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Abstract
Unraveling	the	influence	of	community	assembly	processes	on	soil	ecosystem	func-
tioning	presents	a	major	challenge	in	the	field	of	theoretical	ecology,	as	it	has	received	
limited	 attention.	 Here,	we	 used	 a	 series	 of	 long-	term	 experiments	 spanning	 over	
25 years	to	explore	the	assembly	processes	of	bacterial,	fungal,	protist,	and	nematode	
communities	using	high-	throughput	sequencing.	We	characterized	the	soil	microbial	
functional	potential	by	the	abundance	of	microbial	genes	associated	with	carbon,	ni-
trogen,	phosphorus,	and	sulfur	cycling	using	GeoChip-	based	functional	gene	profil-
ing,	 and	determined	how	 the	 assembly	processes	of	 organism	groups	 regulate	 soil	
microbial	functional	potential	through	community	diversity	and	network	stability.	Our	
results	 indicated	that	balanced	fertilization	 (NPK)	 treatment	 improved	the	stochas-
tic	assembly	of	bacterial,	fungal,	and	protist	communities	compared	to	phosphorus-	
deficient	fertilization	(NK)	treatment.	However,	there	was	a	nonsignificant	 increase	
in	 the	 normalized	 stochasticity	 ratio	 of	 the	 nematode	 community	 in	 response	 to	
fertilization	 across	 sites.	 Our	 findings	 emphasized	 that	 soil	 environmental	 factors	
influenced	 the	 assembly	 processes	 of	 the	 biotic	 community,	 which	 regulated	 soil	
microbial functional potential through dual mechanisms. One mechanism indicated 
that the high phosphorus levels and low soil nutrient stoichiometry may increase the 
stochasticity	 of	 bacterial,	 fungal,	 and	 protist	 communities	 and	 the	 determinism	 of	
the	nematode	community	under	NPK	treatment,	ultimately	enhancing	soil	microbial	
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1  |  INTRODUC TION

Understanding	 the	 principles	 that	 govern	 the	 assembly	 of	 organ-
ism communities and their impact on soil biogeochemical cycling is 
crucial for predicting ecosystem responses to global climate change 
(Martiny	 et	 al.,	 2011).	 The	 fundamental	 processes	 of	 community	
assembly,	 determinism	 and	 stochasticity,	 work	 concurrently	 and	
symbiotically	 in	 species	 composition,	 and	 ecosystem	 functioning	
(Dini-	Andreote	et	al.,	2015).	Determinism	indicates	that	selection	is	
the	primary	force	that	shapes	soil	microbiomes,	 including	environ-
mental	filtering	and	species	interactions,	while	stochasticity	empha-
sizes	dispersal	events	and	random	drift	(Zhou,	2017).	Currently,	the	
extent	 to	which	 stochastic	 and	deterministic	processes	contribute	
to community assembly in agricultural ecosystems remains a subject 
of	deliberation	(Jiao	et	al.,	2020;	Wang	et	al.,	2013).	Fertilization	is	a	
common agriculture management practice that affects the patterns 
of organism community assembly by changing soil characteristics 
(Guo	et	al.,	2010).	 Long-	term	phosphorus-	deficient	 fertilization	al-
ters the microbial community by changing the ratios of soil nitro-
gen–phosphorus	 or	 carbon–phosphorus	 (Peñuelas	 et	 al.,	2013).	 In	
contrast,	 balanced	 fertilization	 is	 considered	 a	 beneficial	 strategy	
to	 improve	 bacterial	 diversity,	 enzyme	 activities,	 soil	 quality,	 and	
crop	 yield,	which	 is	 associated	with	 the	 stochastic	 process	 of	mi-
crobial	 communities	 (Feng	 et	 al.,	2017).	 Studies	 on	 the	 impact	 of	
fertilization-	induced	 environmental	 changes	 on	 the	 assembly	 pro-
cesses of soil organism communities have primarily focused on in-
dividual	bacterial	or	fungal	communities	(Shi	et	al.,	2020).	However,	
soil protists and nematodes as top- down regulators play critical roles 
in mediating microbial community structure and ecosystem func-
tioning.	Therefore,	it	is	essential	to	consider	various	organism	groups	
to understand how anthropogenic environmental changes affect the 
assembly	processes	of	soil	microorganisms	(including	bacteria,	fungi,	
and	protists)	and	microfauna	(nematodes).

To advance the understanding of the mechanisms underlying 
belowground	biota,	it	is	imperative	to	elucidate	the	relationship	be-
tween	biotic	community	and	assembly	processes	(Feng	et	al.,	2018).	
The assembly processes can inevitably structure the diversity and 
co-	occurrence	network	of	soil	biotic	community	(Stegen	et	al.,	2012)	

and	show	substantial	influences	on	ecosystem	functioning	(Leibold	
et	 al.,	 2017).	 Variations	 in	 community	 assembly	 processes	 have	
provided evidence for differences in the composition and spe-
cies	co-	occurrence	patterns	of	various	biotic	communities	 (Peay	&	
Bruns,	2014).	 Deterministic	 processes	 tend	 to	 dominate	 in	 bacte-
rial	 communities	 characterized	 by	 low	diversity	 (Xun	 et	 al.,	2019),	
whereas stochastic processes lead to more intricate microbial co- 
occurrence	 networks,	 potentially	 influencing	microorganism	 inter-
actions	 (Jiao	et	 al.,	2020).	Microbial	 communities	exhibit	 different	
relationships between fungal diversity and the stochasticity ratio 
of	 the	 community	 from	 large	 to	 small	 scales	 (Zheng	 et	 al.,	2021).	
However,	a	comprehensive	quantitative	synthesis	is	yet	to	be	under-
taken	to	assess	the	 impact	of	assembly	processes	on	the	diversity	
and	network	structures	of	soil	organism	groups	at	larger	scales.

Biotic	 community	 diversity	 holds	 significant	 ecological	 impor-
tance in predicting ecosystem functioning responses to below-
ground	habitat	 changes	 (Balvanera	et	al.,	2014).	Disentangling	 the	
mechanisms underpinning the diversity–function relationship is 
crucial for determining the contributions of abundance and compo-
sition of organisms to ecosystem functioning. While an increasing 
number of studies have primarily focused on the implications of mi-
crobial α-	diversity	 for	 ecosystem	 functioning	 (Delgado-	Baquerizo	
et	al.,	2020),	the	role	of	β-	diversity,	which	pertains	to	variations	in	
community	composition,	has	received	relatively	less	attention	(Mori	
et	 al.,	 2018).	 Furthermore,	 the	 network	 complexity	 and	 stability	
mirrored by the functional traits of organisms play a pivotal role in 
determining the functional composition of ecological communities 
(Thébault	&	Fontaine,	2010).	Soil	microbial	and	nematode	commu-
nities	undergo	significantly	different	assembly	processes,	resulting	
in	distinct	functional	compositions	regarding	nutrient	cycling	(Fierer	
et	al.,	2012;	Leff	et	al.,	2015).	So	far,	there	is	a	paucity	of	studies	on	
how the assembly processes of organism groups affect soil microbial 
functional	potential	by	mediating	community	diversity	and	network	
stability.

In	 this	 study,	we	 sought	 to	 explore	 the	mechanisms	 of	 envi-
ronmental factors and biotic communities affecting soil microbial 
functional	potential	associated	with	carbon	(C),	nitrogen	(N),	phos-
phorus	(P),	and	sulfur	(S)	cycling.	We	used	long-	term	experiments	

functional	potential	by	reinforcing	the	network	stability	of	the	biotic	community.	The	
other mechanism indicated that the low phosphorus levels and high soil nutrient stoi-
chiometry may increase the stochastic process of the bacterial community and the 
determinism	of	the	fungal,	protist,	and	nematode	communities	under	NK	treatment,	
thereby enhancing soil microbial functional potential by improving the β- diversity of 
the	biotic	community.	Taken	together,	these	results	provide	valuable	insights	into	the	
mechanisms underlying the assembly processes of the biotic community that regulate 
ecosystem functioning.

