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Summary

� There is an urgent need to understand the coupled relationship between belowground

microbes and aboveground plants in response to temperature under climate change. The

metabolic theory of ecology (MTE) provides a way to predict the metabolic rate and species

diversity, but the spatial scale dependence and connections between plants and microorgan-

isms are still unclear.
� Here, we used two independent datasets to address this question. One is from comprehen-

sive sampling of paddy fields targeting bacteria and microbial functional genes, and the other

is a global metadata of spatial turnover for microorganisms (bacteria, fungi and archaea,

n = 139) and plants (n = 206).
� Results showed that spatial turnover of bacterial communities and microbial functional

genes increased with temperature and fitted MTE. Through meta-analysis, the temperature-

dependent spatial scale pattern was further extended to the global scale, with the spatial turn-

over of microorganisms and plants being consistent with MTE. Belowground microorganisms

and aboveground plants were closely linked with each other even when controlling for tem-

perature, suggesting that factors other than shared relationships with temperature also con-

tribute to their linkages.
� These results implied a broad application of MTE in biology and have important implications

for predicting the ecological consequences of future climate warming.

Introduction

The metabolic theory of ecology (MTE) predicts a quantitative
relationship between the metabolic rate of organisms and envi-
ronmental temperature, where higher temperatures will increase
individual performance, such as the development rate, mortality
rate and life span (Brown et al., 2004; Zhou et al., 2016). This
dynamic is described by an Arrhenius/Boltzmann exponential
relationship (R / e–E/kT), where R is the rate of a given biological
process such as the mortality rate, e is the base of the natural loga-
rithm, k is Boltzmann’s constant (8.62 × 10−5 eV K−1), T is the
temperature in Kelvin, and E is the ‘activation energy’ that char-
acterizes the temperature dependence of a given biological pro-
cess. This framework can be further extended to the population
and community levels of ecological organization, as many fea-
tures of population and community organization rely on the per-
formance of individual organisms, such as species diversity (α
diversity). For example, in accordance with the MTE, Allen
et al. (2002) reported that the species richness of macroorganisms
increases with environmental temperature, which is supported by

data from European trees, North American tiger beetles and
European amphibians. The species diversity–temperature rela-
tionships for microorganisms were also confirmed for forest soil
microbes across a large latitudinal temperature gradient, from
subalpine Colorado to tropical Panama, but their temperature
dependence (E = 0.13–0.47 electron volts (eV)) was lower than
that recorded for trees and animals (c. 0.65 eV; Zhou
et al., 2016). Despite the applicability of the MTE to the α diver-
sity of both macro- and microorganisms, much less is known
about how patterns of their spatial scaling (β diversity) vary across
broad temperature gradients and whether these patterns also fit
the MTE.

Biological metabolism influences the fates of energy and mate-
rials in ecosystems (Brown et al., 2004); thus, the scope of the
MTE continues to expand to ecosystem processes, such as bio-
mass production. Yvon-Durocher & Allen (2012) reported the
temperature dependency of short-term gross primary production
(i.e. gross photosynthetic flux) based on aquatic mesocosm exper-
imental data (E = 0.27). Temperature dependence of biomass
accumulation rates following disturbances in forests was also
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detected, and the biomass accumulation rate was a function of
inverse temperature (1/kT; E = 0.32) (Anderson et al., 2006).
Surprisingly, few studies have evaluated whether microbial bio-
mass production fits the MTE, even though we can easily find
many cases showing the sensitivity of microbial biomass carbon
to environmental temperature (Curtin et al., 2012; Xu &
Yuan, 2017). For example, after 14 d of incubation of four dif-
ferent soils along a temperature gradient (5–45°C), an apparent
increase in soil microbial biomass carbon was observed before the
breakpoint temperatures, whereas a decrease was observed after
the breakpoint temperatures (Šantrůčková et al., 2003; Čapek
et al., 2019). However, in an 85-d laboratory incubation, Curtin
et al. (2012) detected substantial reductions in soil microbial bio-
mass carbon (18–35%) between 5°C and 25°C, which signifi-
cantly enhanced the temperature response of carbon
mineralization. Thus, empirical evidence is necessary to uncover
the potential linkage between environmental temperature and
soil microbial biomass across broad temperature gradients con-
sidering the critical role of microorganisms in climate feedback.

