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Abstract
Soil	 microbes	 are	 essential	 for	 regulating	 carbon	 stocks	 under	 climate	 change.	
However,	the	uncertainty	surrounding	how	microbial	temperature	responses	control	
carbon losses under warming conditions highlights a significant gap in our climate 
change	models.	To	address	this	 issue,	we	conducted	a	fine-	scale	analysis	of	soil	or-
ganic	carbon	composition	under	different	 temperature	gradients	and	characterized	
the corresponding microbial growth and physiology across various paddy soils span-
ning	4000 km	in	China.	Our	results	showed	that	warming	altered	the	composition	of	
organic	matter,	resulting	in	a	reduction	in	carbohydrates	of	approximately	0.026%	to	
0.030%	from	humid	subtropical	regions	to	humid	continental	regions.	These	changes	
were	attributed	to	a	decrease	 in	the	proportion	of	cold-	preferring	bacteria,	 leading	
to significant soil carbon losses. Our findings suggest that intrinsic microbial tem-
perature sensitivity plays a crucial role in determining the rate of soil organic carbon 
decomposition,	providing	insights	into	the	temperature	limitations	faced	by	microbial	
activities	and	their	impact	on	soil	carbon-	climate	feedback.
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1  |  INTRODUC TION

Soil	 organic	 carbon	 (SOC)	 is	 a	 crucial	 renewable	 resource	 that	
provides essential ecosystem services such as food and fiber pro-
duction,	 climate	 and	 water	 regulation,	 soil	 fertility	 restoration,	
and	 biodiversity	 conservation	 (Lal,	 2016;	 Tiessen	 et	 al.,	 1994; 
Trumbore,	1997).	As	a	primary	carbon	 reservoir,	 soil	holds	more	
carbon	than	both	the	atmosphere	and	terrestrial	vegetation,	with	
even small losses of organic carbon from soil significantly im-
pacting	 atmospheric	 CO2 concentrations under climate change 
(Eglinton	 et	 al.,	 2021;	 Lal,	 2004;	 Soong	 et	 al.,	 2021).	 However,	
the	extent	to	which	microbes	and	SOC	respond	to	warming	is	un-
certain due to gaps in understanding the decomposition dynam-
ics	 of	 SOC	compounds	 (van	Gestel	 et	 al.,	 2018).	 SOC	comprises	
diverse biomolecules derived from plant and microbial degrada-
tion,	with	minor	 contributions	 from	 abiotic	 processes	 (Nelson	&	
Baldock,	2005;	Zosso	et	al.,	2023).

The	complexity	of	SOC	is	underscored	by	its	composition	of	di-
verse biomolecules derived from plant and microbial degradation. 
As	global	warming	 intensifies,	understanding	how	different	SOC	
molecules respond to elevated temperatures and the mechanisms 
driving	 these	 responses	 becomes	 increasingly	 important	 (Cheng	
et	al.,	2017;	Crowther	et	al.,	2016).	Studies	have	shown	that	lipids	
and	sugars	within	subsoils	accumulate	under	warming	conditions,	
while the decomposition of lignin is accelerated due to priming 
effects	 (Jia	et	al.,	2019).	The	turnover	of	 lipids	and	black	carbon	
exhibits limited sensitivity to thermal fluctuations and is largely 
influenced	by	soil	mineralogy,	whereas	the	degradation	of	lignin	is	
predominantly	driven	by	temperature	(Jia	et	al.,	2023).	However,	
contrasting	views	exist	on	the	temperature	sensitivity	of	SOC	de-
composition,	with	some	suggesting	that	recalcitrant	fractions	are	
unresponsive	 to	 temperature	 changes	 (Giardina	 &	 Ryan,	 2000),	
while	others	propose	that	labile	SOC	pools	are	less	sensitive	than	
recalcitrant	 ones	 (Lefèvre	 et	 al.,	2013)	 or	 that	 both	 pools	 share	
similar	 sensitivities	 (Conen	 et	 al.,	 2006).	As	 such,	 it	 has	 become	
increasingly imperative to delineate the ways in which climatic 
warming	 impacts	 different	 SOC	 components	 and	 to	 unravel	 the	
underlying processes.

Soil	serves	as	a	vast	source	of	microbial	diversity,	with	intricate	
microbial	 communities	 contributing	 significantly	 to	 soil-	climate	
feedback	(Banerjee	&	van	der	Heijden,	2022).	The	most	diverse	soil	
microbes are adaptable to changing environmental conditions due 
to	 their	 short	 generation	 times,	 large	populations,	 and	high	muta-
tion	 rates	 (Chase	et	al.,	2021;	Matulich	et	al.,	2015).	Although	soil	
microorganisms have a wide temperature range for adaptation at 
the	community	level,	the	optimal	growth	temperatures	vary	among	
different	types	of	microorganisms	(Ratkowsky	et	al.,	1982).	Based	on	
the	suitable	temperature	range	for	growth,	microorganisms	can	be	
classified into psychrophilic (<20°C),	mesophilic	 (<45°C),	and	ther-
mophilic (>100°C)	types	(Nedwell,	1999).	However,	the	influence	of	
temperature-	responsive	microbes	 on	 SOC	 decomposition	 under	 a	
changing climate remains unclear. Disturbances to soil microbial com-
munities due to warming could lead to accelerated organic matter 

breakdown	through	increased	microbial	respiration	and	growth,	po-
tentially	contributing	 to	a	positive	 feedback	mechanism	to	climate	
change	(Nottingham	et	al.,	2022;	Soong	et	al.,	2021).	Microbial	phys-
iological	traits	such	as	growth	efficiency	play	a	crucial	role	in	SOC	
dynamics,	given	that	microbes	can	contribute	significantly	to	SOC,	
ranging	from	30%	to	80%	(Kallenbach	et	al.,	2016).	Understanding	
microbial growth characteristics is essential for monitoring cellular 
activity and forming the basis of microbial community functional-
ity	 (Mai	 et	 al.,	2021;	 Peleg	 et	 al.,	2007).	While	 the	 importance	 of	
microbial diversity in carbon cycling under warmer conditions has 
been	emphasized,	debates	persist	regarding	the	temperature	sensi-
tivity	of	microbial	growth	and	metabolic	processes	(García-	Palacios	
et	al.,	2021;	Wu	et	al.,	2022).	Comprehensive	analyses	are	necessary	
to	elucidate	 the	 interplay	between	 temperature,	microbial	 physio-
logical	processes,	and	changes	in	soil	carbon.