K E Y W O R D S
balanced	fertilization,	deterministic	and	stochastic	processes,	environmental	factors,	
functional	genes,	nutrient	stoichiometry,	organism	groups
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with	 three	 fertilization	 treatments	 across	 different	 agroecologi-
cal	 sites,	 including	 no	 fertilization,	 phosphorus-	deficient	 fertil-
ization,	 and	 balanced	 fertilization.	 The	 bacterial,	 fungal,	 protist,	
and nematode communities were determined by high- throughput 
amplicon	 sequencing,	 and	 functional	 gene	microarrays	were	 ex-
amined	by	GeoChip-	based	metagenomic	technology.	Specifically,	
we	attempted	to	answer	the	following	questions:	(1)	How	do	the	
assembly	processes,	diversity,	and	co-	occurrence	network	of	or-
ganism	 groups	 respond	 to	 balanced	 fertilization	 compared	 with	
phosphorus-	deficient	fertilization?	(2)	How	do	the	stochastic	and	
deterministic processes of organism groups mediate diversity 
and	 network	 stability	 of	 biotic	 community?	 and	 (3)	What	 is	 the	
biological mechanism of assembly processes of organism groups 
that drive soil microbial functional potential through community 
diversity	 and	 network	 stability?	We	 hypothesized	 that	 balanced	
fertilization	would	enhance	the	stochastic	processes	of	the	micro-
bial	community	compared	to	phosphorus-	deficient	treatment,	and	
soil	microorganisms	(bacteria,	fungi,	and	protists)	and	microfauna	
(nematodes)	exhibit	consistent	responses	to	fertilization.	We	also	
supposed that stochastic processes of organism groups would lead 
to	 increased	community	diversity	and	network	 stability,	 thereby	
improving soil microbial functional potential.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental sites description and soil 
sampling

We collected soil samples in 2015 from seven agroecosystem 
sites	 of	 the	 National	 Ecosystem	 Research	 Network	 of	 China	
across	 a	 latitudinal	 gradient	 from	26°	 to	 47° N,	 including	Hailun	
(HL),	Fengqiu	(FQ),	Qiyang	(QY),	Shengyang	(SY),	Changwu	(CW),	
Yanting	(YT),	and	Fukang	(FK).	The	experimental	sites	are	charac-
terized	by	more	than	25 years	of	different	fertilization,	with	mean	
annual	precipitation	ranging	from	160	to	1309 mm	and	mean	an-
nual	 temperatures	 ranging	 from	2.8	 to	 18.8°C	 (Table S1).	 Three	
fertilization	 treatments	with	 three	 replicates	 included	 no	 fertili-
zation	(Ctrl),	phosphorus-	deficient	fertilization	(NK,	nitrogen	and	
potassium	inputs),	and	balanced	fertilization	(NPK,	nitrogen,	phos-
phorus,	 and	potassium	 inputs).	The	details	of	 each	experimental	
site and corresponding soil properties were given in Tables S1 and 
S2,	respectively.

We	 collected	 surface	 soils	 (0–20 cm)	 from	 each	 plot	 (5 × 5 m)	
under three treatments at the seven sites after harvesting the 
summer crop. We followed an “S” sampling pattern to collect 
seven soil cores from each plot and then combined them to create 
a composite sample. Three treatments were randomly distributed 
and	applied	to	triplicate	plots	at	each	site.	After	collection,	all	sam-
ples were stored on dry ice and immediately transported to the 
laboratory.	Subsequently,	63	soil	samples	 (7	sites	× 3	treatments	
× 3	replicates)	were	sieved	to	a	2 mm	size,	and	any	visible	live	plant	
material	and	stones	were	manually	removed.	Each	soil	sample	was	

divided into two subsamples to determine soil chemical proper-
ties,	microbial	and	nematode	communities,	 and	 functional	genes	
(Zhu	et	al.,	2023).

2.2  |  Soil chemical properties

Soil	pH	was	measured	using	a	pH	meter	(FE20	FiveEasy™,	Mettler	
Toledo,	Germany)	in	a	1:2.5	suspension	of	dry	soil	mass	to	deionized	
water	volume	(Kader	et	al.,	2015).	The	dichromate	oxidation	method	
was	 used	 to	 determine	 soil	 organic	 carbon	 (SOC;	 Nelson,	 1996).	
Soil	 organic	 matter	 (OM)	 was	 calculated	 as	 OM = SOC × 1.724.	
Total	 nitrogen	 (TN)	was	determined	by	 semi-	micro	Kjeldahl	 diges-
tion	 (Bremner,	 1960).	 Total	 phosphorus	 (TP)	 and	 total	 potassium	
(TK)	 were	 digested	 with	 HF-	HClO4 and determined using the 
molybdenum-	blue	method	 (O'Halloran	&	Cade-	Menun,	2007)	 and	
atomic	absorption	spectrophotometer	(Kanehiro	&	Sherman,	1965),	
respectively.	Available	phosphorus	 (AP)	was	determined	using	 the	
molybdenum	 blue	 method	 after	 extraction	 with	 sodium	 bicarbo-
nate	 (Lu,	1999).	 Available	 potassium	 (AK)	was	 extracted	with	 am-
monium	acetate	 and	detected	using	 flame	photometry	 (Lu,	1999).	
Ammonium	nitrogen	(NH4

+-	N)	was	determined	by	ultraviolet	spec-
trophotometry	using	0.01 mol L−1	calcium	chloride	extraction,	while	
nitrate	 nitrogen	 (NO3

−-	N)	 was	 determined	 by	 spectrophotometry	
through	a	saturated	calcium	sulfate	extraction	(Lu,	1999).	The	car-
bon–nitrogen	ratio	(C/N)	was	calculated	by	the	ratio	of	SOC	to	TN,	
the	carbon–phosphorus	ratio	(C/P)	by	the	ratio	of	SOC	to	TP,	and	the	
nitrogen–phosphorus	ratio	(N/P)	by	the	ratio	of	TN	to	TP.

2.3  |  DNA extraction and 
high- throughput sequencing

Total	 genomic	 DNA	 was	 extracted	 from	 0.5 g	 of	 fresh	 soil	 using	
the	 Powersoil	 DNA	 Isolation	 Kit	 (MoBio	 Laboratories,	 Carlsbad,	
CA,	USA)	following	the	manufacturer's	instructions.	The	extracted	
DNA	was	quantified	and	qualified	using	a	Nanodrop	ND-	1000	spec-
trophotometer	 at	 260/280	 and	 260/230	 ratios	 ≥1.8	 (NanoDrop	
Technologies,	Delaware,	 USA).	 The	DNA	was	 then	 used	 for	 high-	
throughput	 sequencing	 of	 the	 biotic	 community	 (bacteria,	 fungi,	
protists,	and	nematodes)	and	functional	gene	analysis.

The	 bacterial	 16S	 rRNA	 and	 fungal	 ITS	 genes	 were	 amplified	
using	the	primer	pairs	515F/806R	(Caporaso	et	al.,	2011)	and	ITS7F/
ITS4R	(Ihrmark	et	al.,	2012),	respectively.	The	protist	and	nematode	
18S	 rRNA	 genes	 were	 amplified	 using	 primer	 pairs	 S615F/S947R	
(Fiore-	Donno	et	al.,	2018)	and	3ndf/1132rmod	(Geisen	et	al.,	2018).	
The	 taxonomic	 profiles	 of	 soil	 bacterial,	 fungal,	 protist,	 and	 nem-
atode	 communities	 were	 determined	 via	 amplicon	 sequencing	
using	 the	 Illumina	MiSeq	 platform.	 Bioinformatics	 processing	was	
performed	 as	 described	 previously	 (Geisen	 et	 al.,	 2018).	 Briefly,	
primer	sequences	were	removed	using	cutadapt	(Martin,	2011),	and	
chimeric	 reads	 and	 singletons	 were	 filtered	 out	 using	 VSEARCH	
(Rognes	et	al.,	2016).	High-	quality	sequences	were	then	divided	into	
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operational	 taxonomic	 units	 (OTUs)	 with	 a	 similarity	 threshold	 of	
97%	using	VSEARCH	(Rognes	et	al.,	2016).	Taxonomic	assignments	
of	OTUs	were	performed	using	RDP	Classifier	(Wang	et	al.,	2007).	
All	 samples	 were	 rarefied	 to	 ensure	 equal	 sampling	 depth	 within	
each organism group.