In this study, we first hypothesize that the distribution of spe-
cies spatial turnover (β diversity) fits the MTE and that this the-
ory is applicable to both belowground microbes (i.e. soil main
microbial group – bacterial community and microbial functional
genes) and aboveground macroscopic plants on a global scale
(H1; Fig. 1). This is because species spatial turnover reflects com-
munity levels of ecological organization, which should be influ-
enced by temperature (Brown et al., 2004). Second, we
hypothesize that belowground microbial biomass and above-
ground plant biomass, as reflections of ecosystem processes, also
fit the MTE (H2), consistent with the widely studied pelagic
ocean ecosystem (Regaudie-de-Gioux & Duarte, 2012; Schram-
ski et al., 2015). Meanwhile, we expect the interdependency of
the spatial scaling or functioning of the above- and belowground
ecosystem (De Deyn & Van der Putten, 2005; Bardgett & Van
Der Putten, 2014). Third, we hypothesize that the community-
level feature (i.e. spatial turnover) relates to the ecosystem process
(i.e. biomass production; H3), as they are inextricably linked
(Yvon-Durocher & Allen, 2012).

To test these hypotheses, we selected 39 paddy fields across 13
regions throughout the main rice cropping areas in China
(19.75°N to 47.58°N, 110.41°E to 126.92°E) and investigated
the distribution of the spatial turnover of soil bacterial commu-
nity and microbial functional genes, together with the biomass of
both belowground microbes (i.e. total microbial biomass) and
aboveground rice plants. Paddy soil ecosystems were selected to
test these hypotheses as the soil environment is less heterogeneous
in different paddy fields compared with upland soils, such as the
soil moisture, oxygen content and organic components (Maie
et al., 2002; Chen et al., 2021). Such habitats are expected to
have advantages for determining the relationships between eco-
logical processes and temperature because of the partially reduced
effects of soil heterogeneity, which also mediates the ecological
processes (Ranjard et al., 2013). In addition, we compiled a large
number of spatial turnover results for both microorganisms (in-
cluding bacteria, fungi and archaea) and plants from the literature
and tested our hypotheses on a global scale. The results indicated

that, consistent with the MTE, belowground spatial turnover of
bacterial communities and microbial functional genes, as well as
the soil total microbial biomass and aboveground rice plant bio-
mass, are related to environmental temperature on the continen-
tal scale. Through meta-analysis, the temperature-dependent
spatial scale pattern of belowground microbes (including bacte-
ria, fungi and archaea) and aboveground plants was further
extended to the global scale. Moreover, belowground microbes
contribute to the aboveground spatial scaling and the functioning
of ecosystems.

Materials and Methods

Study sites and sampling strategy

A total of 429 soil samples were collected between June and Octo-
ber 2013 after rice was harvested from 39 paddy fields across 13
regions throughout the main rice cropping areas in China
(19.75°N to 47.58°N, 110.41°E to 126.92°E; Supporting Infor-
mation Fig. S1). The sampling area covered five temperature zones
from North to South China, namely the cold temperate zone,
middle temperate zone, warm temperate zone, subtropical zone
and tropical zone, with the mean annual temperature (MAT)
ranging widely from 1.5°C to 23.8°C. Three sites in the same
region were located in relatively close proximity (within 20 km) to
ensure that the climate, soil type and farming practices, such as
cropping system, fertilization and irrigation scheme, were relatively
similar. Eleven soil samples were taken from within a
100 m × 100 m plot in each field using a spatially explicit ‘L-
shaped’ sampling design. Details of the ‘L-shaped’ sampling design
and soil collection and storage were described in our previous
study (Xiao et al., 2021). Hourly temperature and annual precipi-
tation data were collected by the nearest weather stations on site,
and the MAT and average annual precipitation were calculated
thereafter. The net primary productivity (NPP) of the paddy fields
was simulated by remote sensing in 2014 based on a light-use effi-
ciency model (Yuan et al., 2007). Soil properties, including pH,
cation exchange capacity (CEC), organic matter (OM) and total
nitrogen (TN), were measured as in Methods S1. Detailed field
information is provided in Table S1.

Illumina sequencing of 16S rRNA gene amplicons

The soil bacterial community was analysed by amplicon sequenc-
ing of the 16S rRNA gene using the Illumina MiSeq 2 × 150 bp
sequencing platform (Illumina, San Diego, CA, USA). The pri-
mer set including 515F (50-GTGCCAGCMGCCGCGGTAA-
30) and 806R (50-GGACTACHVGGGTWTCTAAT-30) was
selected, targeting the bacterial V4 region of the 16S rRNA gene
(Caporaso et al., 2012). Details of the sample preparation and
sequencing are provided in Methods S2.

