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ABSTRACT The soil microbiome is a driver of nitrous oxide (N2O) emissions in terrestrial
ecosystems. Identifying the core microbiome of N2O emissions and its temperature sensi-
tivity from trillions of soil microorganisms is a great challenge and is essential to improving
the predictability of soil-climate feedback related to increasing temperature. Here, the inte-
grated soil microbiome covering archaeal, bacterial, fungal, algal, and microfaunal com-
munities was studied to disengage the potential linkage with its N2O emissions and its
temperature sensitivity in paddy fields by hunting for core species pairs. The results
showed that between-group interactions of core bacterial and archaeal members and the
within-group interactions of core bacterial members jointly contributed to the N2O emis-
sions and its temperature sensitivity. The contribution of between-group interactions (32
to 33%) was greater than that of within groups (10 to 18%). These results suggested that
N2O emissions and their fluctuations related to climate warming are affected by the
within- and between-group interactions of the soil microbiome. Our results help advance
the knowledge on the importance of microbial keystone species and network associations
in controlling N2O production and their responses to increasing temperature.

IMPORTANCE Soil microorganisms drive emissions of nitrous oxide from soils; this is a
powerful greenhouse gas and the dominant ozone-depleting agent. N2O emissions can be
partly predicted from soil properties and specific microbial groups, whereas a possible role
of below-ground microbial interactions has largely been overlooked. Here, the integrated
soil microbiome covering archaeal, bacterial, fungal, algal, and microfaunal communities
was studied to disengage the potential linkage with the N2O emissions and temperature
sensitivity of the microbiome in paddy fields by hunting for core species pairs. The results
showed that between-group interactions of core bacterial and archaeal members and the
within-group interactions of core bacterial members jointly contributed to the N2O emis-
sions. The contribution of between-group interactions (32 to 33%) was greater than that
of within-group interactions (10 to 18%). Our results help advance the knowledge on the
importance of microbial keystone species and interactions in controlling N2O production
and their responses to increasing temperature.

KEYWORDS climate warming, soil biome, microbial interactions, core microbiome,
greenhouse gas emission, temperature sensitivity

Nitrous oxide (N2O) is one of the most important molecules associated with both global
warming and ozone depletion, and it can stay in the atmosphere for more than 100

years (1). N2O emissions from agricultural soils account for approximately 50% of global
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anthropogenic emissions (2, 3). The key multiple pathways of N2O production and consump-
tion include ammonia oxidation, nitrifier denitrification, nitrite oxidation, heterotrophic deni-
trification, anammox, and nitrate ammonification, and the most predominant sources of N2O
emissions from soil ecosystems are the nitrification-related pathways and heterotrophic deni-
trification (4, 5). Abundances of denitrifying genes, such as nirS, nirK, and nosZ, have been
used as proxies for biological N2O turnover in soils (6, 7). Previous work demonstrated that
N2O emission rates can be explained;68% by the abundance and diversity of nitrifiers and
denitrifiers (8). However, a complex of biotic and abiotic processes is involved in N2O emis-
sions via their effects on nitrifiers and denitrifiers, most of which remain unclear.

First, although nitrification and denitrification are highly specialized N2O-producing
processes, the entrance of inorganic N (e.g., ammonia) in the system partly depends on
other soil processes, such as organic matter decomposition and mineralization, which are
driven by a highly diverse group of soil organisms. For example, it was reported that the
competition for nitrogen among coexisting Thaumarchaea, Nitrospira, and methanotrophs
can influence autotrophic nitrification (9). Second, microbial N2O-producing processes can
also be driven by the complex microbial interactions within the soil food web. Microfauna
such as nematodes and protozoa promote soil N mineralization by predating bacteria or
fungi and thereby releasing N from microbial necromass (10, 11). In addition to the above-
mentioned between-group interactions, microfauna can further affect the intensity of
within-group interactions of microbes. For instance, indiscriminate grazers of fungi could
reduce the amount of competition between fungi by ingesting entire microfungi, thus pro-
moting organic matter decomposition (12). Since inorganic N is generally abundant in cul-
tivated soils, the effect of microfauna on microbial interaction intensity might play a more
important role in N2O emissions than does an increased N availability caused by microbial
interactions. Moreover, N2O emissions are highly sensitive to perturbations in temperature.
Increasing trends in anthropogenic warmer and wetter conditions in agricultural regions
are enhancing N2O emissions, and these trends will be amplified via positive feedback to
climate change (13). Experimental warming of paddy soils identified that nirS-containing
denitrifiers were sensitive to temperature shifts, enhancing soil N2O emission (14). The rela-
tionship between predator and prey is also temperature sensitive. For example, nematodes
grazing on fungi and bacteria generally increase in abundance due to warming (15).

