on the matched corre-
sponding scaffold’s taxonomic annotation information, which had a length
greater than 1000 bp. The relative abundance of a species is expressed as the
sumof the abundances of all proteins detected that belong to this species. If a
protein was identified in more than one species, its abundance was equally
divided among these identified species. The richness and evenness of the
communities were calculated using the vegan R package, based on the total
protein abundance of species59.

Construction of the stoichiometric model
A set of overall reactions depicting the documented metabolism of major
functional populations was fit to the measured amounts of metabolites in
the microcosms (Supplementary Fig. 3, Supplementary Fig. 4). The code
used in fitting can be found on the Github https://github.com/thepanlab/
WetlandSoil. The resulting fits provide a basis for quantifying metabolic
contributions. Deviations between the inferred metabolic transformations
andmeasured transformations indicate uncertainty in our understandingof
the metabolic transformations or limitations in analytic capacity.

Statistical analysis
Pairwise comparisons for metabolic measurement data were carried out
using Student’s t-test, while metabolic fluxes frommodeling were analyzed
using Wald type II χ² tests. One-way or two-way ANOVA was used for
comparisons among groups of more than two. Differences in protein
abundance in themetaproteomewere analyzedbyDeseq2Rpackage,which
is based on a model using the negative binomial distribution to account for
variance and mean linkage through local regression60–62. The p-values were
adjusted toq-valuesusing theBenjamini andHochbergmethod formultiple
comparison correction63. Differences with q-value < 0.05 were regarded as
statistically significant.

Data availability
The metagenome data was deposited in NCBI under the accession code
PRJNA1112840. Proteomic data are available at the ProteomeXchange
Consortium via the PRIDE (Proteomics Identification Database) partner
repository with the dataset identifier PXD047453. The rest generated or
analyzed data during this study are included in this published article and
Supplementary Tables 1-3.
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