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Abstract 
Global warming modulates soil respiration (RS) via microbial decomposition, which is seasonally dependent. Yet, the magnitude and 
direction of this modulation remain unclear, partly owing to the lack of knowledge on how microorganisms respond to seasonal changes. 
Here, we investigated the temporal dynamics of soil microbial communities over 12 consecutive months under experimental warming 
in a tallgrass prairie ecosystem. The interplay between warming and time altered (P < 0.05) the taxonomic and functional compositions 
of microbial communities. During the cool months (January to February and October to December), warming induced a soil microbiome 
with a higher genomic potential for carbon decomposition, community-level ribosomal RNA operon (rrn) copy numbers, and microbial 
metabolic quotients, suggesting that warming stimulated fast-growing microorganisms that enhanced carbon decomposition. Modeling 
analyses further showed that warming reduced the temperature sensitivity of microbial carbon use efficiency (CUE) by 28.7% when 
monthly average temperature was low, resulting in lower microbial CUE and higher heterotrophic respiration (Rh) potentials. Structural 
equation modeling showed that warming modulated both Rh and RS directly by altering soil temperature and indirectly by influencing 
microbial community traits, soil moisture, nitrate content, soil pH, and gross primary productivity. The modulation of Rh by warming 
was more pronounced in cooler months compared to warmer ones. Together, our findings reveal distinct warming-induced effects on 
microbial functional traits in cool months, challenging the norm of soil sampling only in the peak growing season, and advancing our 
mechanistic understanding of the seasonal pattern of RS and Rh sensitivity to warming. 

Keywords: soil respiration, microbial functional traits, seasonal succession, global warming, carbon decomposition 

Introduction 
The rising global surface temperature is one of the most remark-
able climate changes faced by the terrestrial ecosystem [1], pro-
foundly affecting terrestrial carbon (C) dynamics and ecosystem-
atmosphere C exchanges [2]. Rising temperature is expected to 
accelerate soil C loss or soil respiration (RS) [3] by enhancing the 
mineralization of soil organic C through heterotrophic respiration 
(Rh, mainly contributed by soil microorganisms and animals) or 
autotrophic respiration (Ra, mainly contributed by plant roots 
and rhizosphere), which are two primary components of RS [4]. 
However, the increase in RS can be offset towards ambient val-
ues due to various factors, including shifts in plant community 
composition, reduced photosynthetic rates in ecosystems not 
limited by temperature [5], the thermal adaptation of microor-
ganisms, depletion of soil organic C, and decrease in soil mois-
ture [6]. Therefore, it is imperative to determine the dynamics 

of RS or Rh and their underlying mechanisms in a warming 
climate. 

Soil microorganisms are key drivers of the decomposition of 
organic matter, thereby influencing soil C stocks and fluxes [4]. In 
grassland ecosystems, which are significant reservoirs of soil C [2], 
changes in microbial community composition and function due 
to warming can profoundly impact ecosystem services such as 
soil fertility, plant productivity, and C sequestration [7]. Given the 
pronounced sensitivity of grassland ecosystems to climate change 
[8], our study zeroes in on warming—a critical component of 
climate change—to understand its specific effects on microbial-
mediated processes. 

Although there is ample literature on the long-term responses 
of soil microbial communities to warming, only a handful has 
considered the effect of seasonal variation [9, 10]. However, it 
is crucial to take seasonal variation into account because biotic 
(e.g. plants and animals) and abiotic (e.g. moisture and nutrient
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availability) components of natural ecosystems usually exhibit 
strong phenological patterns and seasonality [11–14]. As tempera-
ture is one of the most important determinants of Rh [15], we posit 
that warming disproportionately influences Rh due to a combina-
tion of factors that vary throughout the year such as microbial 
community composition, functional traits, soil moisture levels, 
and substrate availability. During cooler months, we hypothesize 
that lower baseline temperatures and the presence of unuti-
lized C substrates from the preceding growing season favor fast-
growing, r-strategist microorganisms with high genomic potential 
for C decomposition. These organisms could exhibit enhanced 
metabolic activity in response to warming, leading to increased 
soil C loss through Rh. 

Materials and methods 
Site description and soil sampling 
The experimental study was carried out at the KAEFS located 
in McClain County, Oklahoma, USA (ca. 34o59′N, 97o3′W; Fig. S1). 
The experimental site is a mixed-grass prairie dominated by C3 

forbs (Ambrosia trifida, Solanum carolinense, and  Euphorbia dentata), 
C3 grass (Bromus japonicus Thunb.), and C4 grass (Tridens f lavus, 
Sporobolus compositus, and  Sorghum halapense). As described pre-
viously [16, 17], the mean annual temperature of this area from 
1948 to 2012 was 16.3◦C, with mean monthly air temperature 
ranging from 3.5◦C in January to 28.1◦C in July. The mean annual 
precipitation was 895 mm, with monthly precipitation ranging 
from 33 mm in January to 126 mm in May (Oklahoma Climatolog-
ical Survey, Norman, OK, USA). Annual peak plant biomass was 
attained from late April to early May when C3 plants dominated 
plant communities and late August to early September when 
C4 plants dominated plant communities. The soil type was the 
Port–Pulaski–Keokuk complex, with a neutral pH, a high available 
water-holding capacity (37%), and a deep (∼70 cm), moderately 
penetrable root zone. The soil texture is loam with 51% sand, 35% 
silt, and 13% clay. 

The experiment to simulate global warming was initiated in 
July 2009. There were four biological replicate blocks. Each block 
is divided into two 2.5 × 1.75 m plots, with one plot designated as 
the ambient control and the other as the warming treatment (an 
average of +3.0◦C throughout the year) in a paired design. Two 
infrared heaters (165 × 9 × 15 cm; Kalglo Electronics, Bethlehem, 
PA, USA) were installed at an approximate height of 1.5 m above 
each warmed plot to heat the soil evenly. Two dummy heaters, 
identical in dimensions, were suspended above the control plots 
to mimic the shading effects. 

One surface soil (0–15 cm) sample core was collected on a 
monthly basis for each of the eight warmed and control plots 
in 2012 (the third year of experimental manipulation). In total, 
96 monthly samples were collected. A portion of the soil was 
immediately frozen at −80◦C for molecular analyses, and the rest 
of the soil was oven-dried for physicochemical analyses. 