GeoChip analysis of microbial functional genes

GeoChip 5.0 (Tu et al., 2014) was used to target the soil micro-
bial functional genes. An aliquot of DNA (800 ng) from each
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sample was directly labelled with the fluorescent dye Cy-3 (GE
Healthcare, Los Angeles, CA, USA), purified, resuspended in
27.5 μl of DNase/RNase-free distilled water and then mixed
completely with 42 μl of a hybridization solution containing 1×
CGH blocking agent, 1× HI-RPM hybridization buffer, 10 pM
universal standard DNA (Liang et al., 2010), 0.05 μg μl−1 Cot-1
DNA, and 10% formamide (final concentrations). Then, the
solution was denatured at 95°C for 3 min, incubated at 37°C for
30 min and then hybridized with GeoChip 5.0 (180k; Agilent,
Agilent Technologies Inc., Santa Clara, CA, USA). GeoChip
hybridization was conducted at 67°C in an Agilent hybridization
oven for 24 h. After hybridization, the slides were washed using
Agilent washing buffers at room temperature. Then, the arrays
were scanned at 633 nm with a laser power of 100% and a pho-
tomultiplier tube gain of 75% with a NimbleGen MS200
Microarray Scanner (Roche NimbleGen Inc., Madison, WI,
USA). The image data were extracted using the Agilent Feature
Extraction programme. The microarray data were preprocessed
with the Microarray Data Manager system at the Institute for
Environmental Genomics (IEG) website (http://ieg.ou.edu/
microarray), which was described previously (Liang et al., 2015).
Spots with signal-to-noise ratios lower than 2.0 were removed
before statistical analysis. Finally, 123 804 functional genes
involved in C/N/P/S cycling were detected by GeoChip, stem-
ming from bacterial, fungi and archaea.

Microbial phospholipid fatty acids

A modified Bligh-Dyer procedure was used to extract the micro-
bial phospholipid fatty acids (PLFAs) from moist soil equivalent
to 2 g of dry soil (Frostegård et al., 1993). Briefly, raw lipids were
extracted with a mixed solution of methanol, chloroform and
citric acid (2 : 1 : 0.8). The glycolipid and neutral lipid fractions
were then removed via passage through silicic acid-bonded solid-
phase extraction columns (Waters, Milford, MA, USA). The
resulting phospholipids were saponified and methylated to fatty

acid methyl esters (FAMEs), which were subsequently analysed
using the MIDI Sherlock microbial identification system (MIDI,
Newark, DE, USA) with FAME 19:0 as the internal standard.
The sum of the PLFAs was used as a measure of total microbial
biomass, and the biomasses of bacteria, fungi and actinobacteria
were quantified as described previously (Frostegård et al., 1993;
Bååth & Anderson, 2003).

Microbial spatial turnover computation and the metabolic
theory of ecology

To quantify belowground microbial spatial turnover, taxon–area
relationships (TARs), describing changes in taxonomic (or spe-
cies) richness with area, were evaluated. Since a spatially explicit
‘L-shaped’ sampling scheme was used to collect the soil samples,
five nested triangular areas were obtained for the microbial spatial
pattern analysis in each paddy field. The power-law form of the
TARs (S = cAz) was converted by logarithmic transformation.
The exponent z was estimated by linear regression:

logeS ¼ logec þ z logeA Eqn 1

where S is the observed gene or taxon richness, A is the area in
the nested design (0.5, 18, 128, 648 and 2888 m2), logec is the
intercept in log–log space, and the taxa-area exponent, z, is a
measure of the rate of species change in space, typically used to
describe the spatial turnover of organisms. The log-based linear
equation was applied to both the bacterial community and func-
tional genes (Table S2), as well as to the taxonomic groups or
subgroups of functional genes.

The MTE predicts that the biological metabolic rate varies
with temperature (Brown et al., 2004). The relationship between
community/ecosystem processes and temperature can be quanti-
tatively calculated as follows:

logeI ¼ �E 1=kTð Þ þ cT Eqn 2

Fig. 1 Schematic of the working hypotheses.
Hypothesis 1: The distribution of species
spatial turnover fits the metabolic theory of
ecology (MTE), and this theory is applicable
to both belowground microbes and
aboveground macroscopic plants. Hypothesis
2: Belowground microbial biomass and
aboveground plant biomass, as reflections of
ecosystem processes, also fit the MTE. We
expect the interdependency of the spatial
scaling or functioning of the above and
belowground ecosystem. Hypothesis 3: The
community-level feature (i.e. spatial
turnover) relates to the ecosystem process
(i.e. biomass production), as they are
inextricably linked.
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where I is the community-level process (species spatial turnover)
or ecological-level process (biomass accumulation), k is Boltz-
mann’s constant (k = 8.62 × 10−5 eV K−1), T is the absolute
temperature, cT is a normalization constant, and ET is the activa-
tion energy for all of these processes. Eqn 2 predicts that the nat-
ural logarithm of the organismal metabolic rate or diversity
should be a linear function of the inverse absolute temperature
(1/kT).

