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• Aniline (AN) could be degraded under 
micro-aerobic bioanode system. 

• Microbial functional differentiation 
occurred in suspension and electrode. 

• Functional genes were more sensitive 
than 16S rRNA genes to DO stimulation. 

• AN degraders in suspension positively 
correlated with electroactive bacteria. 

• AN degraders were potential hosts of 
dioxygenase catalyzing ammonification.  
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A B S T R A C T   

Improvement of refractory nitrogen-containing organics biodegradation is crucial to meet discharged nitrogen 
standards and guarantee aquatic ecology safety. Although electrostimulation accelerates organic nitrogen pol-
lutants amination, it remains uncertain how to strengthen ammonification of the amination products. This study 
demonstrated that ammonification was remarkably facilitated under micro-aerobic conditions through the 
degradation of aniline, an amination product of nitrobenzene, using an electrogenic respiration system. The 
microbial catabolism and ammonification were significantly enhanced by exposing the bioanode to air. Based on 
16S rRNA gene sequencing and GeoChip analysis, our results indicated that aerobic aniline degraders and 
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electroactive bacteria were enriched in suspension and inner electrode biofilm, respectively. The suspension 
community had a significantly higher relative abundance of catechol dioxygenase genes contributing to aerobic 
aniline biodegradation and reactive oxygen species (ROS) scavenger genes to protect from oxygen toxicity. The 
inner biofilm community contained obviously higher cytochrome c genes responsible for extracellular electron 
transfer. Additionally, network analysis indicated the aniline degraders were positively associated with elec-
troactive bacteria and could be the potential hosts for genes encoding for dioxygenase and cytochrome, 
respectively. This study provides a feasible strategy to enhance nitrogen-containing organics ammonification and 
offers new insights into the microbial interaction mechanisms of micro-aeration assisted with electrogenic 
respiration.   

1. Introduction 

Refractory nitrogen-containing organics (e.g., nitrobenzene, azo dye, 
and amide compounds) derived from industrial production and 
discharge are the limiting factor for wastewater denitrification [14,39, 
43,49,60]. Moreover, if untreated, organic nitrogen in wastewater 
cannot meet government’s effluent standards and guarantee ecology 
security of aquatic ecosystems. The aromatic compounds with 
electron-withdrawing group (e.g., nitro group, azo bond) need to be 
firstly reduced under anaerobic conditions. Traditional biological 
treatment struggles to degrade these compounds due to the low electron 
cloud density and large steric hindrance formed by the benzene ring and 
nitrogen coupling [8]. Recently, electrostimulation has proved a feasible 
wastewater treatment approach to enhance the C-N bond cleavage/nitro 
group reduction and facilitate the amination (refractory organic nitro-
gen to aromatic amine, Fig. 1) [19,23,27,40,46,47]. However, the 
daughter products (e.g., aromatic amines) still require ammonification 
(aromatic amine to NH4

+) to ultimately eliminate the environmental 
risks. Considering the initial stage of aromatic aniline oxidation is not 
thermodynamically favorable under anaerobic conditions based on 
Gibbs energy [6], oxygen is essential to accelerate benzene ring struc-
ture cleavage [15]. 

In electrogenic respiration systems, oxygen is generally considered to 
be unfavorable because it has the potential to act as a competitive 
electron acceptor, which could adversely impact current production and 
pollutant reductive degradation [3,4,54]. The presence of oxygen would 
also be toxic to marginally aerotolerant or strictly anaerobic bacteria 
such as methanogens [35]. However, several recent studies reported 
that the addition of very small amounts of air to anaerobic biological 
systems has positive impacts on hydrolysis, volatile fatty acid (VFA) 
production, and controlling process stability [52,62]. Micro-aeration 
based anaerobic processes have the potential to create unique niches 
to balance the metabolic activity of anaerobes and aerobes, where aer-
obes could utilize oxygen while anaerobes were protected from oxygen 

toxicity [36,55]. Integrating anaerobic reduction with aerobic oxidation 
reactions could also facilitate energy conversation and pollutant 
mineralization [41]. Furthermore, it is feasible that the electro-
stimulated system integrated with micro-aeration might enhance pol-
lutants degradation efficiency and power output [6,9–11,56]. For 
instance, an anode biofilm under microaerobic condition significantly 
promoted pyridine bio-mineralization. The species related to pyridine 
biodegradation such as Desulfovibrio and Dokadonella were enriched, 
which was believed to contribute to better reactor performance [20]. 
Generally, microorganisms are an essential component and play signif-
icant roles in biological treatment process [50]. Linking community 
composition, functional potential, and interaction networks with bio-
logical processes is believed to be critical to understanding ecology 
mechanisms and controlling system performance [58]. However, the 
patterns in the specific niches (e.g., electrode or suspension) with 
respect to the taxonomic and functional profiles of bacterial community 
as well as their relationship remain poorly understood. 