Field survey and soil physical–chemical analyses 
Soil temperature was measured automatically every 15 min with 
thermocouples (T-type; Campbell Science Inst., Logan, UT, USA) 
installed at a depth of 7.5 cm at the center of each main plot 
to reflect the mean topsoil temperature. Volumetric soil water 
content (%V) in the top 15 cm soil was measured automati-
cally every 30 min with time domain reflectometry (TDR) meters 
(ESI Environmental Sensors Inc., Sidney, BC, Canada) installed in 
each plot. Monthly soil temperature and moisture were calcu-
lated from corresponding time-series measurements. Ecosystem 

C exchanges were measured on a monthly basis between 10:00 
and 15:00 local time on sunny days using an LI-6400 (LI-COR 
Biosciences, Lincoln, NE, USA) Portable Photosynthesis System 
with a transparent chamber (0.5 m × 0.5 m × 0.7 m, with fans 
circulating the air inside), aligning with the methodologies of 
previous studies [18–21]. The chamber was placed and sealed 
on a metal frame in the plot, and covered all the vegetation 
inside the frame. Net ecosystem C exchange (NEE) was calculated 
using C fluxes measured with a chamber exposed to sunlight, 
whereas ecosystem respiration (Re) was retrieved from the C 
fluxes measured when the chamber was kept in the dark with a 
light-proof cover. Gross primary production (GPP) was calculated 
as the difference between NEE and Re. RS and Rh were measured 
on a monthly basis between 10:00 and 15:00 local time using an 
LI-8100A soil flux system attached to a soil CO2 flux  chamber  
(LI-COR Biosciences, Lincoln, NE, USA) [16]. Measurements were 
taken above a PVC collar (80 cm2 in area and 5 cm in depth) and 
a PVC tube (80 cm2 in area and 70 cm in depth) permanently 
fixed at the center of each plot. Old plant roots inside the PVC 
tube were cut to prevent root growth. The aboveground parts 
of living plants were removed from the PVC tubes and collars 
before each measurement. CO2 flux measured above the PVC tube 
represented Rh from microbial metabolism due to root exclusion, 
and that measured above the PVC collar included both Rh and Ra 

from soil microorganisms and plant roots, representing soil RS. Ra 

was calculated as the difference between RS and Rh. 
Oven-dried soil samples were ground and analyzed for total 

C, total N, ammonia NH4
+, and nitrate NO3

− contents by the 
Soil, Water, and Forage Analytical Laboratory (SWFAL) at Okla-
homa State University, Stillwater, OK, USA. A dry combustion C 
and nitrogen (N) analyzer (LECO, St. Joesph, MI, USA) was used 
to quantify total C and total N. Soil NH4

+ and NO3
− contents 

were measured by a Lachat 8000 flow-injection analyzer (Lachat, 
Milwaukee, WI, USA). 

DNA extraction and Illumina sequencing 
Soil DNA was extracted and purified according to the previ-
ous protocols [22]. DNA concentrations were quantified with 
PicoGreen using a FLUOstar OPTIMA fluorescence plate reader 
(BMG LabTech, Jena, Germany), and DNA purity was determined 
by the ratios of O.D. 260/280 nm and O.D. 260/230 nm using a 
NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies 
Inc., Wilmington, DE, USA). Because DNA yield showed strong, 
positive correlations with microbial C in soils [23–25] and  can  
reliably indicate microbial biomass across a wide range of soil 
types and ecosystems [26, 27], we used DNA concentration as a 
proxy of microbial biomass in this study. 

The V4 hypervariable region of bacterial 16S rRNA gene was 
amplified by PCR, using primers 515F (5′-GTG CCA GCM GCC 
GCG GTA A-3′) and 806R (5′-GGA CTA CHV GGG TWT CTA AT-3′) 
combined with adapter sequences and barcode sequences [28]. A 
total of 100 ng of amplicons from each sample were pooled and 
purified with QIAquick Gel Extraction Kit (Qiagen Inc., Venlo, The 
Netherlands). After purification, the amplicons were quantified 
in triplicate through PicoGreen, and used for sequencing library 
preparation following the standard Illumina protocol. The ampli-
con sequencing library was then sequenced on an MiSeq platform 
(Illumina) in 2 × 250 bp pair-end format. 

Raw reads were processed using usearch v11 [29]. After 
demultiplexing, forward and reverse sequences were merged 
using -mergepairs and primer-trimmed using -search_pcr2. 
The sequences were then quality filtered using -fastq_filter
-fastq_maxee 1.0. The sequences were dereplicated using
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-fastx_uniques with -sizeout -relabel Uniq. Exact amplicon 
sequence variants (ASVs) were generated using the UNOISE 
algorithm (i.e. -unoise3). ASV tables were created by mapping 
the raw sequence reads to the ASVs using -otutab with the -zotus 
and -strand options. The representative sequence of each ASV 
was assigned to a taxonomic lineage using Naive Bayes classifier 
against the SILVA ribosomal RNA (rRNA) database (release 138). 

Estimation of the rRNA operon copy number 
The rRNA operon copy number for bacterial ASV was estimated 
through the rrnDB (Ribosomal RNA Operon Copy Number 
Database) version 5.7 [30] based on their closest relatives with 
known rrn copy numbers, as described previously [31]. Specifically, 
each ASV was matched with the database from the lowest 
confident (> 50%) taxonomic rank. For ASVs with available child 
taxon matches, the mean rrn copy number of the child taxa 
was used, otherwise, higher rank matches were searched and 
the mean rrn copy number of the parent taxa for that ASV was 
assigned. We calculated the community aggregated (weighted 
mean) rrn copy number for each sample by taking the product of 
the estimated operon copy number and the relative abundance 
for each ASV, and summing this value across all ASVs in a sample. 
Namely, 

community average rrn copy number =
∑N 

i=1 Si∑N 
i=1 

Si 
ni 

, (1)  

where N is the number of ASVs in a sample, Si is the sequence 
abundance of ASVi, and  ni is the estimated rrn copy number of 
ASVi. 

GeoChip hybridization and data analyses 
GeoChip 5.0, a DNA microarray containing oligonucleotide probes 
for a large number of microbial functional genes [32], was used 
to assess the functional responses of microbial communities. 
Purified DNA extracted from each sample was labeled with Cy3 
using random primers, dried, rehydrated, and hybridized with 
GeoChip 5.0, as described previously [33]. Subsequently, slides 
were rinsed and scanned with a NimbleGen MS200 microarray 
scanner (Roche NimbleGen, Madison, WI, USA). Probe spots with 
a coefficient of variance (CV) > 0.8 were discarded. Raw signals 
were uploaded to Microarray Data Manager (http://ieg.ou.edu/ 
microarray) for data quality control and normalization. Samples 
from January to June and from July to December were hybridized 
in separate batches. The signal-to-noise ratio (SNR) was set to 7 
for January to June samples or 3.5 for July to December samples 
to minimize the batch effect. Spots with minimum intensity <100 
or detected in <50% of replicate samples were removed before sta-
tistical analyses. Both the universal standard and functional gene 
spot intensities were used to normalize the signals among arrays. 
Data were logarithmically transformed after quality control and 
normalization. 