All the complexities described so far result in challenges in addressing the core orga-
nism interactions and the key processes driving net N2O emissions and in N2O emission
mitigation. Network analyses have emerged as tools to identify the associations of spe-
cies and the community-wide shifts in microbe-microbe interactions (16, 17). By using
network analyses, Wagg et al. (18) suggested the importance of microbial interactions
within and between fungal and bacterial communities in influencing multiple ecosystem
functions related to nutrient cycling. However, very little is known about the contribution
of within- and between-group microbial interactions as controllers of N2O emissions. In
this work, we investigated the community compositions of soil microbes, including arch-
aea, bacteria, fungi, algae, and microfauna, as well as the microbial functional genes
involved in N cycling in 429 soil samples from 39 paddy fields across four climatic zones
(i.e., midtemperate, warm-temperate, subtropical, and tropical) in China (19.75°N to
47.58°N) (see Fig. S1 in the supplemental material). Rice paddy fields are one of the most
important anthropogenic sources for the production of greenhouse gas emissions, with
both the soil and the rice plants emitting N2O into the atmosphere (19). Through sam-
pling paddy soils across China, we incorporated the influence of environmental factors in
identifying soil core microbiome, as the climatic gradient for sampling revealed a large
environmental gradient and covered diverse soil types. By constructing networks of soil
microbiome and linking within- and between-group associations with N2O emission and
its temperature sensitivity, we aimed at exploring the following: (i) the core microbiome
in controlling soil N2O production and its temperature sensitivity, and (ii) the relative
contributions of microbial within- and between-group associations to N2O emissions in
paddy fields. In this study, we provided a new approach from the perspective of
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multitrophic soil organisms to identify core microbiomes in N2O emission, and we veri-
fied our findings by linking the core microbiomes to genes involved in nitrogen cycling.

RESULTS
N2O emission potential and temperature sensitivity in rice paddies. Here, we

evaluate the variations of N2O emission and temperature sensitivity for all 429 soil samples
from the 39 rice paddy fields. N2O emissions and temperature sensitivity were much higher
in subtropics and tropics (Fig. S2a). Multiple linear regressions indicated that mean annual
temperature (MAT) was most strongly correlated with N2O emission rather than soil pH or
organic carbon, etc. (Table S1A, Fig. S2b). The relationship between N2O emission potential
and MAT was best fitted by exponential regression (r2 = 0.273, P = 0.0006, Akaike informa-
tion criterion [AIC] = 117.0), and so was N2O temperature sensitivity (r2 = 0.296, P = 0.0001,
AIC = 42.8) among all the regressions (Fig. 1, Table S1B). Q10 values, which are based on
the ratio of fluxes at T 1 10°C to that at T, were 1.67 6 0.54 for the midtemperate zone,
2.14 6 0.54 for the warm-temperate zone, 2.85 6 1.43 for the subtropical zone, and
2.45 6 1.78 for the tropical zone. A total of 46% of the N2O emission variations was
explained by climatic factors, soil attributes, and microbial diversity, based on variance par-
titioning analysis (Fig. S2c).

The changes of key microbial functional genes in nitrification and denitrification proc-
esses related to N2O emission were detected by using GeoChip (Fig. 1c). The normalized
signal intensity of the genes amoA, which is involved in ammonia oxidation, was lowest in
tropical regions (P , 0.05; analysis of variance [ANOVA] and Tukey honestly significant dif-
ference [HSD] test). The analysis of functional genes involved in denitrification also showed
significant regional differences. Nitrite reductase genes (nirS and nirK) and nitrous oxide re-
ductase gene nosZ were more abundant in subtropics and tropics (P , 0.05; ANOVA and
Tukey HSD); in addition, the nitric oxide reductase gene cnorB was most abundant in the
warm-temperate zone. The nitrate reductase gene napA showed no significant change
among the climatic zones. It is worth noting that there was great variability within gene
expression levels of the samples isolated from the warm-temperate zone.

Soil microbiome network structures and linkage to N2O emission. Soil microbial
communities from 429 soil samples in 39 paddy fields across northern to southern China
were analyzed. Though the rarefaction curves were still increasing slowly (Fig. S3a), the
sequencing depth was generally able to cover each microbial community, as the data sets
exhibited high Good’s coverage estimates (98.48% to 99.34%). The richness of soil micro-
fauna increased from the midtemperate to tropical zone, while the richness of bacteria and
fungi decreased (P, 0.05; ANOVA and Tukey HSD) (Fig. S3b).

Networks of the soil microbiome were constructed in each paddy field (Fig. S4a to d).
Soil microbiome network structures varied among different climatic zones (Fig. 2a). There
was an increase in the number of strong correlations (Spearman’s rank correlation, .0.8)
between main groups of soil organisms along the climatic gradient (Table 1). The network
tightening, referred to as the percent connectance (the percentage of strong correlations
in all possible connections between the members of nodes [20]) also increased signifi-
cantly from north to south. The intense network connectance was mainly attributed to
the associations between bacteria and the main phyla of archaea and microfauna (Fig. 2a;
Table S1C), such as Euryarchaeota, Thaumarchaeota, and Nematoda. Significant correla-
tions were observed between MAT and the percent connectance of networks (r2 = 0.221,
P = 0.005) (Fig. S4e).