The advances in high-throughput sequencing of culture-independent 
technologies (e.g., 16S rRNA gene sequencing and GeoChip) and bio-
informatics approaches (e.g., molecular ecology network), have greatly 
allowed for a shift from descriptive studies to mechanistic and predictive 
frameworks for harnessing beneficial microbial communities and 
desired outcomes. These high-resolution nucleic acid-based molecular 
methods have also revolutionized our knowledge and manipulation of 
wastewater treatment biotechnology [33,42,57,65,67–70]. Research 
priorities for sludge/biofilm microbiomes include illustrating the mi-
crobial functional mechanisms that mediate the improved operational 
performance. For example, metagenomic data in combination with 
network analysis showed electrostimulation strengthened microbial 
associations and helped generate a feasible approach to regulate a 
sludge microbiome for more efficient pollutant degradation [47,48]. 
Thus, we are attempting to explore the microbial community composi-
tion, function, and associations in a micro-aeration assisted with elec-
trogenic respiration, determine the nitrogen-containing organics 

Fig. 1. Hypothesis for nitrogen-containing organics from amination to ammonification by micro-aerobic conditions assisted with electrostimulation.  
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ammonification efficiency, and bridge the gap between microbial 
community and system performance. 

In this study, we constructed a micro-aeration assisted with elec-
trogenic respiration system and investigated the aniline (typical ami-
nation product from nitroaromatics, amide, and azo compounds) 
degradation efficiency as well as current production by discerning bio-
anode microbial communities. The anode biofilm, classified as an inner 
and outer layer, and suspension were characterized using a microarray 
GeoChip (v4.6) [45] and 16S rRNA gene sequencing. Key functional 
bacteria and genes involved in electron transfer and benzene-ring 
cleavage were also analyzed. We hypothesize that (i) aniline could be 
substantially catabolized under micro-aerobic conditions and the small 
molecule metabolites utilized for current generation, (ii) micro-aeration 
would significantly change the taxonomic and functional microbiome 
structure and selectively enrich different functional members in each 
niche (i.e. suspension, outer biofilm, and inner biofilm), and (iii) 
metabolic cascade collaboration of aerobic and anaerobic functional 
bacteria would promote aniline biodegradation and current generation 
simultaneously (Fig. 1). This study demonstrates a promising technique 
for refractory nitrogen-containing organics deconstruction and ammo-
nification and provides new insights into microbial associations in 
response to electrostimulation coupled with micro-aeration. 

2. Materials and methods 

2.1. Micro-aerobic reactors setup and operation 

A dual-chamber bioelectrochemical system (BES) reactor (175 mL of 
each) was configured with identical glass chambers separated by a 
cation exchange membrane (Ultrex CMI-7000, Membranes Interna-
tional, U.S.). Graphite fiber bush was used as both anode and cathode 
with the saturated calomel electrode (SCE, + 247 mV vs standard 
hydrogen electrode, SHE) used as the reference electrode to measure 
anode potential. The anode and cathode were connected through a 
1000 Ω resistor. One tube connected with a valve was inserted into the 
anode chamber to meet the micro-aerobic (dissolved oxygen, DO =
0.1–1.0 mg/L) [36,62] or anaerobic conditions. At the acclimation 
stage, the valve was opened and nutrient medium (50 mM phosphate 
buffered saline (PBS), 3.74 mM NH4Cl, 1.74 mM KCl, 10 mL/L Wolf’s 
vitamins, 10 mL/L Wolf’s trace elements, pH = 7) containing 2.8 
± 0.1 mM aniline filled the anode chamber. The anode chamber was 
inoculated with activated sludge (a domestic wastewater treatment, 
Harbin, China) and effluent from a VFA feeding microbial electrolysis 
cell. The cathode chamber was filled with 50 mM PBS amended with 
100 mM potassium ferricyanide. The generated current was determined 
by a data acquisition system (Model 2700, Keithley Instru. Inc., U.S.) 
which measured the voltage of the resister and then converted it to 
current based on Ohm’s law. The anode solution was replaced when the 
current decreased. After stable current generation, half of the bio-
reactors were operated under anaerobic conditions by turning off the gas 
valve to cut off the air into the anodic headspace as the control group. 
The anaerobic anode control group is essential for examining the 
importance of micro-aerobic anode enhancing the oxidation of aniline. 