Statistical analyses 
All statistical analyses were performed using R software 4.0.2 with 
the packages vegan [34] and ieggr, unless otherwise specified. We 
assessed the local temperature variability to divide the year-round 
data into cool and warm seasons. Briefly, the monthly air tem-
perature was fitted to a fifth-degree polynomial spline function, 
from which the first derivative was calculated representing air 
temperature change rates corresponding to each time point of 

the year. The fastest temperature rise occurred between Febru-
ary and March, while the fastest temperature decrease occurred 
between September and October. Therefore, January and February 
are considered the early cool season, March to September are 
considered the warm season, and October to December are con-
sidered the late cool season. As such, the warm season typically 
has monthly temperatures above ∼15◦C, whereas the cool seasons 
have monthly temperatures below 15◦C. 

Nonmetric multidimensional scaling (NMDS) was performed 
to determine microbial functional and taxonomic compositions. 
Microbial β-diversity was assessed by the Bray-Curtis distance 
metrics. Three complementary nonparametric analyses (Adonis, 
Mrpp, and Anosim) were used to detect the overall dissimilar-
ity of microbial functional and taxonomic compositions under 
warming treatment and in different seasons. The distances of 
paired warmed and control plots within each block were fitted to 
nonlinear quadratic regression. The student’s t-test was used to 
compare community average rrn copy numbers between warming 
and control samples in each season (n = 8 for the early cool season, 
28 for the warm season, and 12 for the late cool season). The 
logarithmic difference in community average rrn copy number 
was calculated with the following formula, 

ln 
rrn copy number of A 
rrn copy number of A′ , 

where a matching pair of samples A (warming) and A′ (control) 
was used. 

Pearson correlations were used to analyze the relationship 
between warming-induced changes in the community average 
rrn copy number and soil temperature. The response ratio anal-
ysis was used to evaluate the warming effects on functional 
genes at sub-category and probe levels. Spearman correlation was 
used to test the monotonic relationship between the response 
ratio of C decomposition genes and warming-induced changes 
in community average rrn copy number. Because response ratios 
of C decomposition genes were calculated on a monthly basis, 
pairwise logarithmic differences in community average rrn copy 
number were also averaged across 4 blocks for each month. The 
analysis of variance (ANOVA) was used to analyze the effects of 
warming and months on soil variables, RS, ecosystem fluxes, and 
community average rrn copy number. Partial Mantel tests were 
used to determine correlations between the relative abundance 
of functional genes and RS. 

Structural equation models (SEMs) were constructed with R 
package lavaan [35]. To ensure sufficient sample size for SEM 
analysis, samples from early and late cool seasons were combined 
and herein referred to as “the cool season” for simplicity. The ini-
tial model construction was guided by a hypothesis that warming 
influences ecosystem functions (RS and Rh) through alterations 
in environmental variables (soil temperature, soil moisture, NO3

− 

content, and soil pH), plant communities (GPP), and microbial 
communities (bacterial richness, community-level rrn copy num-
ber, and functional composition). The first-axis scores from NMDS 
were used to characterize the microbial functional composition, 
as it captured the primary variation in microbial functional com-
munities. We constructed an a priori model (Fig. S2) with all  
reasonable pathways, then pruned nonsignificant paths unless 
they held biological or ecological significance, and adjusted the 
model based on residual correlations. The procedure was repeated 
until the model showed sufficient fitting, reaching P-values of 
χ2-test >0.05 (that is, the predicted model and observed data 
are not significantly different), high GFI (≥0.90), and low RMSEA
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(≤0.06). Upon achieving a good model fit, we interpreted the 
path coefficients of the model and their associated P-values. A 
path coefficient is akin to the partial correlation coefficient that 
describes the direction and strength of the relationship between 
two variables. To quantify the contributions of warming and other 
predictors to RS/Rh variability, we calculated the standardized 
total effects by summing up the direct and indirect effects, where 
direct effects represent immediate variable impacts, and indirect 
effects trace through intermediary pathways, thus providing a 
comprehensive view of the ecosystem’s response dynamics. 

Simulations with TECO and Microbial-ENzyme 
Decomposition models 
The Microbial-ENzyme Decomposition (MEND) model [36] 
describes the SOM decomposition processes by explicitly rep-
resenting relevant microbial and enzymatic physiology. Model 
state variables, governing equations, component fluxes, and 
parameters are described in Table S5. The datasets (e.g. daily 
GPP, soil temperature, soil mofigsture, and Rh) used for data  
assimilation were reported in our previous study [18]. We 
incorporated the monthly data of microbial gene abundances 
associated with oxidative and hydrolytic enzymes into the 
model parameterization of MEND, generating a gMEND model. 
We selected eleven model parameters to regulate microbial 
processes, using default starting values [36]. These parameters 
include one parameter relevant to soil C input (f INP), three 
parameters relevant to enzyme production and turnover (rE, pEP, 
and fpEM), two parameters relevant to C flow to dissolved organic 
C (fD and gD), and five parameters relevant to microbial growth, 
maintenance, and dormancy (Vg, α, KD, β, and  ψA2D). 

The model parameters are determined by achieving high 
goodness-of-fits of model simulations against experimental 
observations. We implemented multiobjective calibration of 
model parameters [37]. Each objective evaluates the goodness-
of-fit of a specific observed variable such as Rh or microbial 
gene abundances (Table S6). The parameter optimization is to 
minimize the overall objective function (J) computed as the 
weighted average of multiple single objectives 

J = 
m∑

i=1 

wi · Ji (2) 

m∑
i=1 

wi = 1 with  wi ∈ [0, 1] , (3)  

where m denotes the number of objectives, and wi is the weighting 
factor for the ith (i = 1,2, . . .  , m) objective  (Ji). In this data assim-
ilation, Ji (i = 1, 2, 3) is used to represent the objective function 
value for three different variables, namely Rh, EnzCo, and EnzCh. 
Because we have far more Rh observations (e.g. 74 in control 
or warmed cases) than the other variables and Rh is the most 
important variable in soil C studies, we assigned a much higher 
weighting factor to Rh than the other two objective functions 
(EnzCo and EnzCh), i.e. w1 = 3/5  and  w2 = w3 = 1/5.  