There were 8 and 10 pairwise connectances of main groups of soil organisms
(between-group associations) that were significantly correlated to N2O emission
potential and its temperature sensitivity (P , 0.05), respectively (Fig. 2b and c). In par-
ticular, it reflected the potential role of between-group regulation, such as the rela-
tionship between nematodes and soil bacteria, fungi, archaea (Euryarchaeota), and
algae (Streotophyta, Chlorophyta, and Bacillariophyta) (R = 0.35 to 0.60, P , 0.05). In
addition, potential contributions of the interactions between Euryarchaeota and soil
microfauna were found, such as the association between Gastrotricha and Rotifera
(R = 0.49 to 0.53, P , 0.05). The significant correlations were maintained even after
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accounting for the effects of climate and soil properties (Table 2). However, the con-
nectance of within-group associations was rarely correlated to N2O emission
(Table S1D).

To explore the impact of the number of samplings per zone on the results
observed, we randomly chose one region from each climatic zone and reanalyzed
the relationships between the main microbial group interaction strengths with
N2O emission. Then, we repeated the process for a second time. The results from
two random samplings were highly consistent with the above findings (Fig. S5),
suggesting that our findings are generally robust to the sampling numbers.

FIG 1 Variations of N2O emission potential and temperature sensitivity and related functional genes in paddy soil samples across main rice-cropping areas
in China. (a and b) Both N2O emission potential (a) and its temperature sensitivity (b) increased exponentially with mean annual temperature (MAT) in rice
paddies. The lines represent the least-squares regression fit, and the shaded area represents the 95% confidence limits. (c) Biological reactions of the
nitrogen cycle producing N2O and the variations of normalized signal intensity of related genes, including amoA, hao, napA, nirK, nirS, cnorB, and nosZ,
across rice paddies. The midtemperate zone includes 3 regions, Hailun, Chuangchun, and Shenyang; warm-temperate zone includes 2 regions, Yuanyang
and Fengqiu; subtropical zone includes 7 regions, Lin’an, Quzhou, Zixi, Jian’ou, Changting, Hengyang, and Qingxin; tropical zone includes 1 region, Haikou.
The signal intensity of each gene was normalized by the mean value of all detected genes. Different letters in the bars indicate significant differences
among different climatic zones (P , 0.05, ANOVA, Tukey HSD).
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Development of two-step criteria for identifying the potentially associated
cores. We developed a two-step criteria for identifying the potential cores across trophic
levels, based on a previous theoretical framework (21) (Fig. 3a). First, the functional keystone
property of each species (Fi) was scored based on its potential for connecting other microor-
ganisms related to the functions of N2O emission or its temperature sensitivity. We took into
account both the ability of a species in interlinking other microorganisms and their weight
in functioning. Specifically, the individual weight of each species to the N2O emission was
derived by considering both their direct and indirect effects through other species. Then,
pairs of core species that maximized the functions (Rij) were identified by considering roles
of respective species as well as compatibility between two focal species. The Rij index was

TABLE 1 Connectance of the microbial networks in rice paddy soils sampled between June
and October 2013 in midtemperate, warm-temperate, subtropical, and tropical zones
derived from 39 local networks across main rice-cropping areas in Chinaa (Fig. S4)

Zone Correlations > 0.8b
All possible
correlations % connectancec

Midtemperate 6,2716 1,441 a 10,9996 2,607 a 57.106 1.79 b
Warm-temperate 6,0956 1,697 a 10,0246 2,148 a 60.246 4.10 ab
Subtropical 7,0626 1,745 a 11,4546 2,707 a 61.596 3.66 a
Tropical 7,2756 228 a 11,2926 1,046 a 64.686 4.13 a
aFurther information is provided in Fig. S4 in the supplemental material. The different (nonitalic) letters following
reported results indicate significant differences among different climatic zones (P, 0.05, ANOVA, Tukey HSD).

bSpearman’s rank correlation between the members of nodes.
cPercentage of correlations with values of.0.8 in all possible connections between the members of nodes.

FIG 2 Relating the main microbial group interaction strengths with N2O emission in paddy soils. (a) Network visualization of the interaction strengths
among the main microbial groups in paddy soils from midtemperate, warm-temperate, subtropical, and tropical zones. (b and c) Correlations between the
main group interaction strengths and the N2O emission potential (b) and its temperature sensitivity (c), based on Spearman’s correlation. Main groups were
aggregated by taxonomical classification at the kingdom level (bacteria and fungi) or phylum level (archaea and eukaryota). The proportion of
correlations with values of .0.8 was divided by the total number of possible interactions to obtain the interaction strength between two groups of soil
organisms (connectance). Edge width in panel a is proportional to the absolute number of correlations with values of .0.8. Edge color and transparency
are proportional to the interaction strength, as indicated in the legend. The sizes of the circles are proportional to the number of OTUs in that group.
“/” indicates the absence of interactions between these two groups. Significant correlations are indicated in bold. Ar, archaea; Fa, microfauna; Al, algae.
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determined by considering how pairwise species shared the neighboring species (coopera-
tive effects) or how they tended to avoid each other (independent effects) based on the
actual togetherness score (Tij) and checkboard score (Cij), respectively. Detailed calculations
are provided below in Material and Methods. Based on the two-step criteria, microorgan-
isms in the network can be ranked to nominate the potential cores.

