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Supplementary Note 1. Long-term warming enhanced the positive priming effect 30 

By analyzing 13CO2, we can differentiate CO2 derived from the added litter from that derived from 31 

native soil organic C. In the control samples, the 7-day cumulative litter-derived CO2 amounted to 32 

182.7 ± 16.4 μg C/g soil, and the native soil-derived CO2 (i.e., native soil respiration) reached 33 

143.3 ± 8.9 μg C/g soil, substantially exceeding basal soil respiration (i.e., soil respiration without 34 

litter addition, 22.2 ± 2.1 μg C/g soil) (Fig. 2b & Supplementary Fig. 2). In the warmed samples, 35 

basal soil respiration (24.8 ± 4.0 μg C/g soil) was similar to that of the control samples, while the 36 

litter-derived CO2 rose to 208.0 ± 10.4 μg C/g soil (p < 0.01, permutation ANOVA) and native 37 

soil respiration rose to 160.4 ± 9.3 μg C/g soil (p < 0.05, permutation ANOVA). Consequently, 38 

microbial respiration in the warmed samples was significantly higher (p < 0.01, permutation 39 

ANOVA) than in the control samples, with an increase of 14.2% ± 12.8% (Fig. 2b & 40 

Supplementary Fig. 2).  41 

 The SIP experiment requires a short-term incubation to minimize cross-feeding1,2. 42 

Accordingly, we set the incubation period at one week. However, this one-week incubation may 43 

not capture the effects of more recalcitrant carbon sources, such as lignin, on priming. Moreover, 44 

while previous studies have used similar or even higher amounts of complex C to assess priming 45 

effects3-5, it remains unclear whether smaller C additions would yield comparable results, 46 

especially for the priming effect in response to warming. Therefore, to account for the possibility 47 

of continued carbon processing beyond the initial seven-day incubation period, we established an 48 

additional 63-day incubation experiment. In this extended experiment, we aimed to assess the 49 

priming effect of both warming and control samples with reduced straw addition 0.33 g of 13C-50 

straw in 5 g of soil (equivalent to 3 mg C /g dry soil) over a longer timeframe. As expected, the 51 
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general patterns of the priming effects were consistent between the 63-day incubation and the 7-52 

day incubation experiments (Fig. 2b, Supplementary Fig. 2 & Fig. 3), but the magnitudes of 53 

positive priming effects were different in the two experiments due to the changes in quantity of 54 

oat straw during the experimental periods. The overall priming effect in the 63-day incubation 55 

experiment was significantly higher (p < 0.050, permutation ANOVA) for the soil samples under 56 

warming than control, with an increase of 27.8% ± 8.1% (Supplementary Fig. 3). 57 

Supplementary Note 2.  Warming amplified active bacterial abundance and stimulated 58 

potential C assimilation 59 

A total of 7,945 amplicon sequence variants (ASVs), also known as phylotypes, of 16S rRNA gene 60 

sequences were identified across all samples and fractions. Of these, only 147 ASVs were 61 

identified as active C decomposers. Therefore, we calculated bacterial abundance by the sum of 62 

each ASV abundance, following the standard protocol in the original qSIP study6. Warming 63 

increased active bacterial abundance by 81% ± 17% (p < 0.001, permutation ANOVA) and total 64 

bacterial abundance by 44% ± 12% (p < 0.001, permutation ANOVA, Fig. 2c). Since 65 

microorganisms vary substantially in their 16S rRNA gene copy numbers, ranging from 1 to 157, 66 

the abundance of microorganisms with high copy numbers of the 16S rRNA gene may be 67 

overestimated, while those with low copy numbers may be underestimated. We addressed this 68 

issue by adjusting bacterial abundance by copy numbers in the reference genomes. Still, we found 69 

that warming significantly increased both active and total bacterial abundance (Supplementary Fig. 70 

5). 71 

 72 
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Supplementary Note 3.   Warming restructured microbial community structure 73 

