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Abstract 
Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 
30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon 
dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by 
which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the 
relative abundances of genes involved in degrading labile compounds (e.g. cellulose), but increased those genes involved in degrading 
recalcitrant compounds (e.g. lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for 
Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, and  Planctomycetes. Microbial community composition was considerably altered by 
warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community 
composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling 
microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or 
adapt to climate change (e.g. warming, heat stress) by shifting functional gene abundances and community structures in varying 
microenvironments, as regulated by soil physical protection. 

Keywords: carbon storage and sequestration, bacterial necromass, substrate accessibility, biogeochemical cycles, soil aggregation, 
microbial evolution, organic matter decomposition, functional genomics, degradation enzymes, plant soil interactions 

Introduction 
Microbes play a crucial role in soil organic matter (SOM) decom-
position and have the potential to accelerate soil carbon loss 
to the atmosphere in response to climate warming [1-4]. Previ-
ous studies have demonstrated that warming is associated with 
increased abundances of functional genes involved in the degra-
dation of organic matter with varying levels of recalcitrance [5-9] 
and enriched pathways related to cellulose degradation [10-12], 
but the effects on microbial abundances and community struc-
ture have been variable [13-17]. In soils, substrate availability is 
affected by physico-chemical protection mechanisms like adsorp-
tion, desorption, and aggregate turnover that decrease depolymer-
ization and microbial decomposition [18], but the extent to which 
functional genes, metabolic pathways, and taxonomic groups vary 
with chronic warming, especially in different aggregate sizes, 
remains poorly studied. 

Soil structure and mineralogy drive microbial community com-
position by affecting substrate availability and physical accessibil-
ity [19-24]. The presence of physical barriers within soil aggregates 

can protect SOM from decomposition by inducing microenviron-
mental constraints on decomposer movement and metabolism 
[25-28]. Different microbial groups also exhibited varying rela-
tive abundances between aggregates, with bacteria and fungi 
showing distinct patterns [29-31]. For instance, bacterial com-
munities were found to be less diverse [22], while fungi were 
more diverse in macroaggregates than in microaggregates [32, 
33], where the competition between the two groups was stronger 
[34, 35]. Furthermore, fungi may play a more dominant role in 
forming macroaggregates [36-39], although the ratio of fungi to 
bacteria can vary substantially [40]. Therefore, a fine-scale under-
standing of soil microbial community distribution is essential to 
comprehend how climate change impacts species interactions 
and metabolisms [41], and whether carbon persists in soils [42]. 

Previously we reported on two studies that explored how long-
term warming at the Harvard Forest has affected microbes in 
different microenvironments [20, 21]. Soil samples from the con-
trol and heated plots were separated into macroaggregate (250– 
2000 μm) and microaggregate (<250 μm) fractions, and microbial 
carbon use efficiency (CUE) was measured with 18O enriched
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water (H2 
18O) in samples incubated at 15 or 25◦C for 24 h.  We  

found that warming reduced soil carbon and nitrogen concen-
trations, extracellular enzyme activities, microbial growth, respi-
ration, and the temperature sensitivity (Q10) of CUE in macroag-
gregates [21]. To further explore how physical protection may 
inhibit SOM decomposition, we crushed aggregates to reduce 
physical protection and compared them to intact aggregates. 
We found that warming was associated with a smaller effect 
of physical protection for respiration but with a larger effect 
for biomass turnover rate in macroaggregates [20], suggesting 
that microbial functional traits vary across microenvironments 
with different physical protection, yet their responses to climate 
warming remain unclear. 

In the new study we report here, we used metagenomics to 
examine how long-term warming affects the gene abundances 
and community structures of soil microbiomes associated with 
both macroaggregates and microaggregates. Because of their 
known differences in physical protection, our study aimed to 
provide insights into the mechanisms behind the differential 
effects of long-term warming on microbial functions and 
dynamics between macroaggregates and microaggregates. We 
posited that the effects of warming on gene abundances would 
be more pronounced in macroaggregates than in microaggregates. 
We further hypothesized that warming would increase the 
abundances of functional genes related to cell maintenance 
and degradation of complex substrates, but would reduce the 
abundances of genes responsible for degrading labile substrates, 
corresponding to the changes in abundances of oligotrophs and 
copiotrophs. 