2.2. Chemical analysis 

Aniline concentration (0.1–3.0 mM) for the anode chamber was 
determined by high-performance liquid chromatography (HPLC, 2695, 
Waters, U.S.). The aniline degradation efficiency and power density 
were calculated as previously described [6]. DO (0–20 mg/L) in anolyte 
was measured using a DO sensor (WTW GmbH, Germany). Total organic 
carbon (TOC) concentration (0.1–20.0 mM) in anolyte was measured 
with a TOC analyzer (Fusion TOC, Tekmar-Dohrmann, U.S.). NH4

+

concentration (0.1–3.0 mM) was determined according to the standard 
methods [18]. 

2.3. GeoChip hybridization, 16S rRNA gene sequencing, and data 
analysis 

At the end of the chemical test, three biological samples were 
collected from the suspension (S), inner electrode biofilm (In), and outer 
(Ou) biofilm respectively for micro-aerobic group. The total genomic 
DNA was extracted according to established methods [66]. DNA purity 
and quantity were determined by a Nano-Drop ND-1000 Spectropho-
tometer (NanoDrop Technologies Inc., Wilmington, DE, U.S.) and by a 
PicoGreen using FLUOstar Optima (BMG Labtech, Jena, Germany), 
respectively. The primer pair consisting of forward the primer 515 F 
(5′-GTGCCAGCMGCCGCGG-3′) and the reverse primer 806 R 
(5′-GGACTACHVGGGTWTCTAAT-3′) targeting the V4 hypervariable 
regions of bacterial 16S rRNA gene was selected for high throughput 
sequencing [24]. 

Additionally, extracted DNA from each sample was used for GeoChip 
v4.6 functional gene analysis as described elsewhere [17,25,26,45]. In 
short, DNA was labeled with random priming and Cy-3 dye using the 
Klenow fragment of DNA polymerase I in a MAUI hybridization station 
(BioMicro, Salt Lake City, UT, U.S.). Once hybridization was complete, 
slides were washed and imaged using a NimbleGen MS200 scanner 
(Roche, Madison, WI, U.S.) The images were processed using Imagene 
software (6.1 premium version, Biodiscovery, El Segundo, CA, U.S.). 
Signal intensities were measured based on the scanned images, and spots 
with signal-to-noise ratios (SNR) lower than 3 were removed before 
statistical analysis. 

Sequencing data of 16S rRNA gene amplicons were analyzed by 
removing PhiX sequences, joining paired-end reads using Flash [32], 
trimming ambiguous reads (N), removing short sequences (< 240 bp), 
and screening for chimeras using UCHIME [12]. Next, the 16 S rRNA 
gene sequences were classified into operational taxonomic units (OTUs) 
at a 97% sequence similarity threshold. The taxonomy of the 16S rRNA 
gene sequences was assigned by the RDP classifier with 50% confidence. 
Detrended correspondence analysis (DCA) and three nonparametric 
multivariate tests (multiple-response permutation procedure (MRPP), 
permutational multivariate analysis of variance (Adonis), and analysis 
of similarity (ANOSIM)) were calculated using R v4.2.1 to compare 
microbial and functional structure in the suspension and electrode 
biofilm. Hierarchical clustering analysis was conducted using CLUSTER 
v3.0 and visualized using TREEVIEW to assess separation of functional 
genes in suspension and electrode biofilm. Co-occurrence associations 
among microbial community and functional genes were explored by 
computing all pairwise Spearman’s coefficients and the network anal-
ysis was visualized by Gephi (0.9.2) to show the microbial associations 
and potential genes host [63]. The P value of the difference between 
treatments was calculated using a two-tailed unpaired Student’s t-test. 