The results showed that the associations of between-group species displayed a
more profound effect than that of the within-group on maximizing the N2O emission
potential and its temperature sensitivity (Table 3). Of the between-group associations,
the pairwise linkage between archaea and bacteria contributed most to the N2O emis-
sion potential and its temperature sensitivity (Rij = 2,119,284 and 1,753,863, respec-
tively), followed by the associations between bacteria and algae (Rij = 92,609 and
80,040, respectively). Bacterial associations displayed the highest within-group effects
on N2O emission potential and its temperature sensitivity (Rij = 40,292 and 169,637,
respectively), compared to other soil microbial groups.

The operational taxonomic units (OTUs) involved in the top 15 (between-group) or
10 (within-group) strongest associations that maximized the functions of N2O emission
were identified as the core microbiome (Fig. 3b and c and Table S2). The integrated
network analysis indicated that the interaction between archaea and bacteria attracted
neighboring microorganisms in an independent way, and archaea and algae played a
dominant role in a cooperative manner. Archaea appeared to be a bridge connecting
the interaction between kingdoms to promote the formation of robust microbiomes,
thus maximizing soil N2O transformation. Interestingly, the core microbiome signifi-
cantly correlated with the nitrogen cycling genes directly involved in N2O production
and reduction (i.e., nirK, nirS, and nosZ) (r = 0.056 to 0.150, P , 0.05) (Fig. S6), implying
their disproportionate influence in N2O emission.

Contribution of within- and between-group associations to N2O emission. A
conceptual schematic was depicted to understand the potential contributions of
within- and between-group associations of a soil multitrophic biome to N2O emission
(Fig. 4). It was proposed that abiotic factors (e.g., climatic factors, soil attributes, and
agricultural practices) and functional microbial groups explained approximately 59 to
68% variations in N2O emission (8). The unexplained part may be attributed, or at
least partially, to overlooked microbiome interactions. Here, integrated networks
across the soil microbiome were constructed, and the network structures, such as
network connectance, were tied to the N2O emission. Then, pairs of core species that

TABLE 2 Spearman correlations and partial correlations between the main group interaction strengths and the N2O emission potential and its
temperature sensitivity in paddy soils across main rice-cropping areas in China, controlling for climatic factor and soil attributesa

Correlation Controlling for: r P
Between N2O emission potential and:
Interaction strengths (fungi and Bacillariophyta [Al]) — 0.331 0.039

Climatic factor (MAT) 0.454 0.004
Soil attributes (pH, DOC, and CEC) 0.400 0.016
Climatic factor and soil attributes 0.374 0.027

Correlation between temp sensitivity of N2O emission and:
Interaction strengths (fungi and Nematoda [Fa]) — 0.318 0.048

Climatic factor (MAT) 0.365 0.024
Soil attributes (pH, DOC, and CEC) 0.456 0.005
Climatic factor and soil attributes 0.397 0.018

Interaction strengths (Euryarchaeota [Ar] and Gastrotricha [Fa]) — 0.398 0.012
Climatic factor (MAT) 0.413 0.010
Soil attributes (pH, DOC, and CEC) 0.427 0.009
Climatic factor and soil attributes 0.345 0.042

Interaction strengths (Nematoda [Fa] and Streotophyta [Al]) — 0.465 0.003
Climatic factor (MAT) 0.497 0.002
Soil attributes (pH, DOC, and CEC) 0.495 0.002
Climatic factor and soil attributes 0.418 0.013

aMAT, mean annual temperature; DOC, dissolved organic carbon; CEC, cation exchange capacity; Ar, archaea; Fa, microfauna; Al, algae.
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maximized the function of N2O emission were identified, based on the functional
“keystoneness” of each species. Finally, the functional core microbiomes could be
deduced by ranking the best pairs of core species. According to this integrated net-
work perspective algorithm, we found the network connectance, together with the
within- and between-group interactions, contributed to the N2O emissions. Random
forest modeling indicated that the between-group associations predicted 32.67% var-
iations in N2O emission and 31.87% of temperature sensitivity (Table 3). This was
much higher than that of within-group associations, which predicted 9.97% variations
in N2O emission and 18.32% of temperature sensitivity.

FIG 3 Two-step criterion to identify potential core microbiomes in determining N2O emission potential and temperature sensitivity. (a) To identify the
cores, each species was scored based on its potential for connecting other microorganisms related to the functioning of N2O emission potential or its
temperature sensitivity, that is, the species functional keystoneness (Fi). Then, pairs of microorganisms that formed strong facilitative and mutualistic
interactions with each other and further maximized the functions were identified (Rij). Based on the two-step criterion, microorganisms in the network
could be ranked to nominate potential cores. Importantly, we evaluated the individual weights of each species to the N2O emission by considering both its
direct and indirect effects through other species when calculating the species functional keystoneness. (b and c) The potential core microbiomes in
determining N2O emission potential (b) and its temperature sensitivity (c), considering both within- and between-group interactions. Edge width is
proportional to the Rij index of pairwise OTUs (log scale). Sky blue edges indicate the top 15 or top 10 strongest core pair associations (independently
attracting the functional microorganisms) affecting N2O emissions for within- and between-group associations. Jade green edges indicate the top 15 or top
10 strongest core pair associations (cooperatively attracting the neighboring function microorganisms) affecting the N2O emission for within- and between-
group associations. The size of a node is proportional to the degree of OTUs in the core microbiome.
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DISCUSSION