2.4  |  GeoChip hybridization analysis

We	examined	the	functional	structure	of	the	biotic	community	using	
GeoChip	5.0,	including	carbon	(C),	nitrogen	(N),	phosphorus	(P),	and	
sulfur	(S)	cycling.	To	obtain	sufficient	DNA	for	microarray	analysis,	
20 ng	of	template	DNA	from	each	sample	was	amplified	using	whole	
community	genome	amplification.	After	amplification,	2.5 μg	of	DNA	
was	labeled	and	resuspended	in	a	hybridization	buffer.	The	labeled	
DNA	was	 then	hybridized	on	 a	GeoChip	5.0	microarray	 chip	with	
10%	formamide	at	67°C	for	24 h	in	an	Agilent	microarray	hybridiza-
tion	oven	(Agilent	Technologies,	Santa	Clara,	CA).	The	chip	was	then	
washed,	dried,	and	scanned	using	100%	laser	power	at	wavelengths	
of	532	and	635 nm.	Intensity	data	were	collected	using	the	Agilent	
Feature	Extraction	program.	Raw	 intensity	data	were	uploaded	 to	
the	Functional	Gene	Microarray	analysis	pipeline	for	preprocessing,	
including	normalization	and	log	transformation.	Further	steps,	such	
as	hybridization,	 imaging,	and	data	preprocessing,	were	performed	
as	described	previously	(Zhou	et	al.,	2015).	Relative	abundance	data	
for	 soil	 functional	 gene-	related	C,	N,	 P,	 and	S	 cycling	were	deter-
mined by the ratio of the total signal intensity of each gene to the 
total	number	of	probes	(Zhao	et	al.,	2016).

2.5  |  Construction of co- occurrence networks

The	 network	 analysis	 was	 based	 on	 a	 sample	 combination	 of	 all	
sites	 from	 each	 fertilization	 treatment	 (7	 sites	 × 3	 replicates	 for	
each	network),	because	 the	data	points	 from	different	 treatments	
within	each	site	cannot	construct	a	reliable	network.	Collecting	all	
sampling	sites	of	each	fertilization	treatment	can	improve	sensitivity	
to co- occurrence events and reveal co- occurrence patterns of soil 
biotic communities driven by different nutrient inputs across sites. 
The	co-	occurrence	networks	were	constructed	using	the	“WGCNA”	
package	based	on	the	Spearman	correlation	matrix	with	adjusted	p 
values	(Langfelder	&	Horvath,	2012).	The	network	properties	were	
calculated	 using	 the	 “igraph”	 package	 in	 R,	 and	 visualization	 was	
performed	using	Cytoscape	software	(version	3.7.2).	We	extracted	
subnetworks	 by	 preserving	 the	 phylotypes	 of	 individual	 soil	 sam-
ples	using	the	“induced_subgraph”	function	in	the	“igraph”	package	
(Csardi	&	Nepusz,	2006).	Furthermore,	we	calculated	the	topological	
properties	of	the	networks,	including	average	degree	(the	number	of	
adjacent	edges),	clustering	coefficient	(the	probability	that	the	adja-
cent	nodes	of	a	node	were	connected),	network	density	(the	ratio	of	
the	frequency	of	actual	edges	to	possible	edges),	and	network	diam-
eter	(the	longest	distance	in	the	network).	These	metrics	were	used	
as	 indicators	 of	 network	 cohesion	 and	 stability	 (Jiao	 et	 al.,	2022; 

Zhou	 et	 al.,	 2010).	 Based	 on	 the	 within-	module	 degree	 (z-	score)	
and	participation	coefficient	(c-	score)	threshold	values,	nodes	were	
categorized	into	network	hubs	(z-	score >2.5	and	c-	score >0.6),	mod-
ule	 hubs	 (z-	score >2.5	 and	 c-	score <0.6),	 connectors	 (z-	score <2.5 
and	 c-	score >0.6),	 and	 peripherals	 (z-	score <2.5	 and	 c-	score <0.6; 
Poudel	 et	 al.,	2016).	Network	hubs,	module	hubs,	 and	 connectors	
were	termed	keystone	taxa	that	play	important	roles	in	maintaining	
community	stability	(Tylianakis	&	Morris,	2017).	Natural	connectiv-
ity	provided	a	valuable	assessment	of	network	stability,	which	can	
be	 achieved	 by	 removing	 nodes	 from	 the	 static	 network	 (Ming	&	
Yan,	2015;	Peng	&	Wu,	2016).

2.6  |  Quantification of soil microbial 
functional potential

We	employed	GeoChip	5.0	to	assess	the	soil	microbial	functional	po-
tential	associated	with	C,	N,	P,	and	S	cycling	(Donhauser	et	al.,	2021; 
Pressler	 et	 al.,	2020;	 Sun	 et	 al.,	2014;	 Xu	 et	 al.,	2014).	 The	 gene	
values	of	10	functional	groups	were	 initially	normalized	as	relative	
abundances,	 including	 carbon	 degradation	 (from	 labile	 carbon	 to	
recalcitrant	carbon),	carbon	fixation,	nitrogen	fixation,	nitrification,	
denitrification,	 polyphosphate	 synthesis,	 polyphosphate	 degrada-
tion,	 phosphorus	 oxidation,	 sulfur	 oxidation,	 and	 sulfur	 assimila-
tion. To ensure consistency with the diversity of organism groups 
(Z-	score	transformed	data),	we	applied	Z-	score	transformation	to	the	
functional	gene	data,	which	allowed	for	the	calculation	of	associa-
tions	between	the	two	datasets	in	subsequent	analyses.	The	Z-	score	
transformation method is commonly chosen to transform already 
normalized	data,	due	 to	 its	 favorable	statistical	properties,	 includ-
ing	a	normal	distribution	of	average	Z-	scores,	a	weak	correlation	be-
tween	means	and	variances	of	these	averages,	and	the	absence	of	
constraints	on	variability	observed	in	raw	data	(Delgado-	Baquerizo	
et	al.,	2016;	Maestre	et	al.,	2012).	The	soil	microbial	functional	po-
tential was determined by the average values of functional genes 
after	 Z-	score	 transformation.	 In	 addition,	 the	microbial	 functional	
potential	 associated	with	C,	N,	P,	 and	S	 cycling	was	 calculated	by	
averaging	 the	 Z-	score-	transformed	 values	 of	 their	 corresponding	
functional genes. The averaging approaches provided a clear and 
easily interpretable measure of different organisms to sustain soil 
microbial	functional	potential	(Jing	et	al.,	2015;	Wagg	et	al.,	2014).

2.7  |  Estimating assembly processes of biotic 
communities

The	normalized	stochasticity	 ratio	 (NST)	was	used	to	estimate	the	
relative importance of stochastic processes in community assembly. 
The	normalized	stochasticity	ratio	of	all	treatments	in	each	site	was	
calculated	using	the	“NST”	package	(Ning	et	al.,	2019).	NST	was	cal-
culated	using	various	 similarity	metrics	and	null	model	 algorithms,	
as	well	 as	 stochasticity	 ratios,	 standard	effect	 sizes,	 and	modified	
Raup-	Crick	metrics	 (Ning	et	al.,	2019;	Zhou	et	al.,	2014).	NST	was	
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    |  5 of 16ZHU et al.

modified from the stochasticity ratio by considering two alternative 
situations	and	normalizing	the	index	to	range	from	0	to	1.	The	NST	
index	had	a	boundary	of	50%	to	distinguish	between	more	deter-
ministic	(<50%)	and	more	stochastic	(>50%)	assembly.