Materials and methods 
Field site and sample processing 
Samples were collected as previously described [20, 21] from the  
Harvard Forest long-term warming experiment (Pertersham, MA), 
where soils have been heated 5◦C above ambient temperature 
since 1991 alongside control and disturbance control (instru-
mented but not heated) plots [43]. The soil for this study was 
collected in October 2017 from the mineral horizon (10 cm depth; 
N = 3), from the same batch of samples used for prior experiments 
[20, 21]. The soil was air-dried at 4◦C until it reached a moisture 
level of about 10% to minimize any potential disturbance to the 
microbial communities during aggregate fractionation [20, 21, 44]. 
Microaggregates (<250 μm) and macroaggregates (250–2000 μm) 
were separated with a 250 μm sieve, weighed, and stored at −80◦C 
for molecular analysis. To extract DNA from the soil aggregates, 
0.5 g of each sample was weighed out and processed using the 
DNeasy PowerSoil Kit (Qiagen, Hilden, Germany). The extracted 
DNA was assessed for quality using the NanoDrop One (Thermo 
Scientific), quantified with the PicoGreen Kit (Quant-IT, Invitro-
gen), and treated with RNase A to avoid potential RNA contami-
nation. 

Processing of metagenomic data 
Shotgun metagenome library preparation, sequencing, assembly, 
and annotation were performed at the Joint Genome Institute 
(JGI) following standard protocols and pipelines [45]. Soil DNA 
samples were sequenced at JGI using a NovaSeq 6000 System 
(2 × 150 bp; Illumina). The samples had an average guanine-
cytosine (GC) content of 62.1%, reads of 3 942 584 112, and 94.9% 
of reads ≥Q30 (BBTools, v38.59; Supplementary Table S1). The 
filtered quality reads were assembled with metaSPAdes (version 

3.13.0) using different k-mer lengths [46, 47]. On average, 25.3 Gb 
of MG sequence was obtained per soil sample. 

To annotate the functional profiles of the metagenomes, 
we employed the Integrated Microbial Genomes Annotation 
Pipeline (v.5.0), which assigned protein-coding genes to Clusters of 
Orthologous Groups (COGs), Enzyme Commission (EC) numbers, 
and KEGG Orthology terms [45, 48, 49]. Protein-coding genes were 
compared against high-quality genomes using USEARCH 6.0.294 
to assign EC numbers [50], which were then mapped to the 
Carbohydrate-Active Enzymes database (CAZy) for taxonomic 
analysis of all functions [51]. Phylogenetic distributions were 
determined using the best BLAST hits against a non-redundant 
protein database derived from high-quality genomes based on 
the Integrated Microbial Genomes (IMG) platform. To analyze 
taxonomy, COG taxon-specific functions were filtered to include 
only hits with >30% identities at the phylum level. To account 
for differences in metagenome size, all functional abundance 
matrices were normalized to hits per million reads [52]. 

Taxonomic annotation of genes in metagenome 
To assess the taxonomic composition of a genome sample, the 
distribution of best BLAST hits of protein-coding genes was con-
ducted in the dataset. Instead of e-value filtering, IMG utilizes 
percent identity filtering for best hits to account for the vari-
ation in alignment length between query and target proteins. 
Percent identity ranges used in IMG roughly correspond to the 
average amino acid identity found between genomes from the 
same genus (90 + % range), the same family or order (60%–89%), 
and same class or phylum (30%–59%). Additionally, IMG provides 
links to COG functional category information for genes with 
30%, 60%, and 90% hits. Here we selected the 30% identity to 
investigate microbial taxonomic responses at the phylum/class 
level and classified the best hits into two COG functional cat-
egories: metabolism (amino acid transport, carbohydrate trans-
port, energy production, lipid transport, coenzyme transport, inor-
ganic ion transport, nucleotide transport, secondary metabolites 
biosynthesis) and cellular processes (cell wall biogenesis, defense 
mechanisms, signal transduction, posttranslational chaperones, 
cell division, cell motility, extracellular structures, and intracellu-
lar trafficking). 