The N2O emission potential observed in our study (0.25 to 21.83 mg NO2-N kg21

day21) is in agreement with measurements made by other authors using arable soils
(22, 23) but generally fall in the low level of emission. Rice paddy soils from historically
warmer conditions have higher potential of N2O emissions and temperature sensitivity
than those from cold regions. In accordance with previous studies (4, 24), the N2O
emissions presented significant exponential temperature dependence (r2 = 0.273 to
0.296). In addition, we found that temperature played a more important role than soil
attributes (such as soil pH) in affecting the N2O emissions, though they are indeed fac-
tors of N2O emissions, as previously reported (25). The unexplained part of the varia-
tions in N2O emission may be attributed, at least partially, to overlooked microbiome
interactions.

Within- and between-group interactions of soil microbiomes jointly determine the eco-
system functioning (26). With an integrated network analysis, our study highlighted a
potentially more important role of microbial between-group interactions in driving N2O
emission than within-group interactions in rice paddies. Here, interactions between arch-
aeal members (Methanomicrobia and unclassified Woesearchaeota) and bacteria contrib-
uted most to N2O emission in the core consortia. This was consistent with our understand-
ing that association of archaea and bacteria could be based on syntrophic nitrogen cycling
(27), where ammonia-oxidizing archaea represent the major drivers of ammonia oxidation
(28). Although nitrogen-cycling genes nirK and nosZ were detected inWoesearchaeota (29),
studies on the ecological role of Woesearchaeota found that it lacks the important meta-
bolic pathways for the complete tricarboxylic acid cycle (30, 31). There might be a potential
syntrophic relationship between Woesearchaeota and bacterial members, where bacteria
may provide amino acids and other compounds to compensate for the metabolic deficien-
cies of Woesearchaeota (29) (Fig. S7). Interactions between bacterial members and
Methanomicrobia were also found to potentially enhance the N2O emission in our study.
Although the methanogenic archaea were previously reported to interact with other micro-
organisms, based on hydrogen transfer (32), the understanding of such interactions to N2O
emission requires further study. Our results also indicated potentially important contribu-
tions of the interactions between bacteria and algal members to N2O emission in rice
paddy soils, second only to bacteria and archaea associations. Though the algae and

TABLE 3 Effects of within- and between-group soil microbial associations on maximizing N2O emission potential and temperature sensitivity
in rice paddies (Rij)a

Interaction type

N2O emission potential Temp sensitivity of N2O emission

Sum of all pairwise
effects

Avg pairwise effect
of core microbiome

Sum of all pairwise
effects

Avg pairwise effect
of core microbiome

Between group (32.67%) (31.87%)
Archaea and bacteria 2,119,284 2,696 1,753,863 3,630
Archaea and fungi 11,223 90 9,404 ND
Archaea and algae 36,182 837 32,256 719
Archaea and microfauna 1,184 ND 1,000 ND
Bacteria and fungi 22,436 23 18,747 43
Bacteria and algae 92,609 426 80,040 366
Bacteria and microfauna 1,248 ND 1,026 ND
Fungi and algae 468 ND 395 ND
Fungi and microfauna 0 ND 0 ND
Algae and microfauna 6 ND 5 ND

Within group (9.97%) (18.32%)
Archaea 1,355 14 24,494 153
Bacteria 40,292 592 169,637 1,749
Fungi 4 1 6 1
Algae 40 4 38 4
Microfauna 3 ND 3 ND

aValues in parentheses for the Between group and Within group rows are the percent variance explained, which is a measure of how well the random forest models
predicted the variance of the N2O emission with the training set. ND, no associations between the two groups were observed in the network.
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bacteria interactions were rarely explored in soils, efforts made in realm of algae-bacteria
biofilms in wastewater treatment suggest that bacteria can break down organic matter
using the O2 produced by photosynthesis of algae (33) (Fig. S7), thus providing more elec-
tron donors for the denitrification process.

The within-group interactions accounted less for N2O emission than determined for the
between-group interactions. Of the within-group relationships, the associations of bacterial
members exhibited strong contributions to the N2O emissions. With high functional

FIG 4 An integrated network perspective to understand the potential influences of microbiome interactions on ecosystem
functioning. Here, we propose an integrated network perspective algorithm to study the potential influences of microbiome
interactions on ecosystem functioning. First, an integrated network across the soil microbiome was constructed, and the
network structures, such as network connectance, were tied to certain ecological processes (e.g., N2O emission). Then, the
best pairs of core species that maximized the functions (Rij) were identified based on the functional keystoneness of each
species (Fi). Finally, the core microbiomes could be deduced by ranking the best pairs of core species. By using the
integrated network perspective algorithm, network structures and core microbiomes were linked to the variations of N2O
emission potential and its temperature sensitivity. We found that microbial between-group interactions (32.67% and 31.87%,
respectively) contributed much more than the within-group interactions (9.97% and 18.32%, respectively) to the N2O
emission potential and its temperature sensitivity.
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diversity, soil bacteria encoded all the main microbial nitrogen pathways (34). Among core
bacterial members, Anaerosalibacter sp. played a central role in enhancing the N2O emis-
sion potential with other bacterial members. Anaerosalibacter might serve as the provider
of electron donors for the denitrification process, because it plays a dominant role in the
anaerobic decomposition of organic compounds (35, 36) (Fig. S7). Moorella sp. play a cen-
tral role in enhancing the temperature sensitivity of N2O emission with other bacterial
members. Moorella members might directly influence the production of N2O, as they can
reduce NO via a flavo-diiron protein (37).