The proportion of active ASVs relative to the total abundance is 65% ± 3% for the warming group 74 

and 53% ± 8% for the control group. Well-known C decomposers, such as Burkholderia, 75 

Sphingomonas, and Bacillus8-10, were among the 147 ASVs identified as active C decomposers 76 

(Fig. 2d). More than half of the active ASVs belonged to the phylum Proteobacteria, followed by 77 

31 Actinobacteria, 11 Bacteroidetes, and 10 Firmicutes ASVs. We also detected 29 unclassified 78 

active genera, suggesting that our understanding of soil C-decomposers in temperate grasslands is 79 

quite limited. Similar to a previous finding that experimental warming in tundra soils increased 80 

the phylogenetic α-diversity of active bacterial community8, warming treatment in this study 81 

increased the phylogenetic α-diversity of active bacterial community (Supplementary Fig. 8a). 82 

Based on a mixed-effects meta-regression model analysis11, soil temperature was the only 83 

significant factor affecting the α-phylogenetic diversity of active bacterial community 84 

(Supplementary Fig. 8b). In sharp contrast, warming did not change the phylogenetic α-diversity 85 

of total bacterial community (p = 0.58, permutation ANOVA, Supplementary Fig. 8c). 86 

Interestingly, warming did not affect the taxonomic diversity (richness) of the active bacterial 87 

community (p = 0.67), but increased that in the total bacterial community (p < 0.05, permutation 88 

ANOVA) (Supplementary Fig. 9). Fifty-six ASVs were active only in warmed samples, most of 89 

which were from α-Proteobacteria (36%), Bacillales of Firmicutes (16%), Actinobacteria (16%), 90 

and Bacteroidetes (14%) (Fig. 2d). Consistently, the community assembly analysis indicated that 91 

environmental selection at our warming site primarily affected the Bacillales order 92 

(Supplementary Fig. 7), which contains many efficient C decomposers10. Active Bacillales ASVs 93 

contained high gene copy numbers of the 16S rRNA gene (Fig. 2d), potentially enabling rapid 94 

growth responses to environmental changes12-14. Primed C was strongly positively correlated with 95 
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the abundance of ASV 2 (r = 0.72, p < 0.05), belonging to Bacillales. The ASV2 was very abundant, 96 

with accounting for 5.01% ± 3.08%. Therefore, Bacillales could be important C-decomposing 97 

responders strongly affected by warming, consistent with our recent study15. Forty eight out of 56 98 

active ASVs detected only in warmed samples by qSIP were also detected by annual measurements 99 

of total bacterial community during 2010–201615. The mean relative abundance of these ASVs, 100 

almost exclusively belonging to α-Proteobacteria, Bacillales, Actinobacteria, and Bacteroidetes, 101 

increased by 27–205% under warming (Fig. 2f), verifying our SIP experimental results. In contrast, 102 

warming did not affect the mean relative abundance of 53 ASVs active only in the control samples 103 

or 38 ASVs found in both warmed and control samples (Supplementary Fig. 6). Most of the ASVs 104 

active only in control samples belonged to Proteobacteria, especially β- and r-Proteobacteria 105 

(Supplementary Fig. 6). Our results demonstrated a substantial compositional change induced by 106 

warming, which could affect soil C decomposition. Similarly, experimental warming shifted active 107 

ligninolytic communities from β-Proteobacteria to α-Proteobacteria in tundra soils8.  Finally, 108 

despite the biomass ratio suggesting higher bacterial biomass, fungi undeniably play a pivotal role 109 

in litter decomposition. While our study focused primarily on bacterial contributions, it is worth 110 

noting that a holistic understanding of soil processes would benefit from a balanced exploration of 111 

both bacterial and fungal roles. 112 

Supplementary Note 4. Warming enhanced the priming effect by regulating both active and 113 

inactive bacterial communities 114 

A current conceptual model has been proposed to explain the microbial mechanisms underlying 115 

the soil priming effect. According to this model, priming arises as fast growing r-strategists 116 

consume fresh C inputs and indirectly stimulate slower growing k-strategist that then consume 117 
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additional native soil C 16-19. These ecological strategies have been further posited to align with 118 

phylogenetic groups. However, using the qSIP technique (both 13C-glucose and 18O-H2O), 119 