Paddy	 fields,	 which	 are	 the	 world's	 largest	 artificial	 wetlands,	
globally	 feed	 more	 than	 half	 of	 the	 world's	 population	 (Kögel-	
Knabner	et	al.,	2010).	The	variations	between	anaerobic	and	aero-
bic	conditions	in	paddy	soils	promote	organic	carbon	accumulation,	
resulting	in	higher	carbon	stocks	in	paddy	soils	than	in	dryland	soils	
(Chen	et	al.,	2021;	 Liu	et	al.,	2021;	Wu,	2011).	Understanding	 the	
mechanisms	 that	 govern	 SOC	 dynamics	 in	 paddy	 soils	 is	 crucial	
for preserving global soil carbon reservoirs and mitigating climate 
change.	 In	 this	 study,	 we	 analyzed	 various	 paddy	 soils	 spanning	
4000 km	 in	China	using	 13C	solid-	state	magic-	angle	 spinning	NMR	
spectroscopy	at	five	thermal	regimes	(8,	15,	20,	25,	and	35°C).	We	
also	 characterized	 the	 corresponding	 soil	 microbial	 growth	 and	
physiology.	We	hypothesized	that	the	accelerated	carbon	loss	due	
to warming is closely related to the temperature response of soil mi-
croorganisms. Our findings provide direct evidence for the role of 
temperature-	sensitive	microbes	in	carbon-	climate	feedback.

2  |  MATERIAL S AND METHODS

2.1  |  Site description and field sampling

We	collected	429	soil	 samples	 from	39	paddy	 fields	across	13	 re-
gions	of	China	(19.72° N	to	47.82° N,	110.01° E	to	126.97° E)	between	
June	 and	October	 2013	 (Table S1).	 Soil	 samples	 collected	 for	 this	
study	 represent	 five	distinct	 soil	 types:	 neutral	 black	 soil,	 alkaline	
fluvo-	aquic	soil,	hydromorphic	paddy	soils,	acidic	red	soil,	and	sub-
mergenic paddy soil. These samples are derived from regions with 
four	different	crop	rotations:	single-	crop	rice,	 rice–wheat	rotation,	
double-		 and	 triple-	cropping	 of	 rice.	Moreover,	 the	 study	 sites	 are	
distributed	across	two	main	climate	zones	as	per	the	Koppen	clas-
sification system: the humid subtropical climate and the continental 
climate.	This	diversity	in	soil	types,	crop	rotations,	and	climate	zones	
enables us to comprehensively assess the impact of environmental 
factors on soil microbial communities. The mean annual temperature 
ranges	from	1.5	to	23.8°C,	and	the	mean	annual	precipitation	varies	
from	400	to	2215 mm.	At	each	site,	we	established	three	separate	
100 m × 100 m	 plots,	 and	within	 each	 plot,	we	 used	 an	 “L-	shaped”	
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sampling	pattern	 to	collect	11	 topsoil	 cores,	 each	with	a	depth	of	
0–15 cm.	Each	topsoil	core	was	obtained	using	a	sampling	tube	with	
a	 diameter	 of	 2.5 cm.	 From	 these,	 we	 randomly	 selected	 five	 soil	
cores within each plot and combined them to create a composite 
sample	of	approximately	500 g,	which	served	as	one	replicate.	This	
process was repeated independently for each of the three plots at 
each	site,	resulting	in	three	replicate	soil	samples	per	site.	The	soils	
were then transported to the laboratory in sterile bags on dry ice. 
Soils	were	passed	through	a	2 mm	mesh	to	remove	roots	and	stones,	
adjusted	to	60%	of	the	water-	holding	capacity	(WHC),	and	preincu-
bated	for	1 week	before	use.

2.2  |  Short- term incubation experiment

The chosen temperatures reflect the diverse thermal environments 
that	soil	microorganisms	encounter	across	China.	The	annual	average	
temperature	range	varies	from	1.5	to	23.8°C	in	China.	Microorganisms	
in	these	environments	can	generally	be	categorized	 into	two	groups	
based on their temperature preferences: psychrophiles and meso-
philes. Psychrophiles thrive in colder conditions with optimal growth 
between	−20	and	20°C,	whereas	mesophiles	prefer	warmer	tempera-
tures	with	growth	optima	ranging	from	20°C	to	approximately	45°C.	
Our study aimed to encompass a representative range of temperatures 
that would elicit differential responses from these microbial communi-
ties.	Based	on	previous	studies	 (Chen	et	al.,	2020;	Tian	et	al.,	2022; 
Zhang	et	al.,	2023),	we	incubated	200 g	of	field	soil,	maintained	at	60%	
of	its	WHC,	within	500 mL	containers	at	five	different	temperatures:	
8,	15,	20,	25,	and	35°C.	These	temperatures	were	selected	to	span	the	
range	 from	colder	 to	warmer	conditions,	allowing	us	 to	observe	 the	
behavior and adaptability of soil microorganisms across this spectrum. 
The	samples	were	incubated	for	a	period	of	4 weeks	to	assess	the	im-
pact of temperature on microbial activity and community structure.

2.3  |  Respiration measurements

To investigate the effects of temperature on soil carbon dioxide 
(CO2)	emissions,	10 g	of	soil	was	weighed	into	a	specimen	cup	and	
placed	in	a	mason	jar	equipped	with	a	septum	for	headspace	gas	
sampling.	The	soil	moisture	was	adjusted	to	60%	of	the	WHC	for	
each	replicate,	and	the	samples	were	incubated	for	7 days	at	five	
different	temperatures	 (8,	15,	20,	25,	and	35°C),	with	three	rep-
licates conducted under each temperature regime. To measure 
the	 CO2	 concentration,	 t0	 gas	 samples	 were	 taken	 10 min	 after	
the lid was closed. Headspace gas samples were then collected 
every	24 h	using	a	15 mL	syringe	and	analyzed	using	a	LI-	Cor	6262	
(LI-	Cor	Biosciences	Inc.	Lincoln,	USA).	The	accumulated	CO2 was 
estimated	by	comparing	the	CO2 values from t0 to t24	h.	After	gas	
sampling,	the	mason	jars	were	opened	for	20 min	to	release	the	ac-
cumulated	CO2	and	achieve	atmospheric	CO2	concentration	equi-
librium before being closed again. This process was repeated over 
the	7-	day	incubation	period.

2.4  |  Microbial physiology assays

We	utilized	an	automated	microbiology	growth	curve	analysis	sys-
tem	 to	 assess	microbial	 growth.	 Initially,	 1 g	of	 fresh	 soil	 sample	
was	combined	with	50 mL	of	Luria–Bertani	(LB)	medium	and	vor-
texed.	Subsequently,	25 μL of the prepared bacterial cultures were 
mixed	with	175 μL	of	LB	medium	and	transferred	to	sterile	micro-
plates. The microbial growth of each soil sample was estimated 
with	three	 laboratory	replicates,	 leading	to	a	total	of	585	assays	
(13	sites × 3	soil	replicates × 5	temperature	regimes × 3	laboratory	
replicates).	The	microplates	were	covered	with	lids	and	placed	in	
the	Bioscreen	C	Automated	Microbiology	Growth	Curve	Analysis	
System	(Oy	Growth	Curve	Ab	Ltd.,	Turku,	Finland)	to	monitor	the	
optical	density	(OD)	at	600 nm	under	five	temperature	conditions	
(8,	15,	20,	25,	and	35°C).	Considering	the	growth	patterns	of	mi-
croorganisms,	we	employed	classical	microbial	growth	models	to	
obtain	bacterial	 growth	parameters	 such	as	 generation	 time,	 lag	
phase	 time,	 and	maximum	growth	 rate,	which	are	 referred	 to	as	
microbial	 physiological	 traits.	 In	 brief,	 we	 fitted	 the	 OD	 values	
with the corresponding incubation temperatures using the follow-
ing	equation:

where y	represents	the	OD	value	at	a	specific	temperature,	x denotes 
the	 incubation	temperature,	and	a,	b,	and	x0 are the parameters ob-
tained through fitting. Parameter b	signifies	the	generation	time,	while	
x0 denotes the lag phase time.

The maximum growth rate can be calculated as the maximum 
slope	of	the	logarithmic	phase,	which	is	represented	by	the	following	
equation:

where y	 represents	 the	OD	value	at	 a	given	 temperature,	A1 is the 
initial	value,	A2	is	the	final	value,	p	is	the	maximum	growth	rate,	and	x0 
is the time of the maximum growth rate.

2.5  |  Solid- state 13C nuclear magnetic 
resonance assays

The	molecular	structure	of	SOC	was	determined	using	nuclear	mag-
netic	 resonance	 (NMR)	 analysis.	 Prior	 to	 NMR	 analysis,	 195	 soil	
samples	 (13	 sites × 3	 soil	 replicates × 5	 temperature	 regimes)	were	
preprocessed	with	hydrofluoric	 (HF)	acid	to	eliminate	 interference	
from Fe3+	 and	Mn2+.	 Initially,	 5 g	 of	 air-	dried	 soil	 was	mixed	with	
50 mL	 of	 HCl	 in	 a	 100 mL	 sealed	 centrifuge	 tube	 and	 shaken	 for	
1 h.	 Following	 centrifugation,	 the	 supernatant	 was	 discarded,	 and	
the	residues	were	rinsed	eight	times	with	a	HF	acid	solution	(10%)	
using ultrasonication. Each sample was then washed four times with 

(1)
y =

a

1 + exp
(

(x − x0)
b

)
,

(2)y = A2 +
A1 − A2

1 +

(

x

x0

)

p

,
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distilled	water,	dried	at	40°C	in	an	oven,	ground,	and	passed	through	
a	60-	mesh	sieve	before	further	analysis.

Solid-	state	magic-	angle	 spinning	 NMR	measurements	 were	 per-
formed using 13C	 cross	 polarization/total	 sideband	 suppression	
(CP/TOSS)	 and	 CP/TOSS	 with	 dipolar	 dephasing	 experiments	 on	 a	
Bruker	AVANCE400	spectrometer	(Bruker	BioSpin	GmbH,	Karlsruhe,	
Germany)	 equipped	 with	 a	 4 mm	 sample	 rotor	 at	 100 MHz	 (Mao	
et	al.,	2012).	The	following	parameters	were	used	for	all	NMR	mea-
surements:	an	observed	frequency	of	5 kHz,	a	CP	time	of	1 ms,	a	1H	
90°	pulse	length	of	4 ms,	and	a	recycle	delay	of	0.8 s.	Four-	pulse	TOSS	
was	applied	before	detection,	and	two-	pulse	phase-	modulated	decou-
pling	was	used	to	achieve	optimal	resolution.	CP/TOSS	combined	with	
40 ms	dipolar	dephasing	was	employed	to	obtain	a	subspectrum	con-
taining	nonprotonated	carbons	and	mobile	groups.	Spectral	quantifi-
cation was carried out by measuring each chemical shift region in the 
background	of	the	baseline	correction:	0–45 ppm	(alkyl	C),	45–60 ppm	
(N-	alkyl/methoxy	C),	60–95 ppm	(O-	alkyl	C),	95–110 ppm	(Di-	O-	alkyl	
C),	 110–145 ppm	 (aromatic	 C),	 145–165 ppm	 (phenolic	 C),	 and	 165–
210 ppm	(carbonyl	C).	The	relative	abundances	of	six	molecular	SOC	
constituents,	 including	carbohydrates,	proteins,	 lignin,	 lipids,	carbon-
yls,	and	char,	were	estimated	by	applying	a	molecular	mixing	model	to	
seven	integrated	spectral	regions	(Nelson	&	Baldock,	2005).	The	ele-
mental	concentrations	of	C	and	N	as	constraints	were	measured	in	the	
HF-	treated	soils	via	elemental	analysis.

2.6  |  DNA extraction

DNA	was	extracted	from	2 g	of	fresh	soil	for	each	replicate,	amount-
ing	 to	 a	 total	 of	 195	 soil	 samples	 (13	 sites × 3	 soil	 replicates × 5	
temperature	 regimes),	 using	 a	 well-	established	 method	 (Zhou	
et	al.,	1996).	The	quality	and	quantity	of	 the	extracted	DNA	were	
assessed using a NanoDrop 2000 spectrophotometer (Thermo 
Fisher	Scientific,	Wilmington,	DE,	USA)	and	a	Qubit	3.0	fluorometer	
(Thermo	 Fisher	 Scientific,	 USA),	 respectively.	 The	 extracted	DNA	
was	then	stored	at	−80°C	until	further	analysis.

2.7  |  Accurate amplicon- based sequencing and 
data processing

Absolute	quantification	of	16S	rRNA	amplicon	sequencing	was	per-
formed	by	Genesky	Biotechnologies	Inc.,	Shanghai,	China.	Nine	dif-
ferent	spike-	in	sequences	with	identical	conserved	regions	to	those	
of	 16S	 rRNA	genes	 and	 hypervariable	 regions	 substituted	 by	 sto-
chastic	sequences	were	artificially	synthesized	and	combined	with	
the	sample	DNA	(Maghini	et	al.,	2023;	Tourlousse	et	al.,	2017).	The	
V4-	V5	 region	 of	 the	 bacterial	 16S	 rRNA	 gene	 and	 spike-	ins	were	
amplified using the general primers 515F (5′-	GTG	CCA	GCM	GCC	
GCG	G-	3′)	and	907R	(5′-	CCG	TCA	ATT	CMT	TTR	AGT	TT-	3′)	(Huber	
et	al.,	2006).	Accurate	16S	absolute	quantification	sequencing	was	
carried	out	using	an	Illumina	NovaSeq	6000	sequencer	(Illumina	San	
Diego,	CA,	USA).	Strong	linear	correlations	between	spike-	in	amount	

and	read	count	were	observed	for	dose–response	curves	based	on	
multiple	 spike-	in	 standards	with	 varying	 input	 concentrations	 in	 a	
single mixture (Table S2).

The	 raw	 sequence	 reads	were	 processed	 using	QIIME2	 (Bolyen	
et	al.,	2019).	DADA2,	wrapped	by	QIIME2,	was	employed	to	generate	a	
feature	table	using	q2-	vsearch	after	the	filtering	of	adaptor	sequences	
and	the	removal	of	low-	quality	reads,	ambiguous	nucleotides,	and	bar-
codes	(Callahan	et	al.,	2016).	The	representative	sequences	were	clas-
sified by the feature classifier against the Ribosomal Database Project 
(RDP)	(version	11.5)	 (Cole	et	al.,	2014).	The	spike-	in	sequences	were	
identified,	and	the	read	counts	were	calculated.	Each	sample's	stan-
dard	curve	was	generated	by	comparing	the	read	counts	to	the	spike-	in	
copy	number.	The	absolute	copy	number	of	each	ASV	per	sample	was	
calculated	using	the	read	counts	of	the	corresponding	ASVs,	and	the	
spike-	in	sequences	were	filtered	before	further	analysis.

2.8  |  Classification of cold- preferring and 
warm- preferring bacteria

Cold-	preferring	bacteria,	including	both	psychrophiles	and	psychro-
trophs,	are	capable	of	growth	at	0°C.	Psychrophiles	exhibit	optimal	
growth	 at	 temperatures	 ≤15°C.	 Psychrotrophs,	 a	 subgroup	within	
psychrophiles,	can	also	proliferate	at	0°C,	yet	their	optimal	growth	
temperature is closer to the mesophilic range near room tempera-
ture	 (15–25°C).	Conversely,	warm-	preferring	 bacteria	 (mesophiles)	
thrive	within	a	broader	temperature	spectrum,	ranging	from	20	to	
45°C,	with	an	optimal	growth	temperature	between	approximately	
30–39°C.	 Thus,	 cold-	preferring	 bacteria	 demonstrate	 increased	
temperature	sensitivity	compared	to	their	warm-	preferring	counter-
parts	(Moon	et	al.,	2023).

Using	 the	 Threshold	 Indicator	 Taxa	 Analysis	 (TITAN)	 approach,	
as	 introduced	by	Baker	and	King	(2010),	we	 identified	bacterial	taxa	
characteristic	of	“cold-	preferring”	and	“warm-	preferring”	groups.	The	
TITAN	method	operates	by	selecting	indicator	species	highly	respon-
sive	to	temperature	gradients	based	on	z	scores	for	specific	taxonomic	
groups.	Subsequently,	thresholds	for	temperature	gradients	were	de-
termined	by	analyzing	the	response	patterns	of	these	indicator	species.	
After	confirming	their	accuracy	and	reliability,	these	thresholds	were	
applied	to	categorize	taxa	into	negative	[z−]	and	positive	[z+]	groups,	
tracking	the	cumulative	community	response	of	taxa	experiencing	de-
cline	or	increase.	Finally,	taxa	identified	as	z−	and	z+ were classified as 
cold-	preferring	and	warm-	preferring	bacteria,	respectively.

2.9  |  Statistical analysis

Since	the	data	were	not	completely	independent,	we	employed	linear	
mixed-	effect	models	to	investigate	the	relationships	between	warm-
ing	and	C	functional	groups,	C	molecules,	microbial	diversity,	micro-
bial	physiological	traits,	and	the	soil	respiration	rate	using	the	lme4	R	
package	 (Bates	et	 al.,	2015).	 In	 the	model,	warming	was	 considered	
a	 fixed	 effect,	 while	 sampling	 site	was	 considered	 a	 random	 effect	
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    |  5 of 13LI et al.