CAZy degradation genes 
We employed the CAZy database, which relies on functionally 
related domains of enzymes that break down glycosidic bonds, 
to classify the enzyme genes [53]. Our study focused on four 
classes of enzymes: auxiliary activities, carbohydrate esterases 
(CE), glycoside hydrolases (GH), and polysaccharide lyases (PL). 
These enzymes were assigned to substrates such as hemicel-
lulose, starch, cellulose, chitin, pectin, and lignin, as listed in 
Supplementary Table S2. Based on the origins, genes associated 
with peptidoglycan and chitin degradation were grouped for bac-
terial and fungal biomass degradation, while hemicellulose, cel-
lulose, and lignin for plant biomass degradation. 

Taxonomic analysis 
We employed metagenomic data to evaluate the abundance of 
bacterial and fungal communities in control and heated plots. 
We utilized Kraken2 (v. 2.0.9) to assign taxonomic groups with 
the National Center for Biotechnology Information (NCBI) taxon-
omy, which included bacteria, fungi, and archaea. The taxon-by-
sample matrices were normalized based on the total number of 
reads per sample to mitigate the impact of uneven sequencing
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depth. The relative abundances of phyla or classes were calcu-
lated using the abundances of sequences that matched archaea, 
bacteria, or fungi [54]. 

Statistical analyses 
To minimize the effect of variation in sequencing depth among 
samples, functional genes and relative abundances of taxa were 
normalized to hits per million reads. We conducted non-metric 
multidimensional scaling using Bray–Curtis dissimilarities based 
on square root transformed abundances of functional genes 
or relative abundances of bacterial or fungal communities. 
Shannon’s diversity was used to measure community evenness 
and richness. To test for differences in bacterial communities, 
we performed Permutational Multivariate Analysis of Variance 
and homogeneity of variances using the functions adonis and 
betadisper in R [8]. All sequencing data were analyzed based on 
three biological replicates per sample. P values for the relative 
abundances of taxa and functional genes were calculated using 
the two-tailed t-test. All statistical analyses were performed 
with R [55]. Due to the small sample size, a P value of ≤.10 was 
considered statistically significant for the tests [10, 51, 56]. 

Results and discussion 
Our prior findings show that long-term warming reduced soil 
carbon and nitrogen concentrations, activities of hydrolytic and 
oxidative enzymes, microbial growth, respiration, and Q10 of 
microbial CUE in macroaggregates but not in microaggregates [20, 
21]. Besides, warming showed a larger effect on microbial biomass 
turnover but smaller effect on respiration in macroaggregates 
than in microaggregates. To understand how microbial functional 
traits vary in their responses to long-term warming across 
aggregates, here we conducted metagenomic analysis on the 
same microaggregates and macroaggregates from the heated 
and control soils. Our current study shows the interactive effects 
of warming and physical protection on microbiome functions, 
where soil aggregates drive microbial community composition 
and functional genes by influencing the substrate availability 
and physical accessibility. 

Warming effects on functional genes are partly 
regulated by microenvironments 
Our findings partly support the hypothesis that long-term warm-
ing would increase the abundances of genes responsible for cellu-
lar processes and metabolism. Specifically, warming consistently 
increased the gene abundances of Acidobacteria, Bacteroidetes, 
Crenarchaeota, Euryarchaeota, Gemmatimonadetes, Proteobacteria, 
and Ascomycota, while reduced the gene abundances for Acti-
nobacteria, Armatimonadetes, Chlorof lexi, Firmicutes, Planctomycetes, 
Basidiomycota, and  Zoopagomycota in both macroaggregates and 
microaggregates (Fig. 1, Supplementary Figs S1–S3). Compared to 
macroaggregates, gene abundances in microaggregates increased 
more for Acidobacteria and Ascomycota with warming but less 
for Proteobacteria, and decreased more for Actinobacteria but less 
for Planctomycetes. These findings suggest that warming effects 
on functional genes vary depending on the specific microbial 
communities that are partly impacted by aggregates [8, 57], 
highlighting the need for further research to understand the 
physical protection associated mechanisms in driving microbial 
responses to climate warming. 