As the overall objective function J is minimized in the parame-
ter optimization process, the individual objective function Ji may 
be calculated as (1 − R2) or (1 − r). The coefficient of determination 
(R2, Eq.  4) was used to evaluate Rh because it was frequently 
measured, and the absolute values could be directly compared 
between observations and simulations. R2 quantifies the pro-
portion of the variance in the response variables that is pre-
dictable from the independent variables. The correlation coeffi-
cient (r, Eq.  5) between logarithmic transformed observations and 
simulations was used to evaluate the goodness-of-fit for EnzCo 
and EnzCh because the gene abundances from metagenomics 

or GeoChip analysis cannot be directly compared to the enzyme 
concentrations or activities in the MEND model. A higher R2 

(R2 ≤ 1) or r value (|r| ≤1) indicates better model performance. 
n is the number of data, Yobs are observed values, and Ysim are 
simulated values. Yobs is the mean value for Yobs and Ysim is the 
mean value for Ysim 

R2 = 1 −
∑n 

i=1

[
Ysim

(
i
) − Yobs

(
i
)]2

∑n 
i=1

[
Yobs

(
i
) − Yobs

]2 (4) 

r =
∑n 

i=1

[
Yobs

(
i
) − Yobs

]
·
[
Ysim

(
i
) − Ysim

]
√∑n 

i=1

[
Yobs

(
i
) − Yobs

]2 ·
√∑n 

i=1

[
Ysim

(
i
) − Ysim

]2 
. (5)  

Model parameters for warming and control samples were 
determined with the Shuffled Complex Evolution (SCE) algorithm, 
and parameter uncertainty was quantified by the Critical 
Objective Function Index (COFI) method [36]. The COFI was 
computed as Jcr 

Jcr = Jopt ·
(

1 + 
p 

n − p 
· Fα,p,n−p

)
, (6)  

where Jopt denotes the minimum objective function value, n is the 
number of observations, P is the number of calibrated parameters, 
and Fα,p,n−p denotes the value of the F-distribution, given α = 0.05 
and the degree of freedom (p) and  n–p. The feasible parameter 
space was determined by the parameters resulting in the total 
objective function values between Jopt and Jcr. 

The data assimilation generated two sets of best-fit parame-
ters—one for the control and the other for the warming samples. 
We utilized the two sets of model parameters to conduct sim-
ulation experiments using 2010–2016 forcing data (soil temper-
ature, soil moisture, and GPP). The resulting seasonal dynamics 
of intrinsic microbial CUE (referred to as the Yg parameter in 
MEND) for the year 2012 were reported for both the warming and 
control conditions. Additionally, we also reported the temperature 
sensitivity of intrinsic microbial CUE, which was calculated as 
the slope of the linear regression between Yg and temperature 
(known as the kYg parameter) for both the warming and control 
treatments. 

The nonmicrobial Terrestrial ECOsystem model (TECO) is a 
CENTURY-type C pool and flux model, which simulates ecosystem 
C dynamics under various climatic conditions [38]. C dynamics in 
the TECO model can be described by a set of first-order ordinary 
differential equations, wherein turnover rates are modulated by 
soil temperature (T) and moisture (W) [39]. The prior ranges of 
transfer coefficients, turnover rates, and environmental scalars 
were determined based on previous studies [39, 40]. The poste-
rior probability distributions of parameters were obtained using 
a Metropolis-Hastings (M-H) algorithm, a Markov Chain Monte 
Carlo (MCMC) technique, as previously described [39]. The TECO 
model simulated daily Rh for both warmed and control plots from 
2010 to 2016. Consistent with the implementation of gMEND, we 
estimated the TECO model performance by calculating the coef-
ficient of determination (R2) between the observed and simulated 
respiration. 

Results 
Changes in edaphic conditions, plants, and 
respiration by experimental warming 
Here, we carried out a field study with experimental warming 
in a native tallgrass prairie ecosystem in Oklahoma, USA.
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We conducted monthly soil sampling (0–15 cm depth) and 
measurements in four replicates of warmed and control plots 
throughout the year of 2012 (the third year of experimental 
manipulation; Fig. S1). Our study site has a temperate climate 
characterized by sporadic drought, mild to warm summers, and 
cool to cold winters. The site has a 7-month growing season, 
typically from March to September. Based on both the growing 
season and local temperature variability (Fig. S3), we divided the 
year-round data into three seasons (i.e. the early cool season from 
January to February, the warm season from March to September, 
and the late cool season from October to December). This division 
is rooted in the recognition that microbial activity and plant phe-
nology are closely tied not just to the static state of temperature 
but to the transitions and variability that define seasonal changes 
[41]. However, we did not combine the early and late cool seasons 
since the late cool season is directly impacted by plant litter 
from the warm season of the same year but the early season is 
impacted by plant litter from the preceding year, which means 
the soil microorganisms and how they handle C might not be the 
same in these two periods. Monthly mean soil temperature fluctu-
ations were significant (P < 0.001) throughout the year (Table S1). 
The early cool season had an average background soil tempera-
ture of 6.5◦C, and that of the warm season was 21.9◦C. The late cool 
season had an average background soil temperature of 12.8◦C. 

Global warming was simulated by heating the air and soils 
with infrared heaters, which increased the average annual soil 
temperature by 4.3◦C (P < 0.001; Table S1 and Fig. S4). Specifi-
cally, warming increased the average soil temperature by 4.5◦C 
in the warm season, higher than those in the early cool season 
(3.6◦C) and the late cool season (4.1◦C). This difference could be 
attributed to heat loss in the cool seasons derived from strong 
winds and lower ambient temperature. Due to the high water-
holding capacity of plants, the warming treatment did not alter 
soil moisture in the warm season, but significantly reduced soil 
moisture during the early cool season (from 10.7% to 5.9%) and 
the late cool season (from 7.5% to 5.3%). Although the soil NH4

+ 

content was similar across those plots (Table S1), the NO3
− con-

tent was considerably higher in warmed plots than control plots 
(an average of 6.29 mg/kg in control plots and an average of 
10.77 mg/kg in warmed plots, P = 0.001). The increase in NO3

− 

content by warming was mainly observed in the late cool season 
(Table S1). 

Warming increased Rh by 54.4% throughout the year, while 
reducing Ra by 33.4% (P < 0.001, Table S1 and Fig. 1). As a result, 
RS remained unchanged by warming due to an offset between the 
increasing Rh and decreasing Ra (P > 0.050, Table S1 and Fig. 1). In 
addition, no significant warming effect was observed for ecosys-
tem respiration (Re), net ecosystem exchange (NEE), or gross pri-
mary production (GPP) (P > 0.050; Table S1). In addition, almost 
all soil climatic, physiochemical, plant, and respiration variables 
varied across months (P < 0.050, Fig. S4), except for total nitrogen 
(N) content. In warmed plots, we observed early autumn peaks 
of GPP and Re (Fig. S4H and J). The warming treatment also 
lowered spring peaks of GPP and Re in March, suggesting that 
warming could impose stress on plant communities in temperate 
grasslands, resulting in inhibited plant growth and productivity. 