3. Results and discussion 

3.1. Micro-aerobic bioreactors performance 

To establish the micro-aerobic condition in the bioreactors, the 
anode headspace was opened to the atmosphere resulting in an initial 
DO concentration of 0.61 ± 0.17 mg/L. Once the micro-aerobic anode 
successfully acclimated as detected by stable current generation, the 
anodes were operated under anaerobic (control) and micro-aerobic 
conditions, respectively. Micro-aerobic conditions obviously increased 
aniline degradation efficiency and power density compared to the con-
trol (Fig. 2a). Additionally, the current generation lagged behind the 
aniline degradation under micro-aerobic conditions. The measured TOC 
was always higher than the calculated value of aniline (Fig. 2b), indi-
cating some organic metabolite production along with aniline degra-
dation. In contrast, the acclimation of the anaerobic bioanode was not 
successful with much lower current when aniline was the sole substrate, 
suggesting it could hardly be directly used as a substrate for electro-
active bacteria. The concentration of NH4

+ under micro-aeration 
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conditions was increased with aniline degradation, further indicating 
the occurrence of ammonification (Fig. 2b). However, the NH4

+ con-
centration was lower than the theoretical concentration. Since aniline 
was the sole carbon and nitrogen source, the NH4

+ was likely oxidized in 
the presence of oxygen and utilized by microbial metabolism. Together, 
the results suggest that aniline could be more efficiently catabolized 
under micro-aerobic conditions and the small-molecule metabolites 
were used by electroactive bacteria to extracellularly transfer electrons 
instead of aniline. 

3.2. Response of taxonomic and functional microbiome to micro-aerobic 
stimulation 

To prove how was aniline degraded and metabolites acted as the 
substrate for current generation, DCA was carried out to elucidate how 
micro-aerobic conditions affect the taxonomic (16 S rRNA gene) and 
functional gene structure as well as the composition of suspension and 
bioanode communities. The suspended microbial communities were 
noticeably separated from the anode biofilm microbial communities, 
especially the inner biofilm communities (Fig. 3). Although the inner 
biofilm communities have some overlap with the outer biofilm com-
munities, the functional gene structure of the inner biofilm clearly 
differed from the outer biofilm. Overall, there was a greater observable 
difference in the suspended and anode biofilm functional gene structure 
compared to the taxonomic structure. This reinforced recent works that 

the shift of functional gene structure was more significant among each 
niche than16S rRNA gene structure [31,53]. This is likely due to the high 
heterogeneity of sampling environments, low taxonomic resolution, or 
high noise associated with amplicon sequencing [69]. Also, the micro-
bial responses to environmental stress could be more sensitive at the 
functional gene level than the taxonomic level. Furthermore, three 
nonparametric multivariate statistical methods (ANOSIM, PERMA-
NOVA, and MRPP) strongly indicated the taxonomic community struc-
ture and functional gene structure significantly differed between the 
inner biofilm and suspension compared with the outer biofilm based on 
statistical analysis and P value (Table 1). The genes related to electron 
transfer and stress responses also showed a significantly higher dissim-
ilarity between inner biofilm and suspended communities (Table 1). 

3.3. Potential functions of dominant genera 

A total of 465 genera were classified among the suspension, inner 
and outer electrode biofilm communities. As shown in Fig. 4, Coma-
monas and Variovorax were noticeably enriched in the suspension with 
their relative abundance totaling more than 50% of the community. 
Previously reported Comamonas harboring gene tad (aniline-degrading 
gene) was enriched with DO supply, which might be the main reason for 
efficient aniline removal [59]. For a much more stable and 
high-performance system of aniline removal, Variovorax also showed 
higher relative abundance. In addition, Breugelmans et al. found a 

Fig. 2. Bioreactor performance. Aniline degradation (left) and electrical power output (right) (a), and the concentration of NH4
+ and TOC under micro-aerobic 

condition (b). 