Our analysis of metabolic pathways revealed that the effects 
of long-term warming on gene abundances varied depending 
on individual functional traits and phyla. Under warming for 

both macroaggregates and microaggregates, abundances of genes 
associated with (1) amino acid transport increased for Aci-
dobacteria, Bacteroidetes, Gemmatimonadetes, Thaumarchaeota, while 
decreased for Chlorof lexi, Firmicutes, Planctomycetes, Spirochaetes, 
and most fungal phyla; (2) carbohydrate transport increased 
for Acidobacteria and Bacteroidetes, while decreased for Chlorof lexi, 
Deinococcus-Thermus, Zoopagomycota; (3) lipid transport increased 
for Bacteroidetes, Proteobacteria, Mucoromycota, while decreased 
for Armatimonadetes, Crenarchaeota, Cyanobacteria, Planctomycetes, 
Verrucomicrobia, and  Basidiomycota (Fig. 2, Supplementary Figs S4– 
S8). Our results, depending on specific phyla, are partly supported 
by previous studies that have reported increases in abundances 
of genes associated with lipids and polysaccharides metabolisms 
under chronic warming, and an increase in genes associated with 
carbohydrate metabolism in permafrost systems [12, 58]. These 
findings suggest that long-term warming may have selected 
microbial species and genes that can either adapt or resist to heat 
associated stress conditions [59]. Thus, depending on their genetic 
and physiological states in variable microenvironments, microbes 
likely respond in different ways [60, 61] to climate warming [62]. 

Our analysis of gene abundances associated with cellular pro-
cesses revealed that long-term warming had consistent effects 
on certain functional traits and phyla, while had variable effects 
on the others. Specifically, warming consistently increased the 
gene abundances associated with cell wall biogenesis, defense, 
signal transduction, and transcriptional chaperones for Acidobac-
teria, Bacteroidetes, and Gemmatimonadetes in both macroaggregates 
and microaggregates (Fig. 2, Supplementary Figs S4–S8). How-
ever, warming reduced these gene abundances for Actinobacteria, 
Armatimonadetes, Chlorof lexi, Firmicutes, and  Planctomycetes. These  
findings highlight the inconsistent responses of functional traits 
associated with different phyla to environmental stress [63-65], 
and may allow for some predictive insights in feedbacks of soil 
carbon cycling to climate change. 

Warming effects on carbon degradation genes 
are independent of soil microenvironments 
Our hypothesis was that chronic warming would lead to an 
increase in genes associated with the degradation of complex 
substrates and a decrease in genes associated with the degrada-
tion of labile substrates, consistent with previous observations of 
microbial responses to long-term warming [2, 66]. We found that 
warming increased the abundance of genes responsible for the 
degradation of lignin and reduced genes associated with cellulose 
degradation (Fig. 3), consistent with observations of decreased 
relative abundances of lignin in the heated soils [67]. A short-term 
warming reduced the genes associated with cellulose degradation 
but showed little effect on genes associated with degradation 
of hemicellulose and lignin [68]. However, we observed variable 
warming effects on the genes associated with hemicellulose 
degradation, with some genes showed either increased (CE4, 
GH10, PL5) or decreased abundances (GH38, PL8, PL12) in both 
macroaggregates and microaggregates (Supplementary Figs S9 
and S10). Our previous work found that warming reduced 
potential enzyme activities for degradation of labile carbon but 
not for degradation of recalcitrant carbon [21], indicating that 
gene abundances may not necessarily reflect microbial potential 
functions. Chronic warming was reported to increase relative 
abundances of genes associated with degradation of labile carbon, 
but showed inconsistent effects on genes associated with complex 
carbon degradation in grasslands [8, 10, 11]. By contrast, short-
term warming increased the abundances of functional genes 
involved in the degradation of labile and recalcitrant carbon in
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Figure 1. Changes of microbial functional genes associated with metabolism and cellular processes in different aggregates under long-term warming; 
MA and MI are macroaggregates and microaggregates (250–2000; <250 μm); black symbols indicate significant effect sizes of warming 
([heated-control]/control), while red symbols indicate significant differences between MA and MI (#, ∗, ∗∗, ∗∗∗ at P < .10, .05, .01, and .001). 

a permafrost system [ 7]. Our findings support the shift away 
from cellulose toward lignin as a source of substrates for soil 
heterotrophs based on declined nutrients [2, 6], though the 
capacity of microbes in degrading cellulose may increase with 
chronic warming [51]. 

Long-term warming had distinctive effects on the relative 
abundances of genes associated with degradation of bacterial, 
fungal, and plant biomass (Fig. 3), suggesting that chronic 
warming may have accelerated microbial decomposition of 
necromass under substrate- or nutrient-limited conditions [69]. 
However, in the long-term, both bacteria and fungi may still play 
critical roles in enhancing soil organic carbon (SOC) sequestration 
[32]. Our study provides further insight into the complex and 
dynamic responses of soil microbial communities to chronic 
warming and highlights the need for continued research to better 
understand these processes in different microenvironments with 
implications for soil carbon cycling. 

Warming effects on microbial community 
dynamics are influenced by microenvironments 
We hypothesized that relative abundances of copiotrophs would 
decrease, while oligotrophs increase after long-term warming. 
Our hypothesis was partly supported that the relative abundances 
of some copiotrophs (Actinobacteria) decreased and of some olig-
otrophs (Acidobacteria, Euryarchaeota, Nitrospirae) increased with 
warming (Fig. 4, Supplementary Figs S11–S14). However, warming 
also increased the relative abundances of other copiotrophs (Bac-
teroidetes, β-/γ - Proteobacteria, Crenarchaeota, Gemmatimonadetes) 
and reduced those of other oligotrophs (Chlorof lexi, Planctomycetes). 
These findings suggest the difficulty in generalizing microbial life 
strategies [61], such as either an increase [14, 70, 71] or a decrease 
[72] in relative abundances of copiotrophs and oligotrophs with 
warming. Warming tended to reduce the relative abundances of 
most fungi (Basidiomycota, Chytridiomycota, Zoopagomycota except 
Ascomycota), suggesting that fungi are less competitive than 

bacteria under warming [73]. Yet, heat stress has been reported to 
increase the relative abundances of Gemmatimonadetes, Verrucomi-
crobia, and Basidiomycota, but to reduce the relative abundances 
of Acidobacteria, Ascomycota, Firmicutes, and  Myxococcota in a 
cropping ecosystem [74]. Our findings suggest that even with 
decreased nutrients [2, 20, 21], oligotrophs and copiotrophs 
may occupy niches with adaptive traits to enhance their 
ability to outcompete other microbes, supporting microbial life 
history trade-offs between competition and resource acquisition 
under warming [9, 75-77]. Alternatively, warming may act as 
a filtering factor to impose positive or negative selection on 
spore-forming (e.g. Actinobacteria, Firmicutes) or non-spore-forming 
microbes [72]. Our research reinforces that the copiotroph– 
oligotroph classification may not accurately represent microbial 
thermal responses, particularly in different microenvironments 
[21, 23, 28, 78]. 

We also hypothesized that chronic warming would reduce 
microbial diversity and alter community composition. As 
expected, long-term warming decreased the diversity of bacteria 
and fungi, but only in macroaggregates (Fig. 5). Microbial 
community composition shifted with warming and varied 
between macroaggregates and microaggregates (Fig. 6). These 
findings are consistent with previous studies that warming has 
reduced microbial diversity and altered community composition 
in various ecosystems [16, 33, 71]. However, some studies reported 
little change of microbial diversity or community composition in 
response to warming [2, 8, 15, 79]. These different responses of 
microbial communities to warming indicate complex interactions 
among soil substrate availability, community structure, and other 
abiotic factors [69]. 

Aggregate physical protection regulates 
functional genes and community dynamics 
Our initial hypothesis was that warming would have a greater 
impact on functional gene abundances in macroaggregates
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Figure 2. Changes of microbial functional genes in different aggregates under long-term warming; MA and MI are macroaggregates and 
microaggregates (250–2000; <250 μm); black symbols indicate significant effect sizes of warming ([heated-control]/control), while red symbols indicate 
significant differences between MA and MI (#, ∗, ∗∗, ∗∗∗ at P < .10, .05, .01, and .001). 

compared to microaggregates, but our findings show that 
warming effects were highly phylum-dependent ( Figs 1 and 2). 
Compared to microaggregates, the warming effects on functional 
genes in macroaggregates were greater for Planctomycetes and 
Proteobacteria but smaller for Acidobacteria and Actinobacteria 
(Figs 1 and 2, Supplementary Figs S1–S8). Different warming 
effects on the gene abundances associated with cell motility genes 
were observed for Armatimonadetes, Cyanobacteria, Deinococcus-
Thermus, Gemmatimonadetes, Proteobacteria, and  Basidiomycota 
(Supplementary Figs S4–S8). Gene abundances of most func-
tional traits increased with warming for some oligotrophic 
and copiotrophic microbes (Acidobacteria, Bacteroidetes, Eur-
yarchaeota, Gemmatimonadetes, Proteobacteria), but decreased 
for others (Supplementary Tables S3–S5). Nevertheless, the 
warming effects varied significantly between macroaggre-
gates and microaggregates, suggesting that the responses 
of microbial communities to warming may be different in 
moisture and nutrient availability among aggregates [80, 81]. 
The observed differences in gene abundances also suggest 
that even closely related microbial species may exhibit varying 
abilities with warming, underscoring complicated interactions 

between microbial communities and the microenvironments 
[82]. 

Warming effects on the relative abundances of genes degrading 
different substrates varied between aggregate sizes (Fig. 3, 
Supplementary Figs S9 and S10). For instance, warming increased 
the relative abundances of genes degrading hemicellulose, 
cellulose, lignin, and pectin in some enzyme families, but reduced 
the relative abundances of genes degrading hemicellulose and 
pectin in other families. Compared to microaggregates, the 
relative abundances were smaller for genes degrading cellulose, 
hemicellulose (e.g. CE4, GH38), and pectin in macroaggregates. 
Moreover, the warming effects on abundances of genes of 
degrading microbial biomass were stronger than those degrading 
plant biomass, especially in the macroaggregates, suggesting that 
microenvironment-controlled physical protection is an important 
determinant of microbial necromass in forming new SOM and 
increasing soil carbon storage (i.e. sequestration). These findings 
are also consistent with previous studies that the decomposition 
of different substrates is regulated by different microbial 
populations [83, 84]. The variable responses of microbes to 
warming could be due to differences in the physical and chemical
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Figure 3. Changes of microbial functional genes associated with carbon degradation in different aggregates under long-term warming; MA and MI are 
macroaggregates and microaggregates (250–2000; <250 μm); black symbols indicate significant effect sizes of warming ([heated-control]/control 
×100%) (∗, ∗∗, ∗∗∗ at P < .05, .01, and .001); different uppercase and lowercase letters indicate differences within macroaggregates or microaggregates. 

Figure 4. Changes of bacterial relative abundances in different aggregates over long-term warming; MA and MI are macroaggregates and 
microaggregates (250–2000; <250 μm); black symbols indicate significant effect sizes of warming ([heated-control]/control×100%)), while red symbols 
indicate significant differences between MA and MI (#, ∗, ∗∗, ∗∗∗ at P < .10, .05, .01, and .001). 

properties between aggregates, which affect the availability of dif-
ferent substrates and the composition of microbial communities 
[ 54, 85]. 

We hypothesized that warming would have a greater impact on 
the relative abundances of microbial communities in macroaggre-
gates compared to microaggregates. However, warming effects on 
the relative abundances of most phyla were smaller in macroag-
gregates than in microaggregates, suggesting that microbial func-
tional differences can be largely attributed to different resource 
and moisture availability in microhabitats under warming [21, 
86], rather than to the presence or absence of particular taxo-
nomic groups [29]. Another possibility is that microbial commu-
nities might be associated with different predation pressures on 
populations between aggregates [31]. With warming, the relative 
abundances of some oligotrophs (Armatimonadetes, Cyanobacteria, 

Deinococcus-Thermus, and  δ-Proteobacteria) increased in macroag-
gregates but decreased in microaggregates, suggesting that olig-
otrophs are more adapted in low-nutrient environments [21, 61, 
87, 88]. The greater loss of SOC and nitrogen in macroaggre-
gates and changes in relative abundances and functional genes 
under warming [20, 21] probably influenced microbial habitats 
and niches [42], indicating the potential influence of microbial 
communities on soil carbon and nitrogen cycling over climate 
change [89, 90]. 

Bacterial and fungal diversity was greater in macroaggregates 
than in microaggregates, with the bacterial diversity being 
greater than the fungal diversity, indicating consistent microbial 
responses at the domain level (Fig. 5). This finding is in accor-
dance with previous research that microbial communities were 
associated with different soil aggregate fractions, highlighting
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Figure 5. Microbial diversity as affected by aggregate size in response to long-term warming (different letters indicate differences between 
macroaggregates and microaggregates in control (blue) or heated plots (red); P values for diversity were obtained from two-way ANOVA (∗ and ∗∗∗  at 
P<.05 and .001). 

Figure 6. Community composition of different microbial groups as affected by aggregate size in response to long-term warming; P values for 
community composition were obtained from Permanova (Adonis) test; dispersion test (betadisper) showed no significant treatment effects. 

the importance of the spatial distribution of bacterial and 
fungal communities [ 30, 33]. For example, bacterial diversity was 
smaller, while fungal diversity was greater in macroaggregates 
than in microaggregates [23, 91]. These results imply that biotic 
interactions within microenvironments could play important 
roles in regulating changes in biodiversity in response to climate 
warming. 

We found distinct community composition between macroag-
gregates and microaggregates, indicating that the varying 
accessibility of nutrients [20, 21] may have induced the assembly 
of diverse communities [22]. For instance, different soil carbon 
quality has been suggested to cause the differentiation of micro-
bial communities between free and occluded microaggregates 
[22]. However, bacterial and fungal community structures were 
similar across soil aggregates in agricultural systems [30]. These 
findings suggest that microbial communities might be suscep-
tible to the effects of long-term climate warming, depending 

on different microenvironments and the associated physical 
protection. 

Conclusion 
Our study suggests that microbial communities in different 
soil microenvironments (e.g. macroaggregates, microaggregates) 
could play distinct, independent, yet crucial roles in regulating 
soil carbon feedback responses to climate change. The reductions 
of microbial diversity, shifts in community composition, and 
variable changes in functional and taxonomic abundances 
resulting from warming, particularly in macroaggregates, suggest 
the significant potential of microbiomes to reduce soil carbon 
loss and enhance soil carbon storage (i.e., sequestration), 
depending on whether the dominant communities have declined 
or increased abundances of carbon degradation genes. A deeper 
understanding of the underlying microbial mechanisms and
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functions, substrate accessibility and availability, as well as the 
associated physical protection in the extremely heterogeneous 
soil environment could foster a better understanding of the 
larger-scale ecosystem responses. This represents a promising 
and critical frontier for improving climate-resilient models and 
managing soil microbiomes (e.g. improve soil health and develop 
sustainable agricultural and natural ecosystems), to mitigate the 
negative effects of climate change. 
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