Meta-analysis of temperature-dependent spatial turnover
in microbes and macroscopic plants

To obtain general insights into the spatial pattern of community
composition among different organisms, we conducted a meta-
analysis of spatial turnover (z-value) for both microbes and
macroscopic plants. Here, we collected all available published z-
values based on TARs as effect sizes in the meta-analysis based on
the search strings ‘taxa-area relationship*’, ‘taxa-area curve*’,
‘species-area relationship*’ and ‘species-area curve*’, with and
without hyphens. We first obtained a dataset comprising 1043 z-
values from all available TARs published in the literature and
from this study. Then, the dataset was filtered by the z-values
derived only from microbes and plants. We further filtered the
dataset by the availability of MAT data at these sites; the data
were either obtained from the literature or inferred from the lati-
tude and longitude coordinates. In addition, for the most diverse
microbial communities, we included only high-throughput
sequencing and microarray techniques with relatively high resolu-
tion to limit the influence of the method. In total, MAT data for
206 plants and 139 microbial z-values were available from 41
countries, representing all continents except Antarctica, including
the bacteria, fungi and archaea. We obtained sampling variances
to conduct a weighted meta-analysis (Gurevitch & Hedges,
1993). For z-values, the sampling variance is the squared stan-
dard error. The weighted dataset was further used to obtain gen-
eral insights into temperature-driven spatial turnover for both
macroscopic plants and microbes.

Statistical analyses

For the linear and nonlinear regressions, the goodness of fit was
assessed using the Akaike information criterion (AIC) and r2 val-
ues. Pairwise comparisons of the slopes of the linear regressions
were achieved by bootstrapping (999 times) followed by a pair-
wise t-test (Liang et al., 2015). To investigate the contributions
of belowground components to aboveground ecosystem function
(i.e. NPP) independent of temperature, MAT and belowground
z-values of bacterial communities and microbial functional genes
and the total microbial biomass were used to predict the above-
ground biomass in paddy fields by random forest modelling
using the RANDOMFOREST package (Liaw & Wiener, 2002) in R
(v.3.5.1; http://www.r-project.org/). RANDOMFOREST modelling
evaluated the importance of each predictor by examining how
much the mean square error (MSE) increased when the data for
that predictor were permuted randomly while the other data
remained unchanged.

Structural equation models (SEMs) were further fitted to illus-
trate the direct and indirect effects of MAT and belowground fea-
tures on aboveground ecosystem function in paddy fields. First,
an a priori model was established based on the known relation-
ships between MAT, belowground z-values of bacterial commu-
nities and microbial functional genes and the total microbial
biomass, and aboveground biomass. Second, nonnormally dis-
tributed data were loge-transformed. Then, we parameterized the
a priori model with our dataset to test the overall goodness of
model fit. Improved model fit was assessed with the chi-squared
test, goodness-of-fit index and root mean square error of approxi-
mation as described previously (Xiao et al., 2018). With a reason-
able model fit, we then interpreted the path coefficients of the
model and the associated P-values. We also linked the spatial
turnover of microbes (including bacteria, fungi and archaea) to
that of plants using 19 sets of metadata with adjacent geographi-
cal locations by SEM. Since this model is a saturated model, with
all parameters to be estimated being exactly equal to the elements
in the covariance matrix, the fit index was no longer estimated,
and only the path coefficients were interpreted in our study. All
SEM analyses were carried out with IBM® SPSS® AMOS 20.0
(AMOS IBM, Armonk, NY, USA).

Results

The distribution of belowground microbial spatial turnover
in paddy fields fits the MTE

Species spatial turnover is an important concept used to describe
turnover in species composition across a wide range of spatial
scales, and it underpins much of conservation theory and practice
(Gering et al., 2003). Here, the spatial turnover (z-values) of both
the soil bacterial community and microbial functional genes was
estimated. The belowground microbial spatial turnover of 39
paddy fields located in 13 regions across China varied greatly, with
z (bacteria) values ranging between 0.003 and 0.050 and between
0.057 and 0.091 for z (microbial functional genes; Fig. S2). Inter-
estingly, both the bacterial community (r2 = 0.118, P = 0.033,
AIC = −371) and microbial functional genes (r2 = 0.264,
P < 0.001, AIC = −366) and their subgroups showed a signifi-
cantly increasing trend of z-values with MAT (Fig. S2; Table S3).
Though paddy soil properties (i.e. pH, OM, CEC and TN) cov-
ary with MAT, they rarely related to the microbial spatial turnover
according to the Pearson’s correlation analyses (Fig. S3).

To test hypothesis 1, the temperature dependence of z (bacte-
ria) and z (microbial functional genes) was estimated based on
the MTE. The activation energies (E) for belowground spatial
turnover were estimated as slopes of linear regressions between
the loge-transformed z-values and the reciprocal of absolute tem-
perature (1/kT). Notably, we found strong linear relationships
between the log-transformed z-values and 1/kT for the bacterial
community (E = 0.047 eV, r2 = 0.128, P = 0.025) and micro-
bial functional genes (E = 0.341 eV, r2 = 0.255, P = 0.001;
Fig. 2). The E-values of microbial functional genes were signifi-
cantly higher than those of bacterial communities according to
bootstrapping (999 times) followed by a pairwise t-test
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(P < 0.01). The z-values of bacterial subgroups also showed
strong linear relationships with 1/kT, with the highest activation
energy observed for Bacteroidetes (E = 0.168 eV, r2 = 0.213,
P = 0.003), followed by Actinobacteria (E = 0.120 eV,
r2 = 0.159, P = 0.012) and Chloroflexi (E = 0.114 eV,
r2 = 0.180, P = 0.007; Table 1). The z-values of all soil microbial
functional subgroups also fit the MTE, with the highest activa-
tion energy observed for the functional genes involved in
methane generation (E = 0.428 eV).