Fig. 3. Taxonomic and functional gene community structure. Detrended correspondence analysis (DCA) based on Bray-Curtis distance of identified OTUs from 16S 
rRNA genes sequencing (a) and all functional genes (b) in inner biofilm (In), outer biofilm (Out), and suspension (S). 
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multicomponent aniline dioxygenase enzyme in 3,4-dichloroaniline 
(DCA) degradation in Variovorax sp. strain WDL1 [2,37,5]. Other bac-
teria such as Stenotrophomonas and Leucobacter which have the ability to 
aerobically degrade aniline were also enriched in the suspension [61, 
71]. The increased presence of known aniline degraders in suspension 
explains the enhanced aniline ammonification by benzene ring cleavage. 
Although anaerobic aniline degradation is slow and thermodynamically 
unfavorable, a previous study also reported it was degraded by Ignavi-
bacterium and Acidovorax under anaerobic conditions [44]. Consistently, 
Ignavibacterium was distinctly enriched in the inner electrode biofilm 
with low oxygen concentration. Key electroactive bacteria were also 
dominant in the electrode biofilm including Geobacter, Geothrix, and 
Aquamicrobium [30,51]. The relative abundance of Geobacter and Geo-
thrix were higher in the inner biofilm than in the outer biofilm likely 
attributed to the fact that they can directly transfer electrons to the 
electrode in the absence of oxygen. Geobacter spp. are typically the most 
abundant known exoelectrogens, which transfer electrons through 
conductive pili or outer-membrane cytochromes to the anode. Also, 
Geothrix fermmentans can utilize the electrode as an electron acceptor to 
transfer electrons by secreting two different redox electron shuttles as 
electron mediators [34]. 

Based on the taxonomically identified aniline degraders and elec-
troactive bacteria, the potential function of these dominant genera dis-
cussed above was proposed. Firstly, most of the dominant genera (e.g., 
Comamonas and Variovorax) capable of aerobically degrading aniline 
were enriched in the suspension due to the existence of limited DO. 
Considering the DO dilution and utilization from suspension to the 
electrode, DO concentration decreased to the lowest level in the inner 
electrode biofilm. Subsequently, the relative abundance of the aerobic 

aniline degraders in outer electrode biofilm were lower than in the 
suspension, but higher than those of the inner biofilm. The outer biofilm 
might be the transition area between the suspension and inner niches. 
Finally, most of the genera identified with electrochemical activity (e.g., 
Geobacter) were dominant in the inner biofilm utilizing the electrode as 
an electron acceptor under an anaerobic environment. Although domi-
nant functional species were selectively enriched in different niches 
based on oxygen stress, the functional genes outline need to be further 
investigated considering the different functional gene structure in each 
niche was more significant than the taxonomic microbiome structure. 

3.4. Functional genes 

GeoChip hybridization analysis was further used to investigate the 
response of microbial functional genes to oxygen stimulation. The first 
step in biological mineralization of aniline was transformed to catechol 
and further cleaved by various dioxygenases, both meta and ortho 
cleavages could be occurred [29]. Importantly, the enhanced expression 
of gene encoding catechol 2,3-dioxygenase and meta-pathway promoter 
operated under oxygen-limited conditions [21]. Catechol 1,2-dioxyge-
nase could catalyze the intradiol cleavage of aromatic ring at ortho 
position of catechol, which could produce cis-caroxylic acid with 
incorporation of two atoms of molecular oxygen into the substrate [16]. 
The two pathways may be co-occurred because both of genes encoding 
for catechol 1,2- and 2,3-dioxygenases were detected in the microbial 
communities. Oxygenase activated by the presence of oxygen is essential 
to enhance benzene ring structure cleavage [7]. Therefore, the total 
abundance of the genes encoding for catechol dioxygenase was signifi-
cantly higher in the suspension community (Fig. 5a), which is consistent 

Table 1 
Significance test of the effect of micro-aerobic condition on the bioanode microbial community and functional structure with three different statistical approaches 
(Bold values indicate P < 0.1).   

Jaccard Dissimilarity Bray Curtis Dissimilarity  
Adonis Anosim MRPP Adonis Anosim MRPP  
F P R P δ P F P R P δ P 

All functional Genes (In vs S)  5.45  0.055  0.96  0.096  0.28  0.109  6.28  0.001  0.96  0.104  0.18  0.155 
All functional Genes (Out vs S)  6.34  0.067  1.00  0.098  0.27  0.102  7.43  0.001  1.00  0.092  0.17  0.095 
16 S rRNA 97% cutoff (In vs S)  1.35  0.001  0.41  0.108  0.65  0.091  1.54  0.001  0.30  0.099  0.63  0.103 
16 S rRNA 97% cutoff (Out vs S)  1.29  0.001  0.37  0.093  0.65  0.108  1.32  0.155  0.15  0.316  0.62  0.317 
e- transfer related genes (In vs S)  4.67  0.028  0.96  0.102  0.30  0.096  5.44  0.016  1.00  0.103  0.19  0.088 
e- transfer related genes (Out vs S)  5.82  0.049  1.00  0.098  0.28  0.081  6.56  0.033  1.00  0.087  0.17  0.100 
Stress genes (In vs S)  5.80  0.001  1.00  0.101  0.37  0.109  7.67  0.016  1.00  0.090  0.24  0.084 
Stress genes (Out vs S)  6.32  0.023  1.00  0.102  0.36  0.106  8.49  0.012  1.00  0.100  0.23  0.111 