In addition, in the rice paddies along the climatic gradient, the richness of soil micro-
fauna increased from the midtemperate to tropical zone, while the richness of bacteria and
fungi decreased (Fig. S3b). Such patterns are prone to result in more intensive predator-
prey relationships between microfauna and bacteria and fungi (38). Our results indicated
that the increased connectance between microfauna, such as nematodes, and other micro-
bial groups (bacteria, fungi, and algae) are positively related to N2O emissions. The pres-
ence of animals that consume microorganisms in soil has often been shown to increase
rates of N mineralization both indirectly through stimulating bacterial activity and directly
through excreting N compounds (10, 39). Thus, nematode grazing will eventually lead to
higher N2O emissions in soils (Fig. S7). However, our two-step method did not detect
strong associations between soil microfauna (including nematodes) and other soil microor-
ganisms. This may be related to the detection method, as 18S rRNA amplicon sequencing
can only provide limited information of soil microfauna (40). On the other hand, the role of
cross-trophic regulation was not reflected in the weighting of core species identification.
The effect of different trophic weightings could be involved in the prioritization process by
increasing the importance of the trophic information, such as predator proportions (41).

Conclusions. Taken together, we used network analyses to identify keystone taxa, pro-
viding a more holistic view on the ecology of N2O emissions in real world ecosystems.
Specifically, the connectance of the integrated microbiome network positively contributed
to the N2O emission potential and its temperature sensitivity mainly through the intensive
interactions between bacteria and subgroups of archaea and microfauna in warm regions.
Core microbiomes were identified by taking into account their individual weights and pair-
wise enhancement effects on the N2O emission, in which the between-group interactions
were stronger than the within-group interactions. The N2O emission potential depends
mostly on bacteria and archaea interactions, and then bacteria and algae interactions, with
microfauna interactions seemingly less important.

Nevertheless, it is important to mention the caveats for using the correlation coeffi-
cient-based weighting parameter to identify keystone taxa in this study. We realize that
correlation does not represent the real weight, which is a common problem of all network
relationships based on correlation (42, 43). More attention should be paid to the biological
interpretations for the assignment of functioning weights, such as referential studies in
analyses of plant-microbe associations (44). Moreover, it is worth noting that using the
data sets of the absolute abundances of microbial groups or relative abundances to each
other by high-throughput absolute quantification sequencing or metagenome would be
more reasonable when constructing the microbiome networks.

Our findings have important implications for predicting the global N2O emission and
proposing effective biological mitigation strategies. First, this research may have an impli-
cation for terrestrial biosphere modeling improvement. Q10 is usually used to reflect the
temperature mediation of N2O emission in most of the terrestrial biosphere models applied
in the N2O model intercomparison project (45). Here, the inclusion of microbiome media-
tion into the models might improve the predictability of N2O-climate feedbacks. Soil micro-
biome interactions can add a new dimension to earlier observations that only some spe-
cific taxa act as drivers of N2O emission. Second, identifying the core microbiome could
provide potential new biological strategies to mitigate N2O emissions, such as blocking the
key species interactions beyond the traditional strategies (46). Importantly, well-designed
laboratory and field experiments are still required to translate the findings to agricultural
soils and to assess the consequences of mitigation strategies.
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MATERIALS ANDMETHODS
Site description and sampling. A total of 429 soil samples were collected between June and October

2013 after rice harvesting from 39 paddy fields located in 13 regions across main rice-cropping areas in China
(19.75°N to 47.58°N, 110.41°E to 126.92°E) (see Fig. S1 in the supplemental material). These samples covered
a wide range of crop rotations (i.e., single rice, rice-wheat rotation, double rice, and triple rice), soil types
(from acid to alkaline), and climatic zones (midtemperate, warm-temperate, subtropic, and tropic), with mean
annual temperatures varying between 1.5 and 23.8°C (https://doi.org/10.6084/m9.figshare.20847178.v1). To
capture the variance of soil N2O emission and microbial communities within each paddy field, we adopted a
nested sampling design: one sample in the center and five samples along each vertical direction (1, 6, 16, 36,
and 76 m from the center). Within each paddy field, 11 composite topsoil samples (top 15 cm, from five soil
2.5-cm diameter cores) were taken from 76-m by 76-m plots (Fig. S1). The soil was transported to the lab on
dry ice. Subsamples of 50 g were immediately collected in sterile conical tubes, capped, and then placed at –
80°C for genetic analysis. Others were stored at 4°C for soil physicochemical property measurements. The
methods for measurements of soil properties (i.e., pH, cation exchange capacity, and dissolved organic car-
bon) are provided in Text S1.