2.8  |  Statistical analysis

The α-	diversity	 (Shannon,	Chao1,	 and	evenness	 indices)	 of	 the	bi-
otic	community	was	calculated	using	the	Quantitative	Insights	into	
Microbial	Ecology	 (QIIME	software,	 version	2)	pipeline.	We	 trans-
form	the	value	of	bacterial,	fungal,	protist,	and	nematode	α-	diversity,	
including	 Shannon,	 Chao1,	 and	 Evenness	 indices	 into	 Z-	scores	 to	
obtain	 a	 computable	 index	 for	 each	 treatment.	 The	 standardized	
α-	diversity	values	of	bacterial,	 fungal,	protist,	and	nematode	com-
munities were then averaged to create an overall α-	diversity	index	
for the biotic community. The average α- diversity of individual bac-
terial,	fungal,	protist,	and	nematode	communities	is	calculated	using	
the	standardized	Shannon,	Chao1,	and	evenness	 indices	 (Delgado-	
Baquerizo	 et	 al.,	2019).	 The	 β- diversity of the biotic communities 
(bacterial,	 fungal,	 protist,	 and	 nematode	 communities)	 as	 well	 as	
the β- diversity of soil microbial functional potential were estimated 
based	 on	 Bray–Curtis	 dissimilarity	 between	 samples,	 and	 the	 dis-
similarity was calculated using the “vegdist” function in the “vegan” 
package.	Principal	coordinate	analysis	(PCoA)	was	conducted	to	re-
flect β- diversity in both biotic communities and soil microbial func-
tional	 potential	 using	 the	 “vegan”	 package	 (Oksanen	 et	 al.,	2013).	
The	 Bray–Curtis	 dissimilarity	 and	 PCoA	 analysis	 were	 performed	
based	on	 a	 rarefied	OTUs	dataset	 for	 the	 biotic	 communities	 and	
a gene dataset for soil microbial functional potential. The distance 
decay	 rate	 (DDR)	of	bacterial,	 fungal,	 protist,	 and	nematode	com-
munities and soil microbial functional potential were calculated by 
the	slopes	of	ordinary	 least-	squares	regressions	for	their	similarity	
(1-	Bray–Curtis	dissimilarity)	 related	 to	geographic	distance.	The	1-	
Bray–Curtis	 dissimilarity	 represented	 the	 similarity	 between	 two	
samples.	It	ranged	from	0	(when	the	two	samples	were	completely	
dissimilar)	to	1	(when	the	two	samples	were	completely	same	in	spe-
cies	composition).	The	difference	in	slope	between	two	datasets	was	
calculated	using	the	“diffslope”	function	in	the	“simba”	package.

One-	way	 ANOVA	was	 performed	 to	 assess	 the	 differences	 in	
both biotic community α- diversity and soil microbial functional 
potential	 across	 different	 sites	 and	 fertilization	 treatments	 using	
Tukey's	HSD	 tests	 (p < .05)	 in	 spss	 20.0	 software	 (spss,	Chicago,	 IL,	
USA).	Two-	way	PERMANOVA	was	used	 to	determine	 the	 interac-
tion	 effect	 of	 fertilization	 treatments	 and	 sites	 on	 biotic	 commu-
nities and soil microbial functional potential in spss 20.0 software. 
Random	forest	modeling	was	conducted	to	quantitatively	estimate	
the important predictors of soil microbial functional potential using 
the	“randomForest”	package	(Liaw	&	Wiener,	2002),	and	the	model	
and	predictor	significance	levels	were	determined	using	the	“A3”	and	
“rfPermute”	packages,	respectively	(Archer,	2016).

The	partial	least	squares	structural	equation	modeling	(PLS-	SEM)	
was	essentially	a	sequence	of	regressions	in	terms	of	weight	vectors	

using	Smart	PLS	3.0	software	(Henseler	et	al.,	2009).	We	used	the	
relative	abundances	of	 functional	genes	 for	C,	N,	P,	and	S	cycling,	
and	the	average	degree	and	natural	connectivity	for	network	stabil-
ity	in	the	PLS-	SEM	model	(Table S2).	The	fitting	index	of	the	model	
was	determined	by	Cronbach's	alpha,	composite	reliability,	and	aver-
age	variance	extracted,	with	values	greater	than	0.7,	0.6,	and	0.5,	re-
spectively,	indicating	a	well-	fitting	model.	The	goodness-	of-	fit	(GoF)	
index	was	used	to	evaluate	the	overall	fitness	of	the	model	(Henseler	
&	Sarstedt,	2013).	The	overall	fitting	effect	of	the	model	was	divided	
into	weak	(GoF >0.1),	medium	(GoF >0.25),	and	strong	(GoF >0.36; 
Wetzels	et	al.,	2009).

3  |  RESULTS

3.1  |  Assembly processes and distance decay 
pattern of organism groups

The	 normalized	 stochasticity	 ratio	 (NST)	 based	 on	 the	 null	model	
was	 used	 to	 quantitatively	 assess	 the	 stochasticity	 of	 four	 organ-
ism	groups	under	the	three	treatments	across	sites	 (Figure 1).	The	
NST	values	of	bacterial	and	 fungal	communities	were	significantly	

F I G U R E  1 The	assembly	processes	of	biotic	community	under	
different	fertilization	treatments.	Normalized	stochasticity	ratio	
(NST)	of	bacterial	(a),	fungal	(b),	protist	(c),	and	nematode	(d)	
communities	under	different	fertilization	treatments	are	presented.	
Black	lines	represent	the	mean	value.	Different	lowercase	letters	
represent	significant	differences	in	NST	under	different	fertilization	
treatments by Tukey's	HSD	post	hoc	tests	(p < .05).	The	NST	index	
has a boundary of 50% to distinguish between more deterministic 
(<50%)	and	more	stochastic	(>50%)	assembly.	Ctrl,	no	fertilization;	
CW,	Changwu;	FK,	Fukang;	FQ,	Fengqiu;	HL,	Hailun;	NK,	nitrogen	
and	phosphorus	inputs;	NPK,	nitrogen,	phosphorus,	and	potassium	
inputs;	QY,	Qiyang;	SY,	Shengyang;	YT,	Yangting.

(a) (b)

(c) (d)
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6 of 16  |     ZHU et al.

(p < .05)	lower	under	NK	treatment	than	under	Ctrl	treatment	(6	of	
7 cases for bacteria and all cases for fungi; Figure 1a,b).	The	NST	
values for the protist community were 30.34% and 18.49% higher 
under	NPK	treatment	than	under	NK	and	Ctrl	 treatments,	 respec-
tively	 (Figure 1c,	 p < .05).	 However,	 there	 was	 a	 nonsignificant	
(p > .05)	difference	in	the	NST	values	for	the	nematode	community	
across	the	three	treatments	(Figure 1d).	Furthermore,	the	organism	
groups	showed	significant	declining	DDRs	characterized	by	negative	
slopes,	 including	bacteria	 (R2 = .317–.333,	p < .01),	 fungi	 (R2 = .239–
.381,	 p < .01),	 protists	 (R2 = .173–.253,	 p < .01),	 and	 nematodes	
(R2 = .102–.169,	p < .01),	 indicating	lower	similarities	with	increasing	
distance	(Figure S1).	The	slopes	of	the	bacterial,	fungal,	and	protist	
communities	showed	significant	differences	between	NK	and	NPK	
treatments	(Figure S1,	p < .05),	in	contrast	to	the	slope	of	the	nema-
tode	community	(Figure S1,	p > .05).

3.2  |  The diversity of organism groups

The	 results	 of	 the	 two-	way	 ANOVA	 analysis	 showed	 significant	
(p < .001)	 differences	 in	 the	 α- diversity of the biotic community 

across	the	different	sites	(Table 1,	Figure S2).	This	was	observed	in	
Shannon,	Chao1,	and	evenness	 indices	of	 the	bacterial	 and	 fungal	
communities	(p < .001),	as	well	as	Shannon	and	evenness	indices	of	
the	protist	community	(p < .01)	and	Shannon	index	of	the	nematode	
community	(p < .001;	Table S3).	Overall,	fertilization	treatments	had	
a nonsignificant effect on the α- diversity of the biotic community 
(p = .052;	Table 1),	except	for	Shannon	and	evenness	indices	of	the	
bacterial	community,	and	Chao1	index	of	the	fungal	and	protist	com-
munities	(p < .05;	Table S3).

We	 found	 that	 sites,	 fertilization,	 and	 their	 interactions	 signifi-
cantly	 (p < .05)	 influenced	 the	β- diversity of the overall biotic com-
munity,	as	well	as	that	of	the	bacterial,	fungal,	protist,	and	nematode	
communities	 (Table 1; Figure S3).	Moreover,	 the	bacterial	 and	pro-
tist	 communities	had	 the	 strongest	 responses	 to	 sites	and	 fertiliza-
tion treatments compared to the fungal and nematode communities 
(Table 1).	Correlation	analysis	showed	that	TN,	OM,	pH,	and	the	ratios	
of	C/N,	C/P,	and	N/P	showed	stronger	correlations	with	β- diversity 
than with α- diversity in the bacterial and fungal communities. 
However,	pH,	AP,	and	NH4

+-	N	were	more	strongly	associated	with	
β- diversity than with α- diversity of the protist and nematode commu-
nities	(Figure S4).

TA B L E  1 Two-	way	ANOVA	of	biotic	community	diversity	and	soil	microbial	functional	potential.

Site Fertilization Interaction

F value p value F value p value F value p value

α- diversity of biotic 
community

Biotic	community	α- diversity 20.22 <.001 3.15 .052 7.92 <.001

Bacteria 169.49 <.001 9.78 <.001 18.48 <.001

Fungi 11.33 <.001 3.05 .058 2.44 .016

Protists 3.69 .005 4.94 .012 1.72 .096

Nematodes 6.85 <.001 0.24 .789 1.17 .338

β- diversity of biotic 
community

Biotic	community	β- diversity 51.06 <.001 8.66 <.001 2.37 .02

Bacteria 1229.46 <.001 3.35 .05 10.2 <.001

Fungi 510.19 <.001 3.99 .026 5.25 <.001

Protists 322.93 <.001 10.83 <.001 11.34 <.001

Nematodes 42.37 <.001 4.79 .013 10.19 <.001

Soil microbial functional 
potential

Soil microbial functional 
potential

37.84 <.001 39.02 <.001 9.75 <.001

Carbon	cycle 38.27 <.001 38.43 <.001 9.9 <.001

Nitrogen	cycle 40.95 <.001 41.06 <.001 10.14 <.001

Phosphorus cycle 38.81 <.001 43.15 <.001 11.12 <.001

Sulfur cycle 39.1 <.001 40.53 <.001 10.36 <.001

β- diversity of soil 
microbial functional 
potential

β- diversity of soil microbial 
functional potential

40.77 <.001 38.01 <.001 10.3 <.001

Carbon	cycle 41.18 <.001 38.75 <.001 10.45 <.001

Nitrogen	cycle 42.76 <.001 40.26 <.001 10.4 <.001

Phosphorus cycle 41.45 <.001 41.82 <.001 11.42 <.001

Sulfur cycle 41.75 <.001 40.97 <.001 10.84 <.001

Note:	Interaction	represents	the	interaction	effect	of	site	and	fertilization	treatment	on	individual	parameters.	The	bacterial,	fungal,	protist,	and	
nematode community β-	diversity	were	represented	by	their	composition	(first	principal	coordinates,	PCoA1).	β- diversity of soil microbial functional 
potential	and	carbon,	nitrogen,	phosphorus,	and	sulfur	cycling	functional	potential	composition	were	represented	by	PCoA1.
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    |  7 of 16ZHU et al.

3.3  |  Co- occurrence networks of organism groups

We	constructed	 the	co-	occurrence	network	 to	explore	 the	poten-
tial	niche	partitioning	and	network	stability	of	the	biotic	community.	
Our	results	indicated	that	the	NPK	network	was	the	most	complex,	
with	the	highest	number	of	connections	(edges = 16,168)	among	co-	
occurring	genera	 (nodes = 954)	compared	to	Ctrl	and	NK	networks	
(nodes = 871	 and	 945,	 edges = 14,427	 and	 13,884;	 Figure 2a–c).	 
Notably,	the	associations	between	nematodes	and	bacteria	(edges = 
171),	 nematodes	 and	 fungi	 (edges = 20),	 and	 protists	 and	 bacteria	
(edges = 66)	were	higher	 in	NPK	network	 than	 in	Ctrl	 and	NK	net-
works.	 In	 addition,	 the	 networks	 showed	 variation	 in	 topological	
metrics,	with	the	NPK	network	exhibiting	the	highest	values	of	av-
erage	degree,	clustering	coefficient,	network	density,	and	diameter	
(Figure S5).	 The	 ratio	 of	 negative	 edges	 to	 positive	 edges	 showed	
a	 general	 pattern	 of	 Ctrl	>	 NPK > NK	 (Figure 2a–c).	 Compared	 to	
Ctrl	and	NK	networks,	the	average	degree	and	natural	connectivity	
were	the	highest	in	NPK	network	(Figure 2d,e),	indicating	the	high-
est	network	stability.	The	numbers	of	module	hubs	and	connectors	
were	higher	in	NPK	network	(6	and	7)	than	in	Ctrl	(5	and	5)	and	NK	
networks	(3	and	4;	Figure S6).	Network	stability,	as	indicated	by	aver-
age	degree	and	natural	connectivity,	was	positively	correlated	with	
TP	 and	AP	 (R = .271–0.450,	p < .05),	 but	 negatively	 correlated	with	
NO3

−-	N	and	the	ratios	of	C/N,	C/P,	and	N/P	(R = .288–0.765,	p < .01;	
Figure S4).

3.4 | Relationships of assembly processes of organism 
groups with community diversity and network stability

Linear regression analysis showed significant associations between 
community	 assembly	 of	 organism	 groups,	 diversity,	 and	 network	
stability	(R2 = .003–.309,	p < .05;	Figure 3).	Differences	in	α- diversity 
and β- diversity were significantly positively correlated with pairwise 
comparisons	of	 stochasticity	 for	 the	bacterial	 community	 (R2 = .05	
and	.018,	p < .001),	but	negatively	correlated	with	those	for	fungal,	
protist,	 and	 nematode	 communities	 (R2 = .004	 and	 .309,	 p < .05;	
Figure 3a–h).	 Moreover,	 differences	 in	 network	 stability	 showed	
significantly positive correlations with pairwise comparisons of sto-
chasticity	 of	 bacterial,	 fungal,	 and	 protist	 communities	 (R2 = .005	
to	.006,	p < .01;	Figure 3i–k),	but	a	negative	correlation	with	that	of	
nematode	community	(R2 = .003,	p < .05;	Figure 3l).