Abbreviations: Suspension (S), Outer biofilm (Out), Inner biofilm (In). 

Fig. 4. The dominant genera in the suspension and anode communities under micro-aerobic condition. Bars represent the standard deviation from three biolog-
ical replicates. 
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with the suspension distinctly harboring higher aerobic aniline de-
graders (e.g., Comamonas and Variovorax). Hierarchical clustering 
analysis of catechol-dioxygenase genes showed that the suspension mi-
crobial communities were well separated from electrode biofilm com-
munities, and there was also a clear difference between the inner and 
outer electrode biofilms (Fig. S1). Specifically, two dioxygenase genes 
from Aspergillus niger (145230746, ortho) and Roseobacter sp. 
(126717171, ortho), were unique in the electrode biofilm communities 
(Fig. S1). Additionally, several of the dioxygenase genes (i.e, gene ID 
167034310, 154162742, and 56799003) were only detected in the inner 
biofilm communities. Lastly, dioxygenase gene-carrying bacteria such as 
Comamonas testosteroni (117998411, ortho) and Chloroflexus aggregans 
(118046180, meta) were exclusively present in the suspension commu-
nities, which agreed with the taxonomic composition. We also focused 
on cytochrome c proteins since they are a key component for direct 
electron transfer in dissimilatory anaerobic respiration of extracellular 
electron acceptors [22]. In this study, a total of 90 cytochrome c genes 
from several electroactive genera (Geobacter, Shewanella, Pseudomonas, 
Desulfovibrio, and Rhodobacter) were detected among all the commu-
nities. Although the total collective signal intensity for cytochrome c 
genes did not significantly differ between the suspension and electrode 
communities, the total signal intensities from Geobacter and G. sulfur-
reducens PCA were significantly higher in the inner biofilm communities 
(Fig. 4a). This was consistent with the higher relative abundance of 
Geobacter based on 16S rRNA gene sequencing results. Additionally, the 
cytochrome c genes from Geobacter were well separated between sus-
pension and electrode biofilm communities (Fig. S2). Particularly, cy-
tochrome c belonging to OmcZ genes from Geobacter sulfurreducens PCA 
(39997174) was uniquely detected in the inner biofilm. Significant in-
vestigations of extracellular electron transfer (EET) by anode biofilm 
mainly composed of G. sulfurreducens have implicated diverse redox 
active outer membrane c-type cytochrome. Whole genome analysis of 
gene transcript abundance of OmcB and OmcE showed higher expres-
sion in cells grown on electrode with oxidizing potentials. After simul-
taneous deletion of these genes, adaption by this strain is accompanied 
by up-regulation of OmcZ with current generation [38]. 

In the micro-aerobic environment, facultative and aerobic microor-
ganisms consume and partially reduce oxygen molecules by generating 
reactive oxygen species (ROS), which could damage the microbial cell 
membrane, protein, and DNA [13]. Regulatory genes encoding for hy-
droperoxide reductase and catalase produced by aerobic or facultative 
bacteria are involved in oxygen shock response to allow them to thrive 
in an aerobic condition. The total abundance of anti-ROS genes was 
significantly higher (P < 0.05) in the suspension than those in the 
electrode biofilm (Fig. 5b). Specifically, this included the genes coding 

for AhpC, AhpF, Fnr, KatA, KatE, and OxyR. The distribution of oxygen 
response genes was consistent with the DO dilution profile in the bio-
logical system, which implies the suspended microbial communities 
have higher oxygen tolerance. 