(y ~ warming + (1|site)).	 The	 effect	 sizes	 were	 expressed	 as	 regres-
sion	coefficients	 in	the	models,	and	p- values were obtained through 
Wald	type	II	χ2	tests	using	the	car	R	package	(John	&	Sanford,	2019).	
Bacterial	 diversity	 (Shannon	 index),	 Procrustes	 analysis,	 and	 the	
Mantel	 test	 were	 estimated	 using	 the	 vegan	 R	 package	 (Oksanen	
et	al.,	2022).	Bacterial	composition	was	represented	by	the	first	axis	of	
principal	coordinate	analysis	and	calculated	using	the	“vegdist”	func-
tion	of	the	ape	R	package	(Paradis	&	Schliep,	2019).	To	evaluate	the	
extent to which the microbial community modified the temperature 
sensitivity	of	the	soil	respiration	rate	and	microbial	growth	in	soils,	we	
fitted an exponential model to the soil respiration rate and microbial 
growth	separately	at	13	sites	using	the	R	package	ggtrendline	(v1.0.3)	
(Mei	et	al.,	2022).	The	Q10	value	was	calculated	as	follows:

where R is the soil respiration rate or microbial growth at a specific 
temperature,	T	is	the	incubation	temperature,	and	a and b are modeling 
parameters.	To	investigate	the	relationships	between	C	molecules	and	
environmental	variables,	we	employed	linear	mixed-	effects	models.	In	
these	models,	the	sampling	site	was	considered	to	have	a	random	in-
tercept effect. The correlations between each individual molecule and 
environmental	variables	were	calculated	using	the	“r.squaredGLMM”	
function	of	the	MuMIn	R	package,	which	tests	the	marginal	coefficient	
of	determination,	providing	insight	into	the	variance	explained	by	the	
fixed	effects	in	the	linear	mixed-	effects	model	(Barto,	2023).	Structural	
equation	modeling	 (SEM)	 was	 applied	 to	 investigate	 the	 direct	 and	
indirect	 effects	 of	 temperature,	 bacterial	 diversity,	 the	 temperature	
sensitivity	 of	 soil	 respiration	 (Q10SR)	 and	microbial	 growth	 (Q10BG),	
including	generation	time,	lag	phase	time	and	maximum	growth	rate,	
on	C	release	using	the	R	packages	piecewiseSEM	and	nlme	(Lefcheck	
&	Freckleton,	2015;	Pinheiro	et	al.,	2022).	In	the	prior	model,	warming-	
induced	C	losses	by	changing	soil	microbial	activity	via	the	temperature	
sensitivity	of	microbial	growth	and	respiration,	which	can	be	altered	by	
temperature-	sensitive	microbial	diversity	(Figure S5).	Principal	compo-
nent	analysis	(PCA)	was	performed	to	create	new	variables	for	C	mol-
ecules	using	the	predictors	significantly	correlated	with	C	molecules,	
and	the	first	component	of	PCA	was	employed	in	the	construction	of	
the	structural	equation	model	 (Table S7).	The	goodness	of	 fit	of	 the	
SEM	was	assessed	using	Fisher's	C,	the	Akaike	information	criterion,	
and	the	whole-	model	p- value.

3  |  RESULTS

3.1  |  Thermal response of SOC fractions

To	verify	the	sensitivity	of	soil	carbon	 loss	to	temporary	warming,	
we	conducted	a	 soil	microcosm	experiment	and	analyzed	 the	mo-
lecular	composition	of	SOC	using	13C	solid-	state	magic-	angle	spin-
ning	NMR	spectroscopy.	Our	results	revealed	significant	changes	in	
the	molecular	composition	of	SOC	(Figure S1).	The	analysis	revealed	

a	 decrease	 in	 the	 abundance	 of	O-	alkyl	 C	 and	 an	 increase	 in	 the	
abundance	of	alkyl	C	due	to	warming,	while	the	other	five	groups	of	
organic	matter	components—Methoxy	C,	Di-	O-	alkyl	C,	aryl	C,	and	
O-	aryl	 C—exhibited	 no	 significant	 changes	 under	 the	 influence	 of	
elevated temperatures (Table S3).	Furthermore,	the	degree	of	SOC	
decomposition was greater in humid continental climates than in 
humid subtropical climates. This was due to a greater increase in 
alkyl	C	 and	 decrease	 in	O-	alkyl	C	 in	 soils	 from	humid	 continental	
climates	 (alkyl:	β = .0485,	p < .001;	O-	alkyl:	β = −.0277,	p < .05)	 than	
in	soils	from	humid	subtropical	climates	(alkyl:	β = .0257,	p < .01;	O-	
alkyl:	β = −.0320,	p < .001).

We	then	employed	the	molecular	mixing	model	to	evaluate	alter-
ations in the molecular components of organic matter in soils based 
on the distribution of 13C	NMR	signal	 intensity	across	all	 samples.	
Our results revealed that increasing temperatures led to a decrease 
in	carbohydrate	content	of	0.026%	in	soils	from	humid	continental	
climates (β = −.0261,	p < .05)	 and	 0.030%	 in	 soils	 from	 humid	 sub-
tropical climates (β = −.0302,	p < .001)	(Figure 1a).	Conversely,	there	
was	an	increase	in	lipids	of	0.039%	in	soils	from	humid	continental	
climates (β = .0392,	p < .001),	which	was	greater	than	the	0.027%	in-
crease in soils from humid subtropical climates (β = .0270,	p < .001)	
(Figure 1a).	Moreover,	warming	also	resulted	in	a	reduction	in	pro-
tein in soils in humid subtropical regions (β = −.0211,	 p < .05).	 The	
molecular mixing model implied that warming caused alterations in 
the	molecular	composition	of	SOC.	Furthermore,	significant	differ-
ences were observed between humid continental and humid sub-
tropical	climate	zones.

3.2  |  Temperature sensitivity of soil microbes

Given	the	role	of	microbes	in	biochemical	cycling,	we	hypothesized	
that	soil	C	losses	are	associated	with	the	response	of	soil	microbial	
communities to warming. To explore the temperature sensitiv-
ity	of	soil	microorganisms,	we	categorized	soil	microbes	 into	cold-	
responsive	 and	 warm-	responsive	 types	 using	 TITAN	 (Figure 1b).	
Our results showed that humid continental climate regions had a 
greater	prevalence	of	cold-	preferring	bacteria	(2%)	than	humid	sub-
tropical	regions.	Warming	had	distinct	effects	on	the	composition	of	
temperature-	sensitive	microorganisms,	with	a	reduction	 in	the	ab-
solute	abundance	of	cold-	preferring	microorganisms	in	humid	conti-
nental	regions	(0.0136%	to	0.0396%)	and	an	increase	in	the	absolute	
abundance	of	warm-	preferring	bacteria	in	humid	subtropical	regions	
(0.0140%	to	0.0334%)	(Figure 2).	The	species	showing	higher	tem-
perature	 sensitivity	primarily	belonged	 to	 the	phyla	Bacteroidetes	
(β = −.0396,	 p < .001)	 and	 Firmicutes	 (β = .0334,	 p < .001).	 As	 ex-
pected,	warming	had	a	significant	negative	impact	on	the	diversity	
of	 cold-	preferring	 bacteria	 (humid	 continental	 climate:	 β = −.0304,	
p < .01;	humid	subtropical	 climate:	β = −.0228,	p < .001)	 (Figure 3a).	
These findings suggest that warming led to a notable decrease in 
both	the	richness	and	diversity	of	cold-	preferring	bacteria,	particu-
larly in humid continental regions where they were disproportion-
ately abundant.

(3)R = a × expb×T ,

(4)Q10 = exp10×b ,
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6 of 13  |     LI et al.

Our experimental study on the physiological characteristics of 
soil microbial community growth confirmed that microorganisms in 
humid continental regions were more susceptible to temperature 
increases (Figure S2).	 As	 the	 temperature	 increased,	 the	 rates	 of	
soil	respiration	and	maximum	growth	exhibited	exponential	growth,	
while the generation time and lag phase time of soil bacteria showed 
the opposite trend (Figure S3).	The	response	of	respiration	to	warm-
ing was stronger in humid continental regions than in humid sub-
tropical	regions,	and	microbial	growth	exhibited	a	greater	effect	in	
low-	latitude	 regions	 (Figure 3a).	We	also	observed	a	negative	cor-
relation	between	 cold-	preferring	bacterial	 diversity	 and	 soil	 respi-
ration (Figure S4).

3.3  |  Factors driving SOC decomposition

We	further	assessed	whether	warm-	induced	alterations	in	microbial	
activity	 impact	 soil	 C	 losses.	Our	 results	 showed	 a	 strong	 linkage	

between	microbial	growth	and	the	composition	of	SOC,	particularly	
carbohydrates and lipids (Figure 3b).	 Additionally,	 we	 observed	 a	
positive correlation between soil respiration and lipids only in the 
humid continental regions (Figure 3b).	We	calculated	the	tempera-
ture	sensitivity	(Q10)	of	microbial	respiration	and	growth	(Tables S4 
and S5).	Consistent	with	our	earlier	findings,	soils	in	humid	continen-
tal climates had greater temperature sensitivity to soil respiration 
but lower temperature sensitivity to microbial growth than soils in 
humid	subtropical	regions.	The	response	of	SOC	to	warming	was	pri-
marily driven by the sensitivity of microbial growth and respiration 
(Figure S4; Table S6).

To	further	investigate	the	drivers	of	soil	C	loss	between	humid	
continental	 and	 humid	 subtropical	 climate	 soils,	 we	 conducted	
SEM	analyses	 using	 the	presumed	 relationships	 (Figure S5).	Our	
results showed that warming had a negative effect on the diver-
sity	 of	 cold-	preferring	 bacteria,	 while	 no	 warming	 effects	 were	
observed	 for	 warm-	preferring	 bacteria	 (Figure 4).	 Additionally,	
the	Q10	of	 soil	microbial	 growth	 and	 respiration	was	negatively	

F I G U R E  1 Effects	of	warming	on	C	molecules	and	soil	bacteria.	(a)	Effect	size	of	warming	on	soil	C	molecules	in	the	humid	continental	
and	humid	subtropical	climates	of	China.	*p < .05,	***p < .001.	(b)	Number	of	cold-		and	warm-	preferring	bacteria	in	paddy	soils	of	China	and	
the	percentage	of	cold-		and	warm-	preferring	bacteria	in	the	humid	continental	and	humid	subtropical	climates	of	China.	Humid	continental	
climate	(Dwa	and	Dwb	in	the	Köppen	climate	classification);	Humid	subtropical	climate	(Cwa	and	Cfa	in	the	Köppen	climate	classification).	
Cp,	cold-	preferring	bacteria;	Wp,	warm-	preferring	bacteria.
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    |  7 of 13LI et al.

correlated	with	 cold-	preferring	 bacterial	 diversity	 in	 humid	 con-
tinental regions (Figure 4a).	 These	 findings	 indicate	 that	 climate	
warming	 leads	 to	 a	 reduction	 in	 the	 diversity	 of	 cold-	preferring	
bacteria	in	soils	of	humid	continental	climates,	resulting	in	changes	
in	the	Q10	of	soil	microbial	growth	and	respiration.	This	is	the	main	
factor	contributing	to	the	promotion	of	soil	C	losses.	In	contrast,	
the	relationships	between	cold-	preferring	bacterial	diversity	and	
the	Q10	of	soil	microbial	growth	and	respiration	were	significantly	
positive in humid subtropical climates (Figure 4b).	 Furthermore,	
our	 results	 indicated	 that	 soil	 C	 losses	were	 primarily	 regulated	
by	the	Q10	of	soil	respiration	in	humid	subtropical	regions.	These	
findings	demonstrate	that	cold-	preferring	bacterial	diversity	plays	
a	 predominant	 role	 in	 regulating	 SOC	 decomposition	 under	 cli-
mate warming in humid continental regions (Figure S6),	while	soil	
C	 losses	 are	 primarily	 driven	 by	 the	Q10	 of	microbial	 growth	 in	
humid	 subtropical	 regions.	 This	 could	 be	 attributed	 to	 the	 long-	
term adaptation of microbes to temperature changes in these 
regions.

4  |  DISCUSSION

Understanding	the	impact	of	climate	change	on	SOC	turnover	and	
its underlying mechanisms is a crucial issue in climate research 
(Cavicchioli	 et	 al.,	2019;	 Jansson	 et	 al.,	2023;	 Tiedje	 et	 al.,	2022).	
However,	 the	 role	of	 temperature-	sensitive	microorganisms	 in	soil	
carbon-	climate	 feedback	 remains	 a	 significant	 uncertainty	 (Frey	
et	al.,	2013;	Rousk	et	al.,	2012).	Our	findings	provide	insights	into	the	
significance of these microorganisms by revealing dynamic changes 
in	SOC	molecular	components	and	 intrinsic	soil	microbial	 traits.	 In	
this	study,	we	noted	a	reduction	in	labile	O-	alkyl	C,	primarily	origi-
nating	from	carbohydrates,	under	warming	conditions	within	humid	
subtropical	and	continental	climatic	zones	(Figure 1a).	This	process	
provides	 evidence	 that	 decomposition	 drives	 terrestrial	 C	 cycling	
and	that	warming	accelerates	the	decomposition	of	SOC.	Due	to	the	
higher	average	temperature	in	humid	subtropical	climate	zones	than	
in	 continental	 climate	 zones,	 this	 long-	term	 climatic	 legacy	 of	 the	
soil leads to a greater degree of decomposition of easily degradable 