3.5  |  Soil microbial functional potential

We observed that DDRs of soil microbial functional potential were 
significant	under	Ctrl	and	NK	treatments	(R2 = .042	and	.158,	p < .01).	
However,	there	was	nonsignificant	DDR	for	soil	microbial	functional	
potential	under	NPK	treatment	(p > .05),	indicating	that	the	composi-
tion	of	functional	genes	was	similar	across	different	sites	(Figure 4a).	
The	slopes	of	DDRs	were	significantly	lower	under	NPK	treatment	

F I G U R E  2 Co-	occurrence	patterns	and	network	stability	of	biotic	community	under	different	fertilization	treatments.	Co-	occurrence	
patterns	of	multi-	trophic	networks	under	the	Ctrl	(a),	NK	(b),	and	NPK	(c)	treatments.	The	node	is	the	genera	of	bacteria,	fungi,	protists,	
and	nematodes.	A	connection	between	two	nodes	(i.e.,	an	edge)	represents	a	strong	(Spearman's	r > .8)	and	significant	(adjusted	p < .05)	
correlation.	Pink	edges	indicate	positive	correlations	between	two	nodes,	while	green	edges	indicate	negative	correlations.	The	right	of	each	
network	is	the	summary	of	the	positive	and	negative	edges	among	bacteria,	fungi,	protists,	and	nematodes,	and	the	statistics	of	the	total	
nodes	and	edges.	The	pink	and	green	numbers	represent	the	number	of	positive	and	negative	edges,	respectively.	(d,	e)	Network	stability	
is	indicated	by	average	degree	and	natural	connectivity	of	biotic	network.	Ctrl,	no	fertilization;	NK,	nitrogen	and	phosphorus	inputs;	NPK,	
nitrogen,	phosphorus,	and	potassium	inputs.
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8 of 16  |     ZHU et al.

than	under	Ctrl	and	NK	treatments	(Figure 4a).	The	DDRs	for	func-
tional	 potential	 related	 to	 carbon,	 nitrogen,	 phosphorus,	 and	 sul-
fur	 cycling	 exhibited	 a	 similar	 pattern	 to	 the	 overall	 soil	microbial	
functional	potential	(Table S4).	We	found	that	balanced	fertilization	
significantly	(p < .05)	increased	the	relative	abundance	of	functional	
genes	associated	with	carbon,	nitrogen,	phosphorus,	and	sulfur	cy-
cling	 (Figure 4b; Figure S7).	 Soil	microbial	 functional	 potential,	 as	
well	as	functional	potential	related	to	carbon,	nitrogen,	phosphorus,	
and	sulfur	cycling,	was	significantly	(p < .001)	influenced	by	site,	fer-
tilization,	and	their	interactions	(Table 1; Figures S8–S10).

3.6  |  The impacts of soil properties and biotic 
communities on soil microbial functional potential

Fertilization	 treatments	 significantly	 influenced	 the	 α- diversity of 
the	 biotic	 community	 (4	 of	 7	 cases)	 and	 soil	 microbial	 functional	

potential	(all	cases),	but	the	observed	effects	of	fertilization	on	these	
factors	were	not	consistent	at	each	site	(Figure S11,	p < .05).	There	
was	a	nonsignificant	(p > .05)	correlation	between	the	α- diversity of 
the biotic community and soil microbial functional potential across 
all	 samples	 (Figure 5a).	 Significant	 positive	 relationships	were	 ob-
served between the β- diversity of the biotic community and the 
β-	diversity	of	soil	microbial	functional	potential	(R2 = .018,	p < .001),	
and	between	network	stability	and	soil	microbial	functional	poten-
tial	 (R2 = .594,	 p < .001;	 Figure 5b,c).	 Random	 forest	 modeling	 de-
termined	the	highly	significant	 (p < .01)	predictors	of	soil	microbial	
functional	potential,	 including	soil	properties	 (AP,	pH,	TP,	OM,	TK	
and	the	ratios	of	C/N,	C/P,	and	N/P),	bacterial	Shannon	and	even-
ness	 indices,	 fungal	 Chao1	 index,	 protist	 and	 nematode	 evenness	
index,	β-	diversity	of	all	organism	groups,	average	degree,	and	natural	
connectivity	(Figure 5d).

We	combined	with	the	analysis	of	correlation,	linear	regression,	
and	random	forest	modeling;	PLS-	SEM	was	applied	to	evaluate	the	

F I G U R E  3 Relationships	between	the	assembly	processes	of	organism	groups	and	biotic	community	diversity	and	network	stability.	
Relationships	of	the	stochasticity	of	bacterial	(a),	fungal	(b),	protist	(c),	and	nematode	(d)	communities	with	the	biotic	α- diversity. 
Relationships	of	the	stochasticity	of	bacterial	(e),	fungal	(f),	protist	(g),	and	nematode	(h)	communities	with	the	biotic	community	β- diversity. 
Relationships	of	the	stochasticity	of	bacterial	(i),	fungal	(j),	protist	(k),	and	nematode	(l)	communities	with	the	network	stability	of	biotic	
community.	Linear	regression	models	(shown	as	black	lines)	and	correlation	coefficients	are	provided	on	each	panel.	*p < .05;	**p < .01;	
***p < .001.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)
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    |  9 of 16ZHU et al.

direct	and	 indirect	effects	of	soil	 factors	 (AP,	TP,	and	the	ratios	of	
C/P	and	N/P)	and	biotic	communities	(β-	diversity	and	network	sta-
bility)	 on	 soil	microbial	 functional	 potential	 (Figures 6 and 7).	 The	
overall	model	 fit	was	strong	with	a	GoF	value	of	0.641	 (Table S5).	
Our	 results	 indicated	 that	 AP	 and	 TP	 were	 positively	 associated	
with	 the	 network	 stability	 of	 the	 biotic	 community	 (path	 coeffi-
cient = 0.088,	p < .001;	Figure 6).	Furthermore,	AP	and	TP	were	pos-
itively	correlated	with	the	stochastic	processes	of	bacterial,	fungal,	
and	protist	communities	(path	coefficient = 0.111	to	0.138,	p < .001),	
but	negatively	 correlated	with	 that	of	nematode	community	 (path	
coefficient = −0.193,	p < .01).	Soil	nutrient	stoichiometry	 (the	ratios	
of	C/P	and	N/P)	exhibited	negative	relationships	with	the	network	
stability	 (path	 coefficient = −0.095,	 p < .001)	 and	 stochastic	 pro-
cesses	of	the	biotic	community	(path	coefficient = −0.215	to	−0.430,	
p < .001),	but	a	positive	relationship	with	the	biotic	β-	diversity	(path	
coefficient = 0.103,	p < .001).	Notably,	we	revealed	that	the	network	
stability was positively correlated with the stochastic processes of 
bacterial,	 fungal,	and	protist	communities	 (path	coefficient = 0.065	
to	0.177,	p < .05),	but	negatively	correlated	with	 that	of	nematode	
community	 (path	 coefficient = −0.077,	 p < .01;	 Figure 6).	 However,	
the β- diversity showed positive relationships with the stochas-
tic	 process	 of	 the	 bacterial	 community	 (path	 coefficient = 0.353,	
p < .001),	but	displayed	negative	relationships	with	those	of	fungal,	
protist,	 and	 nematode	 communities	 (path	 coefficient = −0.112	 to	
−0.262,	p < .05).	Importantly,	soil	microbial	functional	potential	was	

positively	correlated	with	network	stability	(path	coefficient = 0.469,	
p < .001)	and	β-	diversity	(path	coefficient = 0.068,	p < .05)	of	the	bi-
otic community.

4  |  DISCUSSION

4.1  |  Community assembly, diversity, and network 
of biotic community in response to nutrient input

Long- term nutrient input has been demonstrated to decrease the 
relative importance of stochasticity within bacterial and fungal com-
munities	(Liu	et	al.,	2021).	Insufficient	P	availability	limits	microbial	
metabolic	activity	and	exerts	significant	stress	on	microbial	commu-
nities	through	environmental	filtering	(Feng	et	al.,	2017).	Conversely,	
a balanced nutrient input mitigates the impact of environmental 
stress	 on	 community	 assembly	 (Liu	 et	 al.,	 2015).	 As	 P	 availabil-
ity	 increases,	 the	 community	 may	 exhibit	 greater	 stochasticity	 to	
counteract	 the	 influence	 of	 niche	 partitioning	 (Zhou	 et	 al.,	2014).	
However,	 the	NST	 and	DDR	pattern	of	 the	nematode	 community	
did	 not	 significantly	 respond	 to	 nutrient	 input,	 which	 appears	 to	
contradict	 the	 first	 hypothesis.	Nevertheless,	 the	 nematode	 com-
munity	exhibited	a	significant	DDR	pattern	under	all	three	fertiliza-
tion	treatments,	indicating	that	microfaunal	community	composition	
may	be	strongly	affected	by	geographic	factors,	such	as	local	climate	

F I G U R E  4 Distance	decay	curves	of	soil	microbial	functional	potential	and	different	functional	genes	under	different	fertilization	
treatments.	(a)	Similarity	of	soil	microbial	functional	potential	against	geographic	distances	among	sampling	sites.	The	bar	graph	represents	
the	value	of	the	slope.	The	slopes	were	pairwise	compared	among	three	fertilization	treatments	by	permutation	tests.	Asterisks	denote	
significant	correlations.	(b)	The	relative	abundance	of	functional	genes	associated	with	carbon,	nitrogen,	phosphorus,	and	sulfur	cycling	
under	different	fertilization	treatments.	Different	lowercase	letters	represent	significant	differences	of	individual	parameters	under	
fertilization	treatments	by	Tukey's	HSD	post	hoc	tests	(p < .05).	Ctrl,	no	fertilization;	NK,	nitrogen	and	phosphorus	inputs;	NPK,	nitrogen,	
phosphorus	and	potassium	inputs.	*p < .05;	**p < .01;	***p < .001.