Both belowground microbial biomass and aboveground
biomass fit the MTE

An understanding of the relationship between biomass and tem-
perature is useful for predicting the impacts of the future course
of climate change on carbon stores (Stegen et al., 2011). The
belowground total microbial biomass of paddy fields was evalu-
ated with the PLFA technique, including bacteria, fungi and acti-
nobacteria. The total microbial PLFAs of 39 paddy fields varied
greatly from 7.49 to 50.56 nmol g−1 DW of soil. Increases in
belowground microbial total biomass and bacterial, fungal and
actinobacterial biomass indices with MAT were also observed on
the basis of PLFA measurements (r2 = 0.161–0.221, P < 0.05;
Fig. S4a,c). We further estimated aboveground biomass in the
paddy fields based on NPP with remote sensing, which varied
from 171.95 to 521.20 g C m−2 yr−1. Similarly, NPP increased
significantly with MAT from the best-fit prediction (exponential
model: r2 = 0.246, P < 0.001; Fig. S4b), though there is a
decrease at the tropical sites.

Due to the significantly increasing trend of PLFAs and NPP
with MAT (Fig. S4), we further evaluated whether the influence
of temperature on biomass followed the prediction of the MTE
(hypothesis 2). As expected, significant temperature dependence
of both PLFAs and NPP was found (Figs 3, S5). The activation
energies were 0.191–0.217 eV (r2 = 0.150–0.232, P < 0.05) for
belowground microbial total PLFAs and bacterial, fungal and

actinobacterial PLFAs and 0.240 eV (r2 = 0.313, P < 0.001) for
NPP.

Linking the below- and aboveground components of
paddy fields

Given that belowground microbes sustain life aboveground, we
explored how belowground microbes, that is the spatial turnover

(a) (b)

lo
g e
(z
)

lo
g e
(z
)

P P
–

–

–

Fig. 2 Temperature-dependent spatial turnover (z) of both the soil bacterial community (a) and microbial functional genes (b) in 39 paddy fields across
China. In accordance with the metabolic theory of ecology, strong linear relationships between the log-transformed z-values and the reciprocal of absolute
temperature (1/kT) for the bacterial community and microbial functional genes were observed. E is the ‘activation energy’ estimated as slopes of linear
regressions between the loge-transformed z-values and 1/kT. Numbers in the brackets of the legend indicate the mean annual temperature (MAT) ranges
of the sampling area. The line represents the least squares regression fit, and the shaded area represents the 95% confidence limits.

Table 1 Activation energy (E)-values of soil microbial spatial turnover in
paddy fields across China.

E (eV) r2 P AIC

Taxonomic groups
Bacterial communities 0.047 0.128 0.025 57.069
Acidobacteria / / ns /
Actinobacteria 0.120 0.159 0.012 5.679
Bacteroidetes 0.168 0.213 0.003 17.831
Chloroflexi 0.114 0.180 0.007 −4.338
Firmicutes / / ns /
Verrucomicrobia / / ns /
Proteobacteria / / ns /

Functional groups
Microbial functional genes 0.341 0.255 0.001 63.975
C cycling 0.348 0.255 0.001 65.203
C fixation 0.333 0.225 0.002 68.484
C degradation 0.350 0.261 < 0.001 64.585
Methane generation 0.428 0.337 < 0.001 66.165
Methane oxidation 0.368 0.247 0.001 71.432
N cycling 0.332 0.229 0.002 67.256
N fixation 0.314 0.188 0.006 72.555
Ammonification 0.333 0.243 0.001 64.369
Nitrification 0.366 0.187 0.006 84.874
Denitrification 0.311 0.183 0.007 72.999
P cycling 0.339 0.240 0.002 66.542
S cycling 0.351 0.255 0.001 66.014

‘/’ denotes no significant relationship between loge-transformed species spa-
tial turnover and the reciprocal of absolute temperature (1/kT). AIC, Akaike
information content; ns, not significant; P, Monte Carlo derived probabilities.
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of bacterial communities and microbial functional genes and the
microbial biomass, contribute to aboveground ecosystem func-
tions independent of temperature across a broad temperature gra-
dient. Mean annual temperature and belowground species spatial
turnover (z) and biomass (PLFAs) were used to predict the NPP
in paddy fields by RANDOMFOREST modelling. In total, these pre-
dictors explained 69.81% of the variation in NPP. Mean annual
temperature played the most important role in shaping the varia-
tion in NPP in paddy fields across the broad temperature gradi-
ent (Fig. 4a). The z (bacteria) also affected NPP, followed by
PLFAs and z (microbial functional genes).