Collectively, oxygen stimulation enhanced the relative abundance of 
genes related to aerobic aniline biodegradation in the suspended mi-
crobial communities, and it did not inhibit the electrode biofilm 
respiring activity. The abundance of functional genes associated with 
EET such as cytochrome c were significantly higher in the inner elec-
trode biofilm communities to satisfy terminal current output. In com-
parison, the abundance of anti-ROS genes was significantly higher in 
suspension than in electrode communities. Other than the adaptive 
response to oxygen, co-existence and synergistic interaction between 
facultative and anaerobic microbes could be another aerotolerant 
strategy. 

3.5. Co-occurrence associations between dominant bacteria and 
functional genes 

In order to better identify the microbial associations of electrode and 
suspension microorganisms with oxygen shocking, network analysis was 
used to investigate the co-occurrence between the dominant bacteria 
and functional genes. Only the functional genera and genes discussed 
above were included in the analysis to focus on aniline ammonification 
and electrogenic respiration. The network consisted of 30 nodes and 138 
edges based on significant correlations (Spearman’s r > 0.8, P < 0.05) 
(Fig. 6). Among them, more than half of the links were positive, which 
could represent a cooperative relationship among different species. For 
example, the aerobic aniline degraders (e.g., Stenotrophomonas) showed 
positive associations with electroactive bacteria (e.g., Geobacter). The 
anti-ROS genes also had positive links with genes encoding for dioxy-
genase and cytochrome c protein. As previously proposed, if the genes 
and the co-occurred microbial taxa exhibited significantly similar 
abundance tendencies, the microbial taxa could be speculated as the 
potential gene hosts [64]. Accordingly, Geobacter was considered to be 
the possible host of genes encoding cytochrome, and Stenotrophomonas 
was likely carrying the catechol 2,3-dioxygenase genes. Many studies 
have identified that outer-membrane cytochrome c protein directly 
contacted the electrode and served as a key component in the process of 
EET [28]. Furthermore, genes encoding for anti-ROS protein were 
positively associated with Geobacter, implying the genera could be 
evolved with the ability to be aerotolerant. Anaerobes have evolved 
strategies that either minimize the extent of oxygen toxicity or restore 
metabolic function shortly after the disappearance of oxygen stress [36]. 
Therefore, the idea that anaerobes (e.g., Geobacter) in anoxic conditions 

Fig. 5. Comparison of the signal intensity of genes encoding for cytochrome c and catechol dioxygenase (a), anti-ROS enzymes (b) (Bars represent the standard 
deviation from three biological replicates. Student’s t-test between suspension and outer biofilm as well as inner biofilm, * P < 0.1, ** P < 0.05, *** P < 0.01). 
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develop ROS-scavenging systems to avoid oxygen toxicity is reasonable. 

3.6. Outlook 

The ammonification of refractory nitrogen-containing organics is 
essential to meet stricter effluent standards and achieve aquatic 
ecosystem health. Although electrostimulation could serve as a prom-
ising technology to accelerate amination (refractory organic nitrogen to 
aromatic aniline), ammonification (aromatic aniline to NH4

+) remains 
difficult because oxygen is helpful for ammonification but not favorable 
for amination by electrostimulation. This study proposed a feasible 
scheme to assist ammonification processes by micro-aeration assisted 
with electrogenic respiration, which would not affect amination. The 
aromatic aniline could be more efficiently transformed to NH4

+ in the 
presence of oxygen and the non-ring metabolites could serve as the 

substrate for electroactive bacteria to generate current. Although oxy-
gen could act as a competitive electron acceptor inhibiting the current 
generation, it could be minimized by micro-aeration strategy. Also, DO 
was utilized and decreased to around 0.08 mg/L due to oxygen con-
sumption in aniline ammonification. The micro-aeration assisted with 
electrogenic respiration system showed higher power density. The 
enhanced operational performance might be resulted from the shift of 
microbial communities. 