F I G U R E  2 Effects	of	warming	on	temperature-	sensitive	bacteria.	Effect	sizes	of	warming	on	the	absolute	abundance	of	major	bacterial	
taxa	at	the	phylum	level	based	on	linear	mixed-	effects	models.	Statistical	significance	is	based	on	Wald	type = II	χ2 tests. The data are 
presented	as	the	means ± SDs	of	the	estimated	effect	sizes.	*p < .05,	**p < .01,	***p < .001.
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8 of 13  |     LI et al.

carbon	in	humid	subtropical	climate	zones.	Simultaneously,	the	ele-
vated	temperatures	resulted	in	a	rise	in	the	levels	of	recalcitrant	alkyl	
C	and	lipids	(Figure 1a; Table S3).	Using	NMR	carbon	spectroscopy,	
alkyl	 C	 can	 be	 categorized	 into	 microbial-	derived	 (0–31 ppm)	 and	
plant-	derived	 (31–45 ppm)	alkyl	C,	based	on	 structural	differences	
(Audette	et	al.,	2021).	Our	 findings	 indicate	 that	 the	 increase	 rate	
of	alkyl	C	with	temperature	from	microbial	origins	was	faster	than	
that from plant sources (Figure S7).	This	phenomenon	could	be	at-
tributed	to	the	process	of	microbial	carbon	pumps,	as	microbial	con-
trols	on	soil	C	dynamics	primarily	responsible	for	decomposing	SOC	
can	 also	 drive	 C	 sequestration	 by	 producing	 stable	 SOC	 through	
an	 iterative	process	of	 life	activities,	 resulting	 in	alterations	to	the	
molecular	composition	of	SOC	(Liang	et	al.,	2017;	Qiu	et	al.,	2023).	
Our incubation experiments showed that continental soils exhibit a 
more	substantial	increase	in	alkyl	C	(i.e.,	recalcitrant	C)	compared	to	
subtropical	soils.	Furthermore,	the	ratio	of	alkyl	to	O-	alkyl	C,	which	
serves	as	an	indicator	for	the	stability	of	SOC	decomposition,	is	no-
tably	higher	within	humid	continental	climate	zones.	Consequently,	
climate	warming	could	potentially	alter	 the	stability	of	SOC	pools,	

facilitating	a	redistribution	of	soil	C	among	various	reservoirs,	and	
implying	 enhanced	 conservation	 prospects	 in	 high-	latitude	 areas	
(Manlick	et	al.,	2024).

The	stability	of	SOC	is	influenced	by	a	variety	of	environmen-
tal	factors	(Ofiti	et	al.,	2023).	Our	findings	indicate	that	pH	and	ini-
tial	SOC	content	were	the	primary	factors	explaining	the	variation	
in	SOC	decomposition	and	microbial	activities	across	our	sampled	
soils (Figure S8).	 This	 suggests	 that	 initial	 soil	 properties	 play	 a	
crucial	role	in	determining	the	subsequent	dynamics	of	soil	carbon	
and microbial activity under different environmental conditions. 
Soil microorganisms exhibit distinct geographical distribution 
characteristics	and	are	influenced	by	various	factors,	with	climatic	
conditions	serving	as	one	of	the	key	determinants	of	their	distribu-
tion	(Labouyrie	et	al.,	2023;	Patel	et	al.,	2023).	Cold-	preferring	mi-
croorganisms were more prevalent in humid continental climates 
compared	 to	 humid	 subtropical	 regions,	 where	 species	 favoring	
warmer conditions were more common (Figure 1b).	Soil	microbial	
activity	 is	 dependent	 on	 temperature	 conditions	within	 the	 soil,	
and most microorganisms thrive within a specific temperature 

F I G U R E  3 Correlations	between	environmental	variables	and	C	molecules.	(a)	Effects	of	warming	on	soil	C	molecules	and	the	soil	
microbial	community	based	on	linear	mixed-	effects	models	in	humid	continental	and	humid	subtropical	climates	of	China.	Effect	sizes	
of	warming	on	the	microbial	diversity	and	composition,	soil	respiration	rate	and	microbial	growth	(generation	time,	lag	phase	time,	and	
maximum	growth	rate)	in	the	linear	mixed-	effects	models.	The	values	represent	the	means ± standard	errors	of	the	effect	sizes.	(b)	
Correlations	between	environmental	variables	and	C	molecules	in	the	humid	continental	and	humid	subtropical	climates	of	China.	The	color	
shows	the	correlation	coefficient	measured	by	the	linear	mixed-	effects	model.	Statistical	significance	is	supported	by	Wald	type	II	χ2 tests. 
The p- values	were	adjusted	by	the	false	discovery	rate.	*p < .05,	**p < .01,	***p < .001.	Cp,	cold-	preferring	bacteria;	Wp,	warm-	preferring	
bacteria.

(a) (b)
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    |  9 of 13LI et al.

range	 (Cavicchioli	 et	 al.,	2019).	 The	growth	and	activity	of	most	
microorganisms are constrained by increased temperatures that 
exceed	 their	optimal	 range	 (Barton	et	al.,	2016).	This	propensity	
was	 particularly	 pronounced	 among	 cold-	preferring	microorgan-
isms	in	humid	continental	climates,	with	a	larger	fraction	of	these	
organisms exhibiting an adverse reaction to increased tempera-
tures. This phenomenon can be attributed to the extended winter 
periods and the typical cold soil environment characteristic of such 
regions	 (Rantanen	 et	 al.,	 2022).	 In	 comparison	 with	 Firmicutes,	
Bacteroidetes	 displayed	 a	 heightened	 sensitivity	 to	 temperature	
fluctuations	in	contrast	to	Firmicutes,	which	exhibited	the	inverse	
response (Figure 2).	Similarly,	warming	reduced	the	abundance	of	
Bacteroidetes	 and	 increased	 that	 of	 Firmicutes,	 which	 was	 also	
observed	in	the	gut	microbiota	(Zhang	et	al.,	2022).	Further	anal-
ysis	confirmed	that	the	optimal	growth	range	for	cold-	preferring	
microorganisms	was	 lower	 than	 that	 for	warm-	preferring	micro-
organisms.	This	disparity	was	chiefly	characterized	by	a	substan-
tial decrease in the diversity of microorganisms adapted to lower 
temperatures	 under	 conditions	 of	 increased	 warmth,	 whereas	
those adapted to higher temperatures maintained relative stabil-
ity (Figure 3).	 Experiments	with	 soil	 bacterial	 cultures	 have	 fur-
ther demonstrated that bacterial species from humid continental 
climates exhibit greater sensitivity to shifts in temperature com-
pared to those from humid subtropical climates (Figure S2).