Microbial functional traits at the gene level 
Soil ecosystem functioning is closely related to microbial func-
tional traits, such as genes or enzymes, which are often decoupled 
from taxonomy [42]. Here, we employed a microarray-based tool 
named GeoChip 5.0 to analyze 1010 key functional genes asso-
ciated with C, N, and phosphorus cycling, electron transfer, and 

organic remediation [32]. Microbial community functional com-
positions were markedly different between warmed and control 
samples and among months, which were verified by all three 
different complementary nonparametric multivariate statistical 
tests (Adonis, ANOSIM, and MRPP; Table S2). There was a signif-
icant interactive effect between warming and time (P = 0.001 for 
Warming × Month) on microbial functional composition, unveil-
ing the season-dependent changes in the abundances of certain 
genes and possibly the microorganisms that host them. 

Warming primarily affected overall microbial functional 
compositions during cool seasons, explaining 20.8% to 23.5% of 
compositional variations (Fig. 2A). In sharp contrast, the warming 
effect was negligible and insignificant during the warm season. 
We then determined the differences in microbial functional 
compositions between paired warmed and control plots on a 
monthly basis (Fig. 2B). The differences exhibited a nonlinear, 
U-shaped relationship (R2 = 0.65, P = 0.009), with the largest 
differences observed between warming and control during the 
cool months. The relative abundances of genes associated with 
C decomposition, measured by GeoChip, were either increased 
or unchanged by warming, with the largest increases observed 
in the cool seasons (the response ratio analysis at the 95% 
confidence interval, Fig. 2C). Examples of increased genes include 
amyA encoding amylase that hydrolyzes starch and glycogen, 
xylanase that hydrolyzes hemicellulose, cellobiase that hydrolyzes 
cellobiose to glucose, chitinase that degrades chitin, pectinase 
that degrades pectic substances, glyoxal oxidase (glx) associated 
with lignin decomposition, and cutinase associated with cutin 
decomposition. Relative abundances of almost all genes were 
increased (P < 0.050) in the cool seasons, except for a few genes 
encoding recalcitrant C decomposition (e.g. mnp associated with 
lignin decomposition). Conversely, only one gene (i.e. amyA) was  
increased (P < 0.050) in relative abundance by warming in the 
warm season, whereas others remained unchanged (Fig. 2C). 

We examined functional genes at the probe level, as GeoChip 
contains multiple oligonucleotide probes for detecting sequence 
variants of the same functional gene [32]. A total of 61 569 
microbial functional gene probes were detected. The seasonal 
dependence of warming-induced stimulation of microbial C-
decomposing gene abundances was still evident, as the percent-
ages of significant warming-stimulated (i.e. response ratio > 0, 
P < 0.050) gene probes were much higher in the cool seasons 
(80.5% in the early cool season and 86.1% in the late cool season) 
than in the warm season (8.7%) (Fig. 2D and Table S3). 

To determine how changes in microbial carbon-decomposing 
traits by warming affect RS, we performed partial Mantel tests 
to link the relative abundances of microbial carbon-decomposing 
genes with RS, controlling for the effect of other confounding 
variables (Table S4). Most C-decomposing genes in both warmed 
and control plots were correlated with Rh and RS (P < 0.050) but not 
Ra (P > 0.400). Larger correlation coefficients were found between 
C-decomposing genes and Rh than RS (r = 0.41–0.61, P < 0.013 for 
Rh; r = 0.38–0.46, P < 0.022 for RS). 

Microbial functional traits at the community level 
The average rRNA operon (rrn) copy number is a community-level 
functional trait that reflects microbial life strategy, as it correlates 
with maximal growth rate in response to resource availability 
[43]. To estimate community rrn copy numbers, we carried out 
16S ribosomal RNA gene-based amplicon sequencing to profile 
microbial taxonomic compositions, obtaining a total of 44 571 
amplicon sequence variants (ASVs) for 96 samples after randomly 
resampling 16S rRNA gene sequences to the same depth (21 567
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Figure 1. Temporal changes of soil respiration and its components under warming and control. (A) Soil respiration (RS). (B) Soil heterotrophic 
respiration (Rh). (C) Soil autotrophic respiration (Ra). The data are segmented into the early cool season (January to February), warm season (March to 
September), and late cool season (October to December), and comparisons are made across these periods as well as throughout the year. Significant 
changes in respiration rates under warming compared to control conditions are indicated, with statistical analyses performed using paired t-tests. All 
exact values and P-values, for both significant and nonsignificant changes, are detailed in Table S1. 

sequences per sample, the minimum sequence count across all 
samples). Similar to observations in microbial functional compo-
sitions, significant treatment, month, and interactive effects were 
detected for microbial taxonomic compositions, with substantial 
seasonal variations surpassing those of warming ( Table S2). Varia-
tions in microbial taxonomic compositions explained by warming 
were much greater in cool seasons than warm season (Fig. S5), 
suggesting that the magnitudes of warming effects on microbial 
taxonomic compositions were more significant in cool seasons. 

Warming affected the relative abundances of soil microbial 
taxa (Fig. S6A). Specifically, warming increased (P < 0.050) 
the relative abundances of Firmicutes, but decreased those 
of Actinobacteriota, Planctomycetota, and Myxococcota across all 
months (Fig. S6B). During early and late cool seasons, we 
observed decreases in relative abundances of Acidobacteriota 
and Planctomycetota (Fig. S6C and E). In contrast, in the warmer 
season, we observed a decrease in the relative abundances of 
γ -Proteobacteria, Bacteroidota, and  Planctomycetota, along with an 
increase in those of Actinobacteriota and Chlorof lexi (Fig. S6D). 

We calculated the average rrn copy number of each bacterial 
community and found that it was increased by warming only 
during cool seasons (Fig. 3A), despite large monthly variations 
(P = 0.005; Fig. S7A). There was a negative correlation (r = −0.63, 
P = 0.026) between the relative change in the average rrn copy 
number under warming and background soil temperature 
(Fig. 3B), suggesting that the warming effect on the average 
rrn copy number was proportional to temperature anomalies. 
However, the average rrn copy number decreased with soil 
temperature only in warmed plots, but not in control plots 
(Fig. S7B), implying that microbial communities under warming 
were more sensitive to rapid, local temperature variability. In 
addition, changes in average rrn copy number were positively 
correlated with those of C-decomposing gene abundances at 
marginal significance (r = 0.55, P = 0.067, Fig. S7C), highlighting 
a linkage between gene-based functional capability and a 
community-aggregated functional trait. 

The community-level microbial metabolic quotient, defined 
as Rh per unit of microbial biomass, is a crucial determinant 
of soil C turnover [44]. Soil microbial biomass, represented 
by DNA yield, remained unchanged by warming (P > 0.050, 
Fig. S8A and B) despite significant monthly variations (P = 0.003, 
Fig. S8A). Microbial biomass peaked in April and October, 
trailing one month behind the peaks of plant GPP, showing a 

delayed response of belowground communities to changes in 
aboveground ecosystems. We found marked monthly variations 
in microbial metabolic quotients (P < 0.001, Fig. S8C). Warming 
increased microbial metabolic quotients (P < 0.001), and its 
effect varied with the time of year (P = 0.081 for warming × 
month interaction). The warming-induced increase in microbial 
metabolic quotient was most prominent during cool seasons, 
with a 113.4% increase in the early cool season (P = 0.046) and 
a 69.1% increase (P = 0.006) in the late cool season (Fig. S8D). In 
contrast, the magnitude of microbial metabolic quotient was only 
increased by 37.3% during the warm season (P = 0.019), revealing 
a lower sensitivity of soil microbial community and soil C to 
warming. 

Ecosystem model evaluation 
Ecologists face a formidable challenge in integrating microbial 
community information, especially omics data, into ecosystem 
models [45]. Our previous efforts demonstrated that the gMEND 
model, which was developed by integrating functional gene abun-
dance into an ecosystem model named the Microbial-ENzyme 
Decomposition Model (tMEND) could improve parameterization 
and the model’s performance [18]. In this study, we used monthly 
gene abundance data to calibrate the gMEND model, alongside 
other input data such as soil temperature, soil moisture, GPP, and 
Rh. The MEND model explicitly represents microbial physiology 
and soil organic matter (SOM) decomposition catalyzed by oxida-
tive or hydrolytic enzymes. Given that the model necessitates 
absolute quantitative data on these enzymes for SOM decomposi-
tion, we utilized GeoChip-detected abundances of corresponding 
functional gene data. We constrained gMEND by achieving the 
highest correlation between the modeled enzyme concentrations 
and GeoChip-detected oxidative and hydrolytic gene abundances, 
while simultaneously attaining the best fit between observed and 
simulated Rh. We observed strong correlations between simulated 
enzyme concentrations and GeoChip-detected gene abundances 
under both control (r = 0.56 for oxidative enzymes and r = 0.64 for 
hydrolytic enzymes) and warming (r = 0.76 for oxidative enzymes 
and r = 0.86 for hydrolytic enzymes, Fig. S9A–D). This indicated 
good agreements on the monthly variabilities between simulated 
enzyme concentrations and GeoChip-detected gene abundances. 

The gMEND-simulated Rh agreed well with observed Rh 

(R2 = 0.54 for warming samples and 0.60 for control samples, 
Fig. 4A). Moreover, gMEND outperformed tMEND in constraining
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Figure 2. Warming effects on microbial functional composition and C-decomposing genes. (A) the percentage of variation in microbial functional 
compositions explained by warming in the early cool season (January to February), warm season (March to September), and late cool season (October 
to December), as tested by Adonis. Significances are indicated by ∗∗ when P < 0.010 and ∗ when P < 0.050. (B) Dissimilarities of microbial functional 
compositions between warming and control on a monthly basis. The dissimilarity values of paired warmed and control samples were fitted to 
nonlinear quadratic regression. The R2 and P-values were calculated, reflecting the variance explained by the regression. Distances were calculated 
based on the Bray-Curtis metric. (C) Response ratios showing changes in the abundance of functional genes associated with C decomposition between 
warmed and control samples in the early cool season (January to February), warm season (March to September), and late cool season (October to 
December). C substrates are arranged in the order from labile C to recalcitrant C. Error bars indicate 95% confidence intervals of abundance differences 
between warmed and control samples. (D) Percentages of significant changes of C-decomposing gene probes by warming. Probes are classified into 
four categories: unique under warming (probes detected only in warmed samples, and those that were likely present in control samples but below the 
level of detection), increased under warming (the response ratio > 0, P < 0.050), increased under warming (the response ratio > 0, P < 0.050), and unique 
under control (probes detected only in control samples, and those that were likely present in warmed samples but below the level of detection). 
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Figure 3. Warming effects on the community-level functional traits of microbial communities. (A) The average rrn copy number, calculated as the sum 
of the abundance weighted rrn copy number of each ASV in a sample and averaged in the early cool season (January to February), warm season (March 
to September), and late cool season (October to December). Error bars represent standard errors. The differences between the control and warming 
treatment were tested with paired t-tests. (B) Correlation between soil temperature and relative change in community average rrn copy number by 
warming. Soil temperatures were measured in control plots. Relative changes in community average rrn copy number by warming were calculated as 
the logarithmic differences between average rrn copy numbers of paired samples between warmed and control plots. Bidirectional error bars denote 
standard errors. The dashed horizontal line represents the relative change in rrn copy number equals 0 (i.e. rrn copy number unchanged by warming). 
Pearson correlation coefficient (r) and  P-value are shown. 

model parameters under both warming and control, resulting in 
a significant reduction in the average coefficient of variation (CV) 
of model parameters ( −19.8% under control and − 29.7% under 
warming, Fig. S9E). gMEND also improved Rh flux fitting by 7.9% 
under control and by 20.7% under warming compared to a widely 
used terrestrial ecosystem model named TECO without microbial 
parameters (Fig. S9F and G). 

Microbial CUE determines the partitioning of substrate car-
bon between microbial biomass and CO2 production. Because 
we did not experimentally measure CUE, we estimated it using 
parameter Yg in the best model parameter sets under warming 
and control. The estimated CUE ranged between 0.39 and 0.47 
(Fig. 4B). However, its “apparent” temperature sensitivity, which 
incorporated both direct and indirect environmental influences 
on microbial CUE [45], was reduced by warming (Fig. 4B, inset). As 
a result, the difference in CUE between warmed and control plots 
switched from being negative to being positive at ∼15.7◦C, and 
was strongly and positively correlated with ambient temperature 
(r = 0.80, P < 0.001, Fig. 4C). 