The direct and indirect effects of MAT and belowground spe-
cies spatial turnover and biomass on aboveground biomass were
further investigated with SEMs, with the final model explaining
38% of the variation in aboveground biomass (Fig. 4b). The
results revealed the strongest direct effect of MAT on above-
ground biomass (r = 0.53, P < 0.01). Furthermore, MAT also
affected aboveground biomass indirectly by influencing the spa-
tial turnover of the bacterial community (r = 0.27, P < 0.05).
Although belowground biomass and the spatial turnover of
microbial functional genes were also mediated by temperature,
they had weak direct impacts on aboveground biomass. These
results highlighted the importance of belowground bacterial spa-
tial turnover in determining aboveground biomass in addition to
temperature, which supported hypothesis 3.

Aboveground biomass is expected to increase soil carbon input
via enhanced root exudation and may therefore influence below-
ground communities and processes (Bartelt-Ryser et al., 2005).
Here, we explored the potential influence of aboveground bio-
mass on soil microbial biomass and spatial turnover with a SEM
model. Contrary to our expectation, the aboveground biomass in
our study, that is the NPP in paddy fields, had weak direct
impacts on both belowground biomass and microbial spatial
turnover (P > 0.05; Fig. S6).

Meta-analysis of the temperature dependence of species
spatial turnover from microbes to plants at the global scale

Given the strong temperature dependence of species spatial
turnover and intimate interactions between microbes and
plants (Figs 2–4), we aimed to obtain general insights into the
global pattern of spatial turnover for both microbes and plants.
All available species spatial turnover estimates (z-values) of the
TARs from the literature (including macroscopic plants and
microbes) and this study were compiled as effect sizes (Fig. 5;
Table S4). In total, 465 z-values for plants and 145 z-values
for microbes were obtained, of which the microbes covered the
bacteria, fungi and archaea. Among all of these data, some
studies (plants: n = 206; microorganisms: n = 139) could be
matched with MAT data obtained directly from the original
paper or inferred from latitude and longitude coordinates,
including seven countries in North America, two countries in
South America, 15 countries in Europe, six countries in Africa,
eight countries in Asia, three countries in Australia and other
ocean sites (Fig. 5a). The distribution of the raw data and
weighted z-values of macroscopic plants and microbes are pre-
sented in Fig. 5(b). The weighted z-values and 1/kT were fit-
ted using linear regression. Significant linear relationships
between z and 1/kT were observed for plants (E = 0.272 eV,
P < 0.001) and microbes (E = 0.170 eV, P < 0.05) at a glo-
bal scale (Fig. 5c). We also noted that the r2 value for
microbes is low (0.037). We further related the spatial turn-
over of microbes with that of plants using 19 sets of data with
adjacent geographical locations using saturated SEMs (Fig. 5d).
The z-values of microbes significantly predicted the variation
in the z-values of macroscopic plants (r = 0.45, P < 0.05);
and we observed feedbacks of macroscopic plants on the
microbes (r = 0.50, P < 0.05), even when controlling for
MAT.

(a) (b)

lo
g e lo
g e

P P
–

–

–

Fig. 3 Temperature-dependent belowground microbial biomass (a) and aboveground plant biomass (b) in 39 paddy fields across China. The sum of the
microbial phospholipid fatty acids (PLFAs) was used as a measure of total microbial biomass, including bacteria, fungi and actinobacteria; net primary pro-
ductivity (NPP) was used as a measure of paddy field aboveground biomass. The influence of temperature on belowground microbial biomass and above-
ground plant biomass followed the prediction of the metabolic theory of ecology, as there were strong linear relationships between the log-transformed
biomass values and the reciprocal of absolute temperature (1/kT). E is the ‘activation energy’ estimated as slopes of linear regressions between the loge-
transformed biomass and 1/kT. Numbers in the brackets of the legend indicate the mean annual temperature (MAT) ranges of the sampling area. The line
represents the least squares regression fit, and the shaded area represents the 95% confidence limits.
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Discussion

Spatial turnover of biodiversity is an important concept used to
describe turnover in community composition across a wide range
of spatial scales, and it underpins much of conservation theory
and practice (Barton et al., 2013). Although microorganisms
comprise much of the biodiversity on Earth, little is known about
the temperature dependence of their spatial turnover in the pre-
sent context of global warming (Ranjard et al., 2013; Prober
et al., 2015; Chalmandrier et al., 2019). Based on the predictions
of the MTE, we examined the temperature dependence of the soil
bacterial community and microbial functional genes using a data-
set that included 39 paddy fields across China. Our results sup-
ported our first hypothesis and showed that the temperature-
dependent spatial turnover of paddy soil microbes followed the
predictions of the MTE (Fig. 2). This is also applicable to
microbes at a global scale, including a wide range of taxa (i.e. bac-
teria, fungi and archaea) and habitats, based on our meta-analysis
(Fig. 5). These findings, together with those of previous studies,
demonstrate that the biodiversity of forest soil microbial groups
fit the MTE (Tu et al., 2016; Zhou et al., 2016), suggesting that
both local species richness (α diversity) and spatial turnover (β
diversity) increase with environmental temperature.