The intrinsic temperature sensitivity of soil microbes is chal-
lenging	to	alter	over	time	scales	ranging	from	weeks	to	decades,	
despite	 their	 rapid	 adaptability	 under	 harsh	 conditions	 (Alster	
et	al.,	2023;	Walker	et	al.,	2018).	Microbial	physiological	processes	

are	 sustained	 by	 changes	 in	 microbial	 biomass,	 which	 are	 influ-
enced by the intrinsic temperature sensitivity of soil microbes 
(Karhu	et	al.,	2014;	Simon	et	al.,	2020).	The	heightened	sensitiv-
ity of microbial respiration activity to warming in continental soils 
stems primarily from the composition of bacterial communities. 
Our data indicate that humid continental climates host a greater 
proportion	of	cold-	preferring	bacteria	 (2%)	than	humid	subtropi-
cal regions (Figure 1).	Given	the	enhanced	temperature	sensitivity	
of	cold-	preferring	bacteria	in	continental	soils,	the	thermal	adap-
tation of microbial respiration in subtropical regions may impose 
constraints on potential fluctuations in respiratory rates (Tian 
et	 al.,	2022).	 Hence,	 under	warming	 conditions,	microbial	 respi-
ration activity is more pronounced in humid continental climates 
than	 in	humid	subtropical	climates.	While	 the	 respiration	rate	of	
microorganisms is less affected by optimal temperatures com-
pared	to	their	growth	rate,	it	significantly	escalates	under	warm-
ing	 conditions.	 Conversely,	 the	microbial	 growth	 rate	 decreases	
subsequent	to	reaching	the	optimal	temperature.	Therefore,	it	can	
be inferred that microorganisms with increased temperature sen-
sitivity in respiratory activities might exhibit diminished sensitiv-
ity to growth rates in humid continental climate regions (Figure 3; 
Figure S2).	This	may	be	the	primary	factor	underlying	the	higher	
rate	of	SOC	decomposition	 in	cooler	 regions	 than	 in	warmer	 re-
gions. The intrinsic microbial temperature sensitivity can cause a 
transient warming effect on the attenuation of soil carbon storage. 
Warming-	induced	perturbations	 in	SOC	are	driven	by	alterations	
in	 microbial	 activity,	 stemming	 from	 the	 temperature-	sensitive	
responses of microbial growth and respiration (Figure 4).	 In	 the	

F I G U R E  4 Environmental	drivers	of	C	losses	according	to	structural	equation	modeling.	Models	for	the	relationships	among	the	variables	
in	the	humid	continental	(a)	and	humid	subtropical	climates	(b)	of	China.	The	solid	and	dotted	lines	represent	significant	and	nonsignificant	
relationships,	respectively.	The	arrow	width	shows	the	strength	of	the	relationship.	Numbers	embedded	in	the	arrows	are	standardized	path	
coefficients.	C	loss	is	the	first	component	from	the	principal	component	analysis	performed	on	the	basis	of	the	molecular	composition	of	
soil organic carbon. R2	indicates	the	proportion	of	variance	explained.	Bacterial	alpha	diversity	represented	by	Shannon	diversity	in	cold-		
and	warm-	preferring	bacterial	communities.	Q10(BG),	the	temperature	sensitivity	of	bacterial	growth,	is	a	composite	variable	that	includes	
the	temperature	sensitivity	of	generation	time,	lag	phase	time,	and	maximum	growth	rate.	Q10(SR) is the temperature sensitivity of soil 
respiration,	*p < .05,	**p < .01,	***p < .001.	AIC,	Akaike	information	criterion;	Cp,	cold-	preferring	bacteria;	Wp,	warm-	preferring	bacteria.

Warming

Bacterial diversity (Cp) Bacterial diversity (Wp)

Q10SR Q10BG

C loss

Humid continental climate

Fisher’s C =  10.34, p = .41, df = 10, AIC = 50.34

.651***

–.360***

R2 = .11

(a) (b)

.135

.666***

Humid subtropical climate

Warming

Bacterial diversity (Cp) Bacterial diversity (Wp) 

Q10SR Q10BG

C loss

Fisher’s C =  5.88, p = .83, df = 10, AIC = 45.88

.163*

.688***

R2 = .11

.002

.031
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future,	 a	 theoretical	 framework	 is	needed	 to	elucidate	 the	 com-
plex	 interactions	 between	 temperature,	 microbial	 communities,	
and soil carbon dynamics. It is expected that by harnessing engi-
neered	microorganisms,	the	adverse	effects	of	climate	change	can	
be	alleviated	in	the	future	(Jansson	et	al.,	2023).

Overall,	 our	 study	 highlights	 that	 short-	term	 warming	 affects	
SOC	decomposition	by	enhancing	microbial	growth	and	respiration,	
which	is	primarily	governed	by	the	diversity	of	cold-	preferring	bac-
teria.	Due	to	temperature	variations	in	different	climate	zones,	the	
inherent temperature sensitivity of microorganisms varies signifi-
cantly,	and	an	increase	in	temperature	causes	most	microorganisms	
to exceed their optimal growth range. Our research underscored 
the importance of the inherent temperature sensitivity of soil mi-
croorganisms in influencing the relationship between soil carbon 
and	climate	feedback,	a	subject	 that	has	been	 increasingly	garner-
ing	 scientific	 interest.	Additionally,	we	 intend	 to	 incorporate	 them	
into land surface models by providing reliable laboratory evidence of 
their	occurrence.	By	concentrating	on	these	key	areas	of	research,	
we can better comprehend and address the challenges posed by cli-
mate	change	and	its	impact	on	our	planet's	ecosystems.
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