Our data on microbial community composition, functional gene 
structure, and network associations further suggested that the ecological 
responses to micro-aeration could be coupled with electrogenic respi-
ration as depicted below (Fig. 7). Firstly, the decrease of DO concen-
tration from suspension to electrode biofilm markedly altered the 
taxonomic and functional gene structures of microbial communities, as 
shown by DCA-based ordination for both 16 S rRNA gene sequencing 
and GeoChip data. Three complimentary non-parametric multivariate 
statistical tests (Table 1) further supported the DCA results. Second, 
various functional members known to be involved in aniline degrada-
tion displayed different abundance at suspension and electrode biofilms. 
Specifically, most of the aerobic aniline degraders and degradation 
genes were significantly enriched in the suspension where there was a 
higher DO concentration. Due to the utilization and diffusion, the DO 
concentration was lower in the inner electrode biofilm. Consistently, the 
physiological activities of EET such as Geobacter and genes encoding for 
cytochrome c showed higher abundance in the inner biofilm. Finally, it 
seems that DO in the system not only changed community structure and 
composition, but also triggered microbial cooperation. The result of 
network analysis revealed that aerobic aniline degraders in the sus-
pension displayed positive correlations with electroactive bacteria in the 
inner biofilm. Aniline degraders were considered to be potential hosts of 
dioxygenase genes contributing to benzene ring cleavage. The different 
impacts on the populations/genes for aromatic aniline ammonification 
and current generation could be important in maintaining the functional 
efficiency in micro-aeration assisted electrogenic respiration system. 
Considering aerobic or facultative bacteria could consume oxygen, the 
outer and inner electrode biofilms had lower DO concentration levels. 
Accordingly, the outer layer mainly consisted of facultative bacteria 

Fig. 6. The co-occurrence network patterns among the dominant taxa and 
function genes (green and red edges represent positive and negative 
associations). 

Fig. 7. Conceptual diagram for enhanced microbial ammonification by micro-aeration assisted with electrogenic respiration.  
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acting as both a physical and biological shield to protect the inner strict 
anaerobic bacteria from DO under micro-aerobic conditions. The co- 
existence of diverse bacteria and obvious enrichment of key genes sha-
ped by DO were responsible for reliable aniline degradation. 

Therefore, a conceptual model for refractory nitrogen-containing 
organics ammonification was proposed to overcome the limits of the 
low transformation in traditional wastewater treatment. In this mode, a 
whole hybrid hydrolysis acidification system directly introducing 
polarized electrodes and in-situ small amounts of air into the existing 
treatment construction is installed as a pretreatment in wastewater 
treatment plants. Several hybrid treatment technologies combined bio-
logical with chemical or physical treatment have been applied in 
wastewater treatment during the last few years [1]. However, there are 
universally acknowledged treatment issues including high economic 
cost, energy consumption, uncertainty and variability management for 
coupled processes. The integrated biological system, electrostimulated 
hydrolysis acidification assisted with micro-aeration regulation, would 
be promising and attractive because this approach could flexibly match 
existing wastewater treatment construction and significantly relieve the 
toxicity of refractory pollutants on the sequential secondary biochemical 
treatment unit designed to NH4

+ removal through nitrification and sub-
sequent denitrification processes. Simultaneously, it could reduce 
organic load and oxygen demands for aerobic biological process. More 
studies should emphasize the optimization of technique parameters (e. 
g., electrical power input, micro-aeration rate) and the investigation of 
metabolic mechanism using multi-omics (e.g., metagenomics, meta-
transcriptomics, metaproteomics) to manipulate the microbiomes for 
improving the treatment performance. 

4. Conclusions 

This study demonstrated that aniline could be catabolized to 
ammonia in the presence of minimal oxygen in an electrogenic respi-
ration system. Microbial community and functional gene composition 
noticeably differentiated due to the oxygen gradient. Specifically, aer-
obic aniline degraders enriched in the suspension showed positive cor-
relations with electroactive bacteria in the inner electrode biofilm. Also, 
the genes encoding for catechol dioxygenase which contributes to ben-
zene ring cleavage were significantly greater in the suspension while 
cytochrome c genes that contribute to EET showed significantly higher 
abundance in the biofilm. Overall, this study provides a feasible 
approach to accomplish aromatic nitrogen ammonification and offers 
new insight into the response of microbial associations and functional 
evolution to micro-aeration assisted with electrogenic respiration. 

Environmental implications 

Refractory nitrogen-containing organics are the toxic factor for 
wastewater denitrification, which would suppress microbial metabolism 
and even induce aquatic eutrophication. This study proposed a feasible 
scheme to simultaneously accelerate amination and ammonification of 
organic nitrogen by micro-aeration assisted with electrogenic respira-
tion. Network analysis indicated pollutant degraders were positively 
associated with electroactive bacteria and could be the potential hosts 
for genes encoding for dioxygenase and cytochrome, respectively. This 
approach could flexibly match existing wastewater treatment con-
struction and significantly relieve the toxicity of organics on the 
sequential aerobic biological treatment. 
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