The activation energies were 0.047 and 0.341 eV for the spatial
turnover of the bacterial community and microbial functional
genes, respectively. The more rapid increase in the spatial turnover
of microbial functional genes with increasing temperature than in
that of the bacterial community is most likely due to the finer reso-
lution of functional genes than of species, as previous research indi-
cates that E-values increase with increased taxonomic/genetic
resolution (Deng et al., 2018). Our results, together with those of
previous studies (Hawkins et al., 2007; Wang et al., 2009; Zhou
et al., 2016), showed that the values of E for both the α and β
diversities of the most diverse microbes may be lower than the pre-
dicted range of 0.60–0.70 eV (Brown et al., 2004; Allen
et al., 2005). For reference, the E-values were expressed in terms of

Q10, which is defined as the rate of change with a 10°C increase in
temperature and were calculated according to Liu et al. (2016).
The E-values for bacteria (0.047 eV) and the functional genes
(0.341 eV) are equivalent to Q10 values of 1.07 and 1.64; therefore,
the spatial turnover of the soil microbial community increases c.
1.1–1.6 times for every 10°C increase in mean annual environmen-
tal temperature. Furthermore, the meta-analysis indicated that the
spatial turnover of plants also fitted the MTE on a global scale; the
temperature dependence of spatial turnover for microbes
(E = 0.170 eV) was lower than that for plants (E = 0.272 eV).
The shallower pattern of the temperature dependence of microbial
spatial turnover compared with that of plants was consistent with
that found for α diversity (Zhou et al., 2016). The lower tempera-
ture dependence of microbes may be attributed in part to their
greater dispersal abilities and shorter generation time.

Based on the dataset of 39 paddy fields, we found clear support
for the second hypothesis stating that belowground microbial
biomass and aboveground plant biomass, as reflections of ecosys-
tem processes, can be predicted by the MTE (Fig. 3). This tem-
perature dependence of aboveground plant biomass agrees
qualitatively with previous observations for terrestrial NPP
(Lieth, 1973; Anderson et al., 2006). The temperature depen-
dence of NPP is largely due to the direct effect of temperature
rather than the indirect effects of growing season length and inci-
dent solar radiation (Allen et al., 2005). It is worth noting that a
drop-off in NPP occurred at the tropical sites, suggesting the
temperatures are above the optimal for growth (22–28°C)
(Krishnan et al., 2011). Here, we observed a lower temperature
dependence for aboveground plant biomass (E = 0.240 eV) than
that reported previously for terrestrial ecosystems (E = 0.320 eV)
(Allen et al., 2005; Anderson et al., 2006). This may be related to
the intense human activities in rice plantations, such as tillage
and fertilization, which might flatten the Boltzmann–Arrhenius
curves. In addition, this is the first demonstration that
temperature-dependent belowground microbial biomass followed
the prediction of the MTE, with an E-value of 0.198 eV.

(a) (b)

0.53**

0.33*0.27*0.37*

0.37*

P df = 2

Fig. 4 Linking the below- and aboveground parts of paddy fields. (a) Mean predictor importance (% increase in the mean square error, MSE) of the mean
annual temperature and belowground species spatial turnover and biomass for the aboveground biomass (i.e. net primary productivity) based on
RANDOMFOREST analyses. MAT played the most important role in shaping the variation in aboveground biomass in paddy fields across. The z (bacteria) also
affected NPP, followed by PLFAs and z (microbial functional genes). (b) Direct and indirect effects of mean annual temperature and belowground spatial
turnover of bacterial communities and microbial functional genes and total microbial biomass on the aboveground biomass estimated by structural
equation modelling. Green arrows indicate significant paths (P < 0.05) relationships; dotted black arrows represent nonsignificant paths (P > 0.05).
Numbers adjacent to arrows are standardized path coefficients. The number in the black circle denotes the percentage of variation in aboveground biomass
explained by the model. The significance levels of each predictor are derived from multiple testing using the Benjamini–Hochberg procedure: *, P < 0.05;
**, P < 0.01. FG, functional genes; MAT, mean annual temperature; NPP, net primary productivity; PLFAs, phospholipid fatty acids.
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However, contrary to our expectation, the temperature depen-
dence of belowground microbial biomass was less than that of
aboveground plant biomass. Previous studies indicated that
microbial biomass, mainly controlled by respiration, should have
a stronger temperature dependence than NPP, which is mainly
controlled by the photosynthetic rate (Allen et al., 2005; Ander-
son et al., 2006). This discrepancy might partly relate to the
biased determination of microbial biomass by the PLFA method
used in our study, as the soil type may have significant influence
on the quantity and profile of PLFA extracted from soil (Joer-
gensen, 2022). A more standard technique for determining total
microbial biomass in soils can be supplementary to our study,
such as the chloroform fumigation-extraction method.