(a)

(b)
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10 of 16  |     ZHU et al.

and	soil	type	(Figure 1d; Figure S1).	However,	the	influence	of	fertili-
zation	on	nematode	communities	may	not	be	consistent	across	con-
trasting	soil	 types	and	 locations	 (Sarathchandra	et	al.,	2001;	Zhao	
et	al.,	2014).	This	result	underscored	the	importance	of	local	condi-
tions	 and	 the	pitfalls	 of	 extrapolating	 results	 from	a	 single	 site	 to	
other environments has its limitations when studying the nematode 
community.

It was not surprising that the diversity of the biotic commu-
nity	 significantly	varied	across	 the	seven	sites	 (Figures S2 and S3; 
Table 1; Table S3),	 as	 soil	 acidity	 and	 type	have	been	 reported	 to	
cause	 changes	 in	 the	 belowground	 biota	 (Bardgett	 &	 Van	 Der	
Putten,	2014;	Oliverio	et	al.,	2020).	Nutrient	addition	caused	 little	
or only marginal effect on microbial α-	diversity,	 but	 it	 did	 signifi-
cantly alter β-	diversity.	Balanced	nutrient	input	results	in	the	homo-
geneous	 selection	 of	 copiotrophic	 species,	 favoring	 their	 survival	
(Feng	 et	 al.,	 2017).	 Phosphorus-	deficient	 conditions	 can	 promote	

the	growth	of	oligotrophic	species,	leading	to	different	community	
compositions	(Leff	et	al.,	2015).	Concomitantly,	fertilization-	induced	
changes in the soil environment have a more pronounced effect on 
β- diversity than α-	diversity	due	to	soil	pH	and	nutrient	stoichiome-
try	(in	't	Zandt	et	al.,	2019;	Liu	et	al.,	2018).

Network	 analysis	 can	 be	 applied	 to	 identify	 co-	occurrence	
patterns	and	potential	 interactions	 in	a	complex	biotic	community	
(Faust	&	Raes,	2012).	Our	study	focused	on	a	complex	multi-	trophic	
network	 that	 included	 bacteria,	 fungi,	 protists,	 and	 nematodes,	
rather	than	a	single	taxonomic	network.	Our	findings	revealed	that	
the	 NPK	 network	 displayed	 the	 highest	 topological	 metrics	 and	
module	 hubs,	 indicating	 highly	 complex	 and	 robust	 network	 sta-
bility	(Deng	et	al.,	2012;	Peng	&	Wu,	2016).	Additionally,	we	found	
that the associations between different organism groups were 
the	 strongest	 in	 the	 balanced	 fertilization	 treatment	 (Figure 2).	 In	
the	 belowground	 ecosystem,	 nutrient	 availability	 can	 influence	

F I G U R E  5 Driving	factors	of	soil	microbial	functional	potential	based	on	linear	and	random	forest	modeling.	(a)	Correlation	between	the	
biotic community α-	diversity	(Z-	score)	and	soil	microbial	functional	potential	(Z-	score)	across	all	samples.	(b)	Correlation	between	the	biotic	
community β- diversity and the soil microbial functional potential β-	diversity	across	all	samples.	(c)	Relationships	between	network	stability	
(Z-	score)	and	soil	microbial	functional	potential	(Z-	score)	across	all	samples.	(d)	Mean	predictor	importance	(%	of	increased	mean	square	
error,	MSE)	of	abiotic	and	biotic	factors	on	soil	microbial	functional	potential.	AK,	available	potassium;	AP,	available	phosphorus;	C/N,	the	
ratio	of	soil	organic	carbon	to	total	nitrogen;	C/P,	the	ratio	of	soil	organic	carbon	to	total	phosphorus;	N/P,	the	ratio	of	total	nitrogen	to	total	
phosphorus;	NH4

+-	N,	ammonia	nitrogen;	NO3
−-	N,	nitrate	nitrogen;	OM,	organic	matter;	TK,	total	potassium;	TN,	total	nitrogen;	TP,	total	

phosphorus.	*p < .05;	**p < .01;	***p < .001.

(a) (b) (c)

(d)

 13652486, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17160 by U

niversity O
f O

klahom
a, W

iley O
nline L

ibrary on [30/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense
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biodiversity across multi- trophic levels through bottom- up forces 
(Schulz-	Bohm	et	al.,	2017).	An	ample	supply	of	nutrients	likely	leads	
to	rapid	growth	of	organisms	in	the	basal	trophic	level,	thereby	in-
creasing the populations of their predators and enhancing potential 
multi-	trophic	interactions	(Geisen	et	al.,	2021).	Positive	and	negative	
edges are often considered indicative of potential cooperative and 
competitive	relationships	in	the	network	(Chen	et	al.,	2019).	The	bal-
ance	between	cooperation	and	competition	 in	multiplex	networks	
is	 the	 fundamental	 mechanism	 for	 species	 coexistence	 (Godoy	
et	 al.,	 2018).	 The	 presence	 of	 moderately	 positive	 and	 negative	
edges	in	the	NPK	network	resulted	in	a	greater	number	of	coexisting	
species	and	a	more	stable	network	structure.

4.2  |  The influence of assembly processes on 
diversity and network stability

Partially	supporting	our	second	hypothesis,	 the	stochastic	process	
of the bacterial community and the deterministic processes of the 
fungal,	 protist,	 and	 nematode	 communities	 enhanced	 β- diversity. 
In	 contrast,	 the	 stochastic	 processes	 of	 the	 bacterial,	 fungal,	 and	
protist communities and the deterministic process of the nematode 

community	promoted	network	stability	 (Figures 3 and 6).	The	sto-
chastic process indicates that when bacteria occupy similar abili-
ties	 to	 compete	 for	 common	 resources,	 they	 can	coexist	 in	highly	
overlapping ecological niches without eliminating species due 
to	 competition,	 which	 supports	 higher	 bacterial	 diversity	 (Chase	
&	Myers,	2011;	 Jiao	 et	 al.,	2020).	 The	 heightened	 bacterial	 diver-
sity,	 in	turn,	amplifies	metabolic	networks	and	nutrient	availability,	
thereby	promoting	the	stable	coexistence	of	bacteria	with	special-
ized	functions	 (Xun	et	al.,	2019).	 In	addition,	bacteria	are	more	af-
fected	 by	 stochastic	 processes	 due	 to	 their	 smaller	 size,	 and	 the	
random	 colonization	 or	 extinction	 events	 can	 result	 in	 ecological	
drift	and	dispersal	 limitation,	ultimately	contributing	 to	high	 levels	
of β-	diversity	 (Chase,	2010;	Martiny	 et	 al.,	2011).	 Conversely,	 the	
rise	 in	 deterministic	 processes	 within	 the	 eukaryotic	 community,	
characterized	by	larger	body	sizes,	is	linked	to	habitat	heterogene-
ity	 that	 creates	 diverse	 ecological	 niches	 across	 regions,	 promot-
ing β-	diversity	 (Chase,	 2010).	 A	 microbial	 community	 dominated	
by	stochastic	processes	tends	to	exhibit	greater	stability	within	the	
complex	ecological	network	in	the	face	of	environmental	perturba-
tions	 (Li	et	al.,	2020;	Pandit	et	al.,	2009).	Nematodes	are	essential	
components	of	soil	food	webs,	participating	in	complex	trophic	in-
teractions	with	organisms,	such	as	plants	and	microorganisms	(Klass	