Explaining Rh and RS dynamics from a trait 
perspective 
RS was positively correlated with soil moisture (r = 0.44), gross 
primary productivity (GPP, r = 0.34), and soil pH (r = 0.34), but nega-
tively correlated with NO3

− content (Fig. 5A). Microbial functional 
composition showed positive associations with both RS (r = 0.25) 
and Rh (r = 0.32). Soil temperature (r = 0.39), precipitation (r = 0.39), 
and soil pH (r = 0.24) were also positively associated with Rh. To  
further understand the mechanisms behind these correlations 
and to discriminate the direct and indirect effects of warming 
on Rh and RS, environmental variables, and microbial taxonomic 
and functional traits (community richness, rrn copy number, and 
microbial genes comprising functional compositions), we per-
formed structural equation modeling (SEM) for both the cool 
(Fig. 5B) and warm seasons (Fig. 5C). In the cool season, warm-
ing directly increased soil temperature (β = 0.76, P < 0.001) and 
NO3

− content (β = 0.55, P = 0.001) (Fig. 5B). A positive linkage was 
observed between microbial community rrn copy number and 
soil NO3

− content (β = 0.80, P < 0.001), and a negative linkage with 
soil moisture (β = −0.29, P = 0.045). In the warm season, although 

warming similarly affected soil temperature and NO3
− content, 

the associations between environmental factors and microbial 
traits were less significant and generally weaker (Fig. 5C). Rh was 
directly influenced by bacterial richness (β = −0.57, P = 0.007) and 
soil pH (β = 0.52, P = 0.014) in the cool season, but directly influ-
enced by soil moisture (β = 0.46, P = 0.001) in the warm season. 
RS was directly affected by an array of biotic and abiotic factors, 
including soil temperature, moisture, NO3

− content, microbial 
functional composition, and GPP (Fig. 5B and C). Among them, 
RS exhibited a strong positive correlation with GPP in the cool 
season (β = 0.51, P < 0.001), a relationship that was not evident 
in the warm season (P = 0.121). Additionally, the RS linkage with 
microbial functional compositions was stronger in the cool season 
than in the warm season (β = 0.67 vs 0.47). Accordingly, the SEMs 
explained a greater proportion of the variation in Rh and RS to 
warming in the cool season (31.9% for Rh, 64.1% for RS, Fig. 5B) 
compared to the warm season (23.1% for Rh, 53.6% for RS, Fig. 5C). 

SEM analysis revealed that warming played a more pre-
dominant role in stimulating Rh in the cool season than in 
the warm season (standardized total coefficient = 0.17 vs 0.07; 
Fig. 5D) through both direct and indirect pathways. In contrast, 
RS in warm months was more shaped by warming-induced 
changes compared to that in the cool months (standardized total 
coefficient = −0.16 vs −0.39; Fig. 5D). 

Discussion 
Warming-induced changes in edaphic 
conditions, plants, and respiration 
The increased Rh by warming throughout the year (Fig. 1) was con-
sistent with the predictions from the Metabolic Theory of Ecology 
[46] and a recent analysis showing that global Rh has increased 
steadily since 1987 [47]. In contrast, Ra decreased with warming 
across all seasons (Fig. 1). However, the underlying mechanisms 
driving decreased Ra may vary. In cooler seasons, such as the 
early and late cool seasons, the decrease in Ra in response to 
warming could be attributed to warming-induced water stress, as 
evidenced by significant reductions in soil moisture of 45.1% in 
the early cool season and 29.4% in the late cool season (Table S1). 
Plant growth processes including photosynthesis, respiration, and
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Figure 4. Model performance and model-derived microbial C use efficiency (CUE) changes. (A) Comparison between gMEND-simulated and observed 
Rh under warming and control (R2 denotes the coefficient of determination). (B) Simulated daily microbial CUE in 2012, as determined by the 
estimated C use efficiency (Yg(Tref)), the slope for Yg dependence on temperature, and soil temperature. The inset graph shows the modeled 
temperature sensitivity of microbial CUE (i.e. the slope for Yg dependence on temperature) under warming and control. (C) The difference in microbial 
CUE between warming and control samples as a function of soil temperature. Soil temperatures shown here are soil temperatures in the control plots. 
Pearson correlation coefficient (r) and  P-value are shown. 

transpiration have been shown to have parabolic temperature 
response curves with ecosystem-dependent optimal temperature 
[ 48]. During the warm season, high ambient soil temperature 
may be the reason that limits plant growth and Ra, as warming 
lowered the spring and autumn peaks of Re and GPP (Fig. S4), in 
addition to the early autumn peaks of GPP and Re in warmed 
plots (Fig. S4H, J) that were consistent with the previous find-
ing that climate warming affects autumn senescence [49]. The 
elevated soil temperatures associated with warming scenarios 
could exacerbate heat stress, leading to further declines in Ra. The  
disparity in responses between Rh and Ra to warming suggests 
the involvement of distinct mechanisms in microbial and plant 
communities. The increase in Rh by warming likely indicates 
heightened soil C mineralization and subsequent C loss facilitated 
by microbial decomposition. 

Microbial functional traits 
GeoChip has been successfully used in a wide range of habitats 
[50–52]. Direct comparisons between GeoChip and metagenomics 

shotgun sequencing technologies have consistently yielded sim-
ilar results [32, 52]. GeoChip offers a distinct advantage in quan-
titative measurements, displaying comparable accuracy to real-
time PCR and higher accuracy than shotgun sequencing [53, 54]. 

Compared to the warm season, the higher percentages of sig-
nificant warming-stimulated gene probes in the cool seasons 
(Fig. 2D and Table S3) agree with previous studies conducted at 
both local and global scales showing that the abundances of 
microbial C-decomposing genes responded positively to warming 
in soils from cold climates [52, 55]. It suggests that the clima-
tological temperature control on C turnover is more sensitive in 
soils from cold climates than those in warm climates, as observed 
previously [56]. Due to close linkages between C-decomposing 
genes and RS (Table S4), warming can potentially accelerate soil 
C loss derived from microbial decomposition. As a result, soil 
C pools may be particularly vulnerable to warming during cool 
seasons. 

Similar to observations in microbial functional compositions, 
significant treatment, month, and interactive effects were 
detected for microbial taxonomic compositions, with substantial
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Figure 5. Relationships among environmental variables, microbial communities, and respiration. (A) Spearman correlations among environmental 
variables (temperature, precipitation, pH, soil moisture, NO3

−, and total C), microbial functional traits (functional composition and community 
average rrn copy number), gross primary productivity (GPP), Rh and RS. (B and C) Structural equation models (SEM) to assess the relationships among 
environmental variables, microbial functional traits, gross primary productivity (GPP), Rh and RS in (B) the cool season and (C) the warm season. Solid 
lines represent significant direct effects (P < 0.050), while dashed lines represent insignificant paths. Numbers adjacent to the arrow are the 
standardized path coefficients (for significant pathways only), and arrow width indicates the proportional strength of the pathway. R2 indicates the 
proportion of variations explained for the dependent variable in the model. The goodness-of-fit of the SEM was estimated by the chi-square (χ2) test  
and root mean square error of approximation (RMSEA). (D) Standardized total effects (direct plus indirect effects) derived from SEMs. 

seasonal variations surpassing those of warming ( Table S2). These 
results were concordant with previous studies showing that the 
effects of climate change treatments, e.g. warming [10, 57, 58], 
intensified precipitation [10], drought, nitrogen addition, and their 
interactions [9] on microbial communities were subtle compared 
with pronounced seasonal patterns, and that warming effects 
varied substantially with sampling time. 