N2O emission potential and its temperature sensitivity.We measured potential N2O emission in the
lab in all soil samples. For N2O emission potential, we regarded the soil samples that were incubated at 25°C
(the optimal condition of denitrification [47]) during the experiment and calculated the N2O emission rate.
Moreover, we determined the sensitivity of N2O emission to temperature gradients in a composite sample per
plot following the protocol of Cheng et al. (48). To determine the temperature sensitivity of N2O emission, we
selected five temperature levels, resulting in a total of 195 experimental microcosms (5 temperatures � 13
sites � 3 replicates). Five incubated temperatures were evaluated (i.e., 8, 15, 20, 25, and 35°C) to approximate
the growing season temperatures from the soil regions we sampled. For the temperature sensitivity of N2O
emission, the N2O emission rates were calculated under the five temperatures and then we calculated the coef-
ficient of variation. Details on microcosm experiment, N2O flux measurement, and calculation are provided
in Text S1.

GeoChip analysis of functional genes. Microbial genomic DNA for GeoChip analysis was extracted
from 2 g of well-mixed soil of each sample by combining freeze-grinding and sodium dodecyl sulfate for
cell lysis and purification by agarose gel electrophoresis, followed by phenol-chloroform-butanol extrac-
tion, as previously described (49). Purified DNA was qualified and quantified with agarose gel electro-
phoresis, using an ND-1000 spectrophotometer (Nanodrop Inc., Wilmington, DE, USA) and Quant-iT
PicoGreen dsDNA reagent and kits (Invitrogen, Carlsbad, CA, USA). GeoChip 5.0 (50) was performed to
target soil microbial functional genes involved in N cycling. Details on GeoChip hybridization, imaging,
and data preprocessing are provided in the supplemental material.

Gene amplicon sequencing. Soil microbial communities were analyzed by amplicon sequencing of
archaea (16S 1106F-1378R) (51), bacteria (16S 515F-806R) (52), fungi (ITS2) (53), and algae and micro-
fauna (18S C4) (54) using the Illumina MiSeq 2 by 250-bp sequencing platform (Illumina, San Diego, CA,
USA). Details on sample preparation and sequencing are provided in the supplemental material.

Network construction and visualization. Network analyses were conducted to explore the co-occur-
rence patterns of microbiomes in paddy soils across the four climatic zones, based on the Spearman’s correla-
tion between two OTUs’ relative abundances at each field. The detailed descriptions for network analyses are
provided in Text S1. For each network, aggregated main groups were used by taxonomical classification at
the kingdom level (bacteria and fungi) or phylum level (archaea, algae, and microfauna). Within-group corre-
lations were also calculated but not displayed. The proportion of correlations with values of.0.8 was divided
by the total number of possible interactions to obtain the interaction strength between two groups of soil
organisms. To compare the microbial group interactions in midtemperate, warm-temperate, subtropical, and
tropical zones, we averaged the node and edge numbers of each network in a climatic zone to get four final
networks. A global community network across climatic zones based on all 429 samples was also constructed
to identify core microbiomes in paddy soils (https://doi.org/10.6084/m9.figshare.20846776.v1). Similar proce-
dures and parameters were used for constructing the global community network, with OTUs detected in 215
of 429 samples. All networks were visualized using Cytoscape 3.7.0 (55).

Two-step method to identify potentially associated core microbiomes. We proposed a modified
method in terms of mathematical and network theoretical framework for finding vital core microorgan-
isms following the previous study (21).

(i) Identifying the functional keystones in the network. Based on the position of each OTU in the
network, the betweenness centrality index was introduced to interpret the prominence of a node em-
bedded in a network structure. Such an index was obtained based on shortest paths. High centrality
scores indicated that the OTU could reach others on relatively short paths, or that a node lay on consid-
erable fractions of shortest paths connecting others. The functional keystoneness of each species (spe-
cies i) in microorganism-microorganism network data could be sorted by equation 1:

Fi ¼
X
i6¼k 6¼l

wkwls kl ið Þ
s kl

(1)

where species i, k, and l are from the set of functional species (MF) in the microbiome (i.e., i, k, and l [ MF),
s kl is the number of shortest paths between k and l; s kl(i) represents the counts of shortest path between
species k and l that pass through the species i; wk and wl are the weighting functions of species in N2O
emission potential or its temperature sensitivity, which involved in both cases the direct or indirect effects
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through pairwise species interactions. The weight of each species (s) to N2O emission potential or its tem-
perature sensitivity, wi, was calculated as follows (equations 2 and 3):

ws ¼ rs 1 rs �
X
m 6¼n

Tmn; s;mand n 2 MFð Þ (2)

Tmn sð Þ ¼
Tmn; if s 2 mor nð Þ

0; if s 62 mor nð Þ

8<
: (3)

where rs indicates the direct correlation coefficient between specie s and N2O emission potential or its tem-
perature sensitivity (Pearson’s correlation) and Tmn indicates the effect of pairwise main groups (m and n)
interactions (Pearson’s correlation) on N2O emission potential or its temperature sensitivity. By estimating the
functional keystoneness of each species (Fi), we can score the species based on their potential for recruiting
other microorganisms that contribute to N2O emission potential or its temperature sensitivity, i.e., the func-
tional species recruitment, according to method described by Toju et al. (21).