F I G U R E  6 Soil	environmental	factors	
mediate the soil microbial functional 
potential	through	the	bacterial,	fungal,	
protist,	and	nematode	communities	
using	structural	equation	modeling.	The	
ellipses	represent	the	latent	variables,	and	
the rectangles represent the observed 
variables. The symbol of the pentagram 
represents the community assembly of 
four organism groups. The data below 
the	observation	variable	in	the	white	box	
represent	the	weight.	Black	lines	indicate	
significant	relationships.	The	text	on	the	
black	line	represents	the	path	coefficient,	
the	black	text	represents	the	positive	
effect,	while	the	red	text	represents	the	
negative effect. Paths with nonsignificant 
coefficients are not presented. 
Community	assembly	is	represented	
by	normalized	stochasticity	ratio.	The	
β-	diversity	is	represented	by	the	Bray–
Curtis	dissimilarity	of	bacterial,	fungal,	
protist,	and	nematode	communities.	
Network	stability	is	represented	by	
average degree and natural connectivity 
of	biotic	network.	AP,	available	
phosphorus;	C/P,	the	ratio	of	soil	organic	
carbon	to	total	phosphorus;	N/P,	the	ratio	
of total nitrogen to total phosphorus; 
TP,	total	phosphorus.	*p < .05;	**p < .01;	
***p < .001.
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12 of 16  |     ZHU et al.

et	al.,	2012).	Stochastic	fluctuations	in	nematode	communities	may	
cause	disruptions	in	these	trophic	interactions,	thereby	affecting	the	
overall	stability	of	the	biotic	network	(de	Vries	et	al.,	2013).

4.3  |  Dual mechanisms of biotic community 
affecting soil microbial functional potential

Taking	 multi-	trophic	 species	 into	 account	 in	 the	 network	 can	
improve our ability to predict soil microbial functional potential 
in agricultural ecosystems. Our study suggested that soil envi-
ronmental factors altered the assembly processes of organism 
groups,	thereby	influencing	the	soil	microbial	functional	potential	
through	network	stability	and	β- diversity of the biotic community 
(Figure 6).	We	have	 created	 a	 conceptual	 figure	 to	 illustrate	 the	
dual mechanisms that regulate soil microbial functional potential 
with	varying	soil	environmental	factors	(Figure 7).	One	mechanism	
indicated that high phosphorus levels and low nutrient stoichiom-
etry	 (C/P	 and	N/P	 ratios)	 increased	 the	 stochastic	 processes	 of	
bacterial,	 fungal,	 and	 protist	 communities	 and	 the	 deterministic	
process	 of	 the	 nematode	 community	 under	 balanced	 fertiliza-
tion	 (NPK)	 treatment,	 which	 enhanced	 soil	 microbial	 functional	

potential	 by	 reinforcing	 the	 network	 stability	 of	 the	 biotic	 com-
munity	(Figure 7).	Increasing	soil	P	resources	boosts	nutrient	avail-
ability for soil microorganisms and accelerates their metabolic 
activities,	 ultimately	 improving	 the	 stochastic	 processes	 of	 the	
microbial	community	and	enhancing	network	stability	(Yang	&	van	
Elsas,	2018).	However,	phosphorus	addition	can	also	cause	envi-
ronmental	stress	(e.g.,	salt	toxicity)	and	increase	the	deterministic	
process	of	the	nematode	community	(Sarathchandra	et	al.,	2001; 
Zhao	et	al.,	2014),	which	may	 improve	network	stability	 through	
top-	down	regulation	 (Karakoç	et	al.,	2020).	Additionally,	 low	nu-
trient	stoichiometry	(C/P	and	N/P	ratios)	can	foster	complex	and	
stable	ecological	networks	between	nematodes	and	microorgan-
isms,	 with	 higher	 average	 degree	 and	 natural	 connectivity	 (de	
Vries	et	al.,	2018;	Xun	et	al.,	2021).	Stable	multi-	trophic	networks	
can improve soil microbial functional potential by enhancing nu-
trient	cycling	and	carbon	utilization	efficiency	in	agroecosystems	
(Chen	et	al.,	2022;	Cotrufo	et	al.,	2013),	as	guild	 interactions	are	
considered	 important	 drivers	 of	 ecosystem	 functioning	 (Allen	
et	al.,	2022).

As	an	alternative	mechanism,	low	phosphorus	levels	and	high	
nutrient	 stoichiometry	 (C/P	 and	 N/P	 ratios)	 enhanced	 the	 sto-
chastic process of the bacterial community and the deterministic 

F I G U R E  7 A	conceptual	figure	displays	the	proposed	dual	mechanisms	that	regulate	soil	microbial	functional	potential.	One	mechanism	
indicates	that	the	high	phosphorus	levels	(AP	and	TP)	and	low	nutrient	stoichiometry	(C/P	and	N/P	ratios)	may	increase	the	stochastic	
processes	of	bacterial,	fungal,	and	protist	communities	and	deterministic	process	of	the	nematode	community	under	balanced	fertilization	
(NPK)	treatment,	ultimately	enhancing	soil	microbial	functional	potential	by	reinforcing	network	stability	of	the	biotic	community.	The	
other	mechanism	indicates	that	the	low	phosphorus	levels	(AP	and	TP)	and	high	nutrient	stoichiometry	(C/P	and	N/P	ratios)	may	increase	
the	stochastic	process	of	the	bacterial	community	and	deterministic	processes	of	the	fungal,	protist,	and	nematode	communities	under	
phosphorus-	deficient	fertilization	(NK)	treatment,	thereby	enhancing	soil	microbial	functional	potential	by	improving	the	biotic	β- diversity. 
AP,	available	phosphorus;	C/P,	the	ratio	of	soil	organic	carbon	to	total	phosphorus;	N/P,	the	ratio	of	total	nitrogen	to	total	phosphorus;	TP,	
total phosphorus.
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processes	 of	 the	 fungal,	 protist,	 and	 nematode	 communities	
under	 phosphorus-	deficient	 fertilization	 (NK)	 treatment,	 which	
improved the soil microbial functional potential by increasing 
the β-	diversity	of	the	biotic	community	(Figure 7).	In	the	absence	
of	 external	 phosphorus	 resources,	 the	 enhanced	 deterministic	
processes	 in	 fungal,	 protist,	 and	 nematode	 communities	may	 be	
attributed	 to	 the	 intensified	 competition	 for	 phosphorus	 (Wang	
et	al.,	2023).	Through	the	evolution	of	specific	mechanisms,	such	
as	 symbiotic	 associations,	 nutrient	 uptake	 efficiency,	 or	 phos-
phorus	 storage	 strategies,	 these	 eukaryotic	 organisms	 have	 de-
veloped	diverse	survival	strategies,	contributing	to	an	increase	in	
β-	diversity	(Eldridge	et	al.,	2018).	Furthermore,	high	soil	nutrient	
stoichiometry has the potential for creating environmental hetero-
geneity	to	influence	the	P-	driven	deterministic	processes,	thereby	
contributing to the formation of distinct niches for various or-
ganisms and fostering the biotic β-	diversity	(Nguyen	et	al.,	2020; 
Zhang	 et	 al.,	 2020).	 Phosphorus-	deficient	 environments	 usually	
have higher β-	diversity,	 fostering	the	survival	of	specialized	spe-
cies	and	offering	unique	functional	potential	(Souza	et	al.,	2008).	
High	 β- diversity is crucial for maintaining multiple functions in 
the	local	environment	since	there	is	no	ubiquitous	combination	of	
species	capable	of	supporting	all	 functions	simultaneously	 (Mori	
et	al.,	2018).	As	such,	the	contribution	of	multi-	trophic	networks	
and β- diversity to soil microbial functional potential under differ-
ent management regimes may hold considerable ecological impor-
tance and warrant further investigation.
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