Warming might create more or alternative niche space [59, 
60], eliciting the selection of microorganisms with particular 
traits that translate into life strategies. During early and late 
cool seasons, there were decreases in relative abundances of 
Acidobacteriota and Planctomycetota (Fig. S6C and E), which are 

typical oligotrophs characterized by low rrn copy numbers [61, 
62]. Similarly, experimental warming decreased the relative 
abundance of Acidobacteriota in the continuous permafrost 
region of Northeastern China [63]. The relative abundance 
of γ -Proteobacteria, generally regarded as copiotrophic and 
characterized by high rrn copy numbers [64], was decreased in the 
warmer season (Fig. S6D). In contrast, the relative abundance of 
Actinobacteriota a typical oligotrophic phylum [65], was increased 
(Fig. S6D), which was also observed in other ecosystems [63]. 

The average rrn copy number decreased with soil temperature 
only in warmed plots, but not in control plots (Fig. S7B), likely 
owing to diversity loss [8] and higher species turnover rate [66]
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elicited by warming. This finding was consistent with previous 
studies in forest soils that revealed negative correlations between 
community rrn copy number and temperature [59, 67]. In addition, 
changes in average rrn copy number were positively correlated 
with those of C-decomposing gene abundances (Fig. S7C), indicat-
ing that warming increased the number of rrn copies in microor-
ganisms with higher abundances of C-decomposition genes. 

The warming-induced increase in microbial metabolic quotient 
was most prominent during cool seasons (Fig. S8D). Consistently, 
a positive relationship between microbial metabolic quotient and 
soil temperature was theoretically predicted and experimentally 
observed [68]. Multiple mechanisms contribute to the warming 
effect because warming accelerates protein turnover and micro-
bial metabolic activity [69], releases C more rapidly from soil 
microorganisms by increasing the activity of microbial predators 
and bacteriophages [70], and shifts microbial community com-
position towards fast-growing species as observed in our study 
(Fig. 3A). 

Ecosystem model and SEM analyses 
The estimated CUE ranged between 0.39 and 0.47 (Fig. 4B), which 
aligned closely with soil microbial CUE measurements under in 
situ conditions using 18O isotope tracers or through stoichiometric 
modeling [71–73]. Microbial CUE was lower in warmed plots than 
control plots under soil temperatures of 15.7◦C (Fig. 4C), which 
fell within the range of average soil temperature during the cool 
seasons. The lower CUE under warming in cool seasons corre-
sponds with higher community average rrn copy number (Fig. 3A) 
and relative abundances of C-decomposing genes (Fig. 2C), in 
support of the growth rate–efficiency tradeoff in heterotrophic 
metabolism [74]. Our finding that warming led to a decrease in 
microbial CUE during cooler months, echoing theories of elevated 
temperatures boosting metabolic energy needs and thus reducing 
CUE [71, 75]. In contrast, winter warming increased the microbial 
CUE in subarctic regions [76]. This discrepancy may arise from 
substantial increases in the number and intensity of freeze– 
thaw cycles induced by winter warming in subarctic areas, which 
selected for a more resilient community with higher CUE and 
growth rate [76]. These variable responses underscore the critical 
role of local environments in shaping microbial adaptation to 
climate change. 

SEM analysis revealed that microbial community rrn copy 
number was positively linked to soil NO3

− content but negatively 
linked to soil moisture (Fig. 5B), suggesting microbial adjustment 
in response to dynamic moisture and resource conditions [43]. 
The warming effects on Rh and RS were distinct (Fig. 5D), which 
could be attributed to the contrasting responses of Ra and Rh to 
warming. Due to the infrequent and highly variable fine-scale 
measurements of Rh, our findings contribute to the ongoing 
discussion regarding its temperature sensitivity, demonstrating 
that Rh is likely more responsive to warming during cooler 
months. This response could amplify the positive feedback loop 
between soil carbon dynamics and the atmosphere. Our results 
also support the idea that current Rh and RS models based on 
fixed parameters (e.g. the fixed temperature in an exponential 
function) are inadequate for describing the respiration response. 
Without accounting for higher temperature sensitivity in cool 
months, Earth system models will likely underestimate Rh rates 
provoked by warming, particularly in those periods. 

Our observations lend support to the growing body of evidence 
that microbial activity and associated functional traits persist 
and may even intensify during the cooler months, despite tradi-
tionally being considered periods of reduced biological activity 

[77–79]. The enhanced temperature sensitivity of soil Rh observed 
in our study is unlikely to be caused by temperature-specific 
differences, as warming increased the average soil temperature 
more in the warm season than in the cool seasons (Table S1 
and Fig. S4). Instead, the significant reductions in soil moisture 
during the early and late cool seasons, combined with increased 
NO3

− content in the late cool season, suggest that these factors 
substantially contribute to the observed seasonal patterns in 
microbial and ecosystem responses to warming [37]. Climate-
mediated increases in nutrient availability for soil microbes 
were particularly evident in conjunction with the soil freezing– 
thawing cycles [80, 81]. In addition, the presence of a distinctive 
microbiome capable of rapid growth and rapid substrate 
utilization even under cold soil temperature regimes could also 
be attributable [82]. Our comprehensive, multifaceted approach 
delineates the taxonomic and functional attributes of an active 
and responsive soil microbiome, concurrently presenting data 
that connect nutrient dynamics to Rh variability. By synthesizing 
time-series analyses with a functional trait-based framework, our 
research critically advances the understanding of microbial activ-
ity in response to climatic warming. The integration of functional 
gene data into ecosystem models propels our comprehension of 
microbial functional potential, thus considerably enhancing the 
predictability of ecological responses to climate change. Such 
methodological innovation in incorporating microbial dynamics 
bridges a gap not fully explored by prior studies and stands to 
significantly influence future ecosystem modeling endeavors. 

Conclusion 
Here, our time-series analyses of respiration, microbial life strat-
egy, metabolic quotient, C-decomposing potential, and CUE sug-
gest greater sensitivities of Rh and RS to experimental warming 
in the cool season than in the warm season. Despite that we 
observed no changes in total soil C stock since it is a vast reservoir 
that buffers short-term fluctuations, it is likely that the detected 
changes in Rh and RS will eventually affect the long-term balance 
of soil C, especially as such periods extend or intensify with 
ongoing global warming. 

Warming increased the average community rrn copy number 
and the relative abundances of functional genes involved in C 
degradation in the cool seasons, linking microbial functional traits 
to Rh and RS. To accurately predict ecosystem responses to climate 
warming, our study identified key controls of microbial functional 
traits, going beyond temperature, to be considered in Earth system 
models. Our findings also challenge the common practice of 
analyzing soil microbial communities only during plant growth 
season by emphasizing the importance and unique characteris-
tics of soil microbial communities in the cool season. 
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