The index Fi is then standardized to vary from 0 to 1 as follows (equation 4):

B 9
i ¼ Fi 2 Fmin

Fmax2Fmin
(4)

where Fmin and Fmax are the minimal and maximal scores of Fi within a network.
(ii) Exploring the functional core pairs. Based on the presence/absence matrix in biogeographic

analyses, we then projected the network of OTUs into the adjacency matrix. In the present study, each
row of the adjacency matrix represented the keystone species, and the column denotes other neighbor-
ing species [a 1 appearing in the (i, p)th entry denotes that species i has an interaction with p, while a 0
means it is absent]. Therefore, the adjacency matrix, A = (aip), has the following entries:

aip ¼
1; if i links with pð Þ

0; otherwise

8<
: (5)

Thus, we defined the “checkboardedness” of an adjacency matrix (it is just like a chess board) as two
linked species, i and j, with each species facilitated to only one of related species p or q. Such an event
will create the following matrix (A) (equation 6):

p q

A ¼
i

j

� � � 1 � � � 0 � � �
� � � � � � � � �
� � � 0 � � � 1 � � �

2
4

3
5 (6)

As species i links with p while j links with q, the number of these checkboard units involving the species
pair (i, j) is calculated in equation 7:

Cij ¼ Ri 2 Sijð Þ � Rj 2 Sijð Þ (7)

where Ri and Rj are the total number of ccurrences (sample counts) of species i and j and Sij is the num-
ber of co-occurrences of species i and j; the number 1 in the column is just the Sij, while a value with
(1, 0) and (0, 1) column are the (Ri 2 Sij) or (Rj – Sij), respectively.

Also, we defined the “togetherness” of an adjacency matrix as two linked species, i and j, with each spe-
cies facilitated to one of related species p only. Such an event will create the following matrix (equation 8):

p q

A ¼
i

j

� � � 1 � � � 0 � � �
� � � � � � � � �
� � � 1 � � � 0 � � �

2
4

3
5 (8)

with both species i and j linked with p (form a loop), while not linked with q, the number of these
togetherness units that involved the species pair (i, j) is calculated in equation 9:

Tij ¼ Sij � NI 1 Sij 2 Rj 2 Rjð Þ (9)

with NI denoting the total number of species projected from the network; the number of (0, 0) columns
is just (NI 1 Sij 2 Ri 2 Rj).

Subtracting equation 9 from equation 7, we get equation 10:

Cij 2 Tij ¼ RiRj 2 NISij (10)

To explore the best pairs of core species that maximize the functions (also called the “core reinforcement”
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by Toju et al. [21]), the Rij index was used to predict pairs of microorganisms on promoting the formation of
robust microbiomes independently (checkboardedness) or cooperatively (togetherness) by considering the
roles of compatibility of species as follows:

Rij ¼ B 9
i B

9
j Cij (11)

and

Rij ¼ B 9
i B

9
j Tij (12)

The top 15 pairs of OTUs of between-group interactions and top 10 pairs of OTUs of within-group
interactions with the strongest reinforcement effects on N2O emission, including both within-and
between-group associations, were further integrated. These OTUs were then considered the core micro-
biome in our study. Codes employed in calculating the best pairs of core species that maximized the
functions (Rij) are available at https://github.com/lax-soils/Core-microbiome.

Statistical methods. The significance of differences in N2O emissions, soil attributes, microbial rich-
ness, and functional gene abundances among climatic zones were tested using Tukey’s HSD test (P, 0.05,
one-way ANOVA). All Pearson and Spearman correlation correlations and linear and nonlinear regressions
were analyzed in R (version 3.6.0; http://www.r-project.org/). The goodness of fit was assessed using the
Akaike information criterion (AIC) and r2. The corrplot package in R was used to visualize the correlations of
between-group interaction strengths and the N2O emission. Random forest analyses were applied to evalu-
ate the potential contributions of both within-group and between-group interactions to the N2O emissions
by evaluating the percentage of explained variance with the randomforest package in R. The contributions
of climatic factors, soil attributes, and microbial diversity to the N2O emissions and its temperature sensitiv-
ity variation were evaluated with variance partitioning analysis using canonical correspondence analysis
with the vegan package in R. The Mantel tests were used to calculate the correlations between the dissimi-
larity of core microbiome and the difference in nitrogen cycling gene abundances, also with the vegan
package in R.

Data availability. Raw sequence data for bacteria were deposited in the National Center for Biotechnology
Information (NCBI) BioProject, accession number PRJNA562601. Raw sequence data for archaea, fungi, algae, and
microfauna were deposited in the Genome Sequence Archive at accession number CRA001673. The GeoChip
data are available in the repository Figshare (https://doi.org/10.6084/m9.figshare.9746303). All soil geochemical
data and paddy soil attributes in the four climatic zones are available in the repository Figshare (https://doi.org/
10.6084/m9.figshare.11493081.v2).
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