By linking the below- to aboveground biota, as well as a
community-level feature (i.e. spatial turnover) to an ecosystem pro-
cess (i.e. biomass production), the results based on a dataset of 39
paddy fields and a compiled meta-dataset supported our third
hypothesis and revealed mutual feedbacks between aboveground
plant and belowground microbes (Figs 4, 5). It has become widely
accepted that vegetation dynamics are strongly influenced by the soil

biota and the latter showed feedbacks on plant growth, especially at
local spatial scales (Wardle et al., 2004; Bartelt-Ryser et al., 2005).
Here, we extended their linkages to the global scale, and the signifi-
cant relationship between below- and aboveground spatial turnover
was maintained even when controlling for environmental tempera-
ture. This suggested that factors other than shared relationships with
MAT also contribute to their linkages, potentially including shared
evolutionary histories, plant species-specific symbioses and rhizode-
position of C compounds (Prober et al., 2015). The caveat here is
that since the datasets used in the meta-analysis covered a wide range
of habitats and were obtained using different experimental methods,
the result may only roughly reflect the global distribution pattern of
community spatial turnover, as can be seen from the significant but
low correlation between temperature and microbial spatial turnover.
Interestingly, the dataset of 39 paddy fields suggested a causal rela-
tionship between belowground spatial turnover and aboveground
biomass. This suggested the potential influence of temperature-
driven spatial heterogeneity in microbial diversity on plant growth,
possibly directly through a variety of biotic interactions or indirectly
through changes in soil nutrient availability and predation on plant-

(a) (c)

(b) (d)

lo
g e

(z
)

P

P

Fig. 5 Spatial turnover (z) of plants and microbes at the global scale and their relationships with temperature. (a) Map of locations from which z-values for
macroscopic plants and microbes were collected. (b) Global z-values for plants and microbes. In total, 206 z-values for plants and 139 for microorganisms
(including bacteria, fungi and archaea) were matched with MAT data at these sites. The average weighted z � 95% confidence interval (CI) is given.
Box plots show medians (horizontal lines), 25% and 75% quantiles (boxes), most extreme values sans outliers (whiskers) and outliers (samples beyond 1.5
times the interquartile range away from the median). (c) Relationships between the global z-values of plants and microbes and temperature. Significant lin-
ear relationships between spatial turnover (z) and the reciprocal of absolute temperature (1/kT) were observed for plants and microbes at a global scale.
The line represents the least squares regression fit, and the shaded area represents the 95% confidence limits. (d) Relating the z-values of microbes with
those of plants using 19 sets of data with adjacent geographical locations using a saturated model. The significance level of the predictor was derived from
multiple testing using the Benjamini–Hochberg procedure: *, P < 0.05. MAT, mean annual temperature.
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feeding organisms (Bezemer & van Dam, 2005; Bardgett & Van
Der Putten, 2014). The lack of coupling between above- and below-
ground biomass suggests that patterns of above- and belowground
biomass accumulation are governed by different mechanisms.

In conclusion, by combining the dataset of 39 paddy fields
across China and the compiled global meta-dataset, we tested the
MTE from below- to aboveground and from community to ecosys-
tem processes. For both belowground microbes and aboveground
macroscopic plants, the distribution of spatial turnover, reflecting
community-level ecological organization, as well as biomass accu-
mulation, reflecting an ecosystem-level process, fit the MTE. The
belowground community-level process exerted a profound influ-
ence on aboveground community dynamics and ecosystem func-
tioning, and the aboveground community dynamics showed
feedbacks on the belowground community process. Our findings
have important implications for the MTE and above- and below-
ground ecology under further climate change scenarios. We find
the MTE to be useful for investigating a broad range of phenom-
ena in biology, although our results together with those of several
previous reports support the emerging generalization that there is
no canonical ET value of c. 0.65 eV (Hawkins et al., 2007; Wang
et al., 2009; Zhou et al., 2016). Due to the strong temperature
dependence of microbial spatial turnover and intimate above- and
belowground linkages, further climate warming will intensify the
vulnerability of both above- and belowground biodiversity when
the habitat area is reduced, which will consequently accelerate
ecosystem biomass accumulation.
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