Morrissey et al. found that most taxa whose growth was increased by glucose addition ended up 120 

consuming a mix of glucose and native SOC20, suggesting a direct stimulation of activity within 121 

individual taxa. Consequently, to gain deeper insights into the microbial mechanisms underlying 122 

this phenomenon, we further examined the relationships between taxa in both active (species 123 

responsive to fresh carbon inputs such as straw) and ‘inactive’ (species unresponsive to fresh 124 

carbon inputs such as straw) communities, and soil priming to understand how they are 125 

interconnected. At the family taxonomic level21, there was a significant positive correlation 126 

between primed C and six families (e.g., Planococcaceae, Rhizobiaceae, Sphingomonadaceae, 127 

etc., Supplementary Table 3) within the active bacterial communities, as well as six families (e.g., 128 

Acanthopleuribacteraceae, Clostridiales_Incertae Sedis III, Chloroflexaceae, etc., Supplementary 129 

Table 4) within the inactive bacterial communities. Notably, among these highly correlated 130 

families, the average 16S rRNA gene copy number in active communities (6.7 ± 1.1) was 131 

significantly higher (p < 0.001, permutation ANOVA) than that in inactive communities (2.4 ± 132 

0.3). Warming did not affect the average 16S rRNA gene copy number in both active and inactive 133 

communities (p > 0.050, permutation ANOVA). However, warming did increase the abundance 134 

of these highly correlated families in active communities (p < 0.050, permutation ANOVA) 135 

(Supplementary Fig. 12). At the ASV taxonomic level, two ASVs (ASV_2 and ASV_45) from 136 

active communities and four ASVs (ASV_162, ASV_289, ASV_1112, and ASV_1624) from 137 

inactive communities showed a significant correlation with primed C (Supplementary Table 5). 138 

Likewise, the average 16S rRNA gene copy number (9.7 ± 0.3) for those ASVs in active 139 

communities was significantly higher than that (2.7 ± 1.3) for the ASVs from inactive communities. 140 
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Warming increased the abundance of these highly correlated ASVs in both active (p = 0.090, 141 

permutation ANOVA) and inactive communities (p < 0.050, permutation ANOVA) 142 

(Supplementary Fig. 13). Also, warming did not affect the average 16S rRNA gene copy number 143 

in both active and inactive communities (p > 0.050, permutation ANOVA).  144 

The disparities in the 16S rRNA gene copy numbers between correlated active and inactive 145 

taxa suggest that the correlated organisms in the active communities were more likely to be 146 

copiotrophic or r-strategists (indicated by relatively high 16S rRNA gene copy numbers), whereas 147 

those in the inactive communities were more likely to be oligotrophic or k-strategists (indicated by 148 

relatively low 16S rRNA gene copy numbers). Since warming increased the abundances of both 149 

correlated families and ASVs, this suggests that the enhanced abundance, rather than the rRNA 150 

gene copy numbers, could be one of the factors contributing to the warming-induced priming effect. 151 

This finding is consistent with the results of our PLS model analysis (Figure 4a). 152 

The correlation between primed C and specific families (or ASVs) in both active and inactive 153 

communities implies that both groups contribute to the consumption of additional native SOC 154 

(priming effect). This observation aligns more closely with Morrissey et al.'s study20, which found 155 

that most taxa, whose growth were stimulated by fresh carbon addition, ended up consuming a mix 156 

of fresh carbon and native SOC. Similarly, our results contradict the hypothesis that r-strategist 157 

organisms consume labile C, indirectly stimulating k-strategist microorganisms to consume 158 

additional SOC. In fact, marginal or significant correlations were observed between primed C and 159 

active functional gene groups involved in degrading nearly all carbon compounds targeted by 160 

GeoChip, including starch, hemicellulose, cellulose, chitin, phospholipids, and vanillin/lignin 161 

(Supplementary Table 6). This suggests that many taxa, whose growth is stimulated by the straw 162 
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addition, also participate in the soil priming effect. While we identified several families or ASVs 163 

from the inactive to fresh C community that are highly correlated with the soil priming effect, the 164 

absence of 18O-H2O qSIP data means that we cannot confirm that these organisms are actively 165 

consuming the additional native SOC. This remains an area for further investigation in future 166 

studies. 167 

Supplementary Note 5. Relative importance of parameters for simulated variables and 168 

generalization of models 169 

During the development of MEND, we have used the Multi-Objective Parameter Sensitivity 170 

Analysis (MOPSA) method to identify key parameters22,23. MOPSA calculates a sensitivity index 171 

(SI) by comparing parameter distributions that yield acceptable and unacceptable objective 172 

function values. The most influential parameters for simulating microbial biomass and enzyme 173 

pools were Initial active fraction of microbes (r0), maximum specific growth rate (Vg), a ratio 174 

(α=Vmt/(Vg+Vmt)) relating specific maintenance rate (Vmt) to Vg (α) ,  half-saturation constant for 175 

microbial assimilation of the substrate (KD), and growth yield at reference temperature (Yg). 176 

Among these, α had the greatest impact on simulated CO2 flux. When considering all pools and 177 

CO2 eflux, Vmt, enzyme turnover rate (rE), Yg, enzyme production rate (pEP), and half-178 

saturation constant (K) for PO were also crucial for prediction accuracy.  For the current MEND 179 

application in field simulations, we conducted additional sensitivity analyses using the MOPSA 180 

method for a greater number of calibrated parameters and targeted variables, as shown in 181 

Supplementary Fig. 16a. The results indicated that the simulated variables are sensitive to 182 

different combinations of parameters; for instance, soil organic matter (SOM) was most sensitive 183 

to changes in Qmax (maximum sorption capacity), while microbial biomass carbon (MBC) was 184 
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mostly sensitive to changes in Yg. By averaging the sensitivity index (SI) ranks for targeted 185 

variables, Yg, Vg, and KD emerged as the top three influential parameters, whereas fD and gD 186 

were the least influential among the 14 parameters selected during the calibration of field-187 

MEND. As there might be a risk of overfitting with the inclusion of more parameters in the 188 

calibration, we tested the generalization of the MEND model to unused data alongside an 189 

increase in calibrated parameters. The dataset for the Control treatment was divided into a 190 

training set (first 3/4 data) for model calibration, and a test set (subsequent 1/4 data) for 191 

evaluating the model's generalization to unused data. Using the calibrated models with increased 192 

calibrated model parameters, we calculated the training and test errors (1-R2, unexplained 193 

variation) in predicting Rh with training and test sets. If the training error decreases but the test 194 

error increases with an increasing number of model parameters, the model could be overly 195 

complex, fitting too closely to the training set and failing to accurately predict unused data, 196 

which would suggest overfitting due to an excessive number of parameters24. Our results showed 197 

that the test error exhibited a decreasing trend within the range of parameter numbers, indicating 198 

that the model is not overfitted due to the increasing number of parameters (see Supplementary 199 

Fig. 16b). However, it is noteworthy that the test error was consistently higher than the training 200 

error across models of varying complexity. This discrepancy may be indicative of potential 201 

overfitting, influenced by other factors such as the limited or imbalanced data and model 202 

structure. Addressing the data limitation could involve extending the experimental period or 203 

increasing the frequency of data collection, while resolving the model structure limitation might 204 

require enhanced mechanistic understanding of biogeochemical processes and subsequent model 205 

development. Nonetheless, our results suggested that an increase in the number of parameters did 206 

not lead to the overfitting of the model. 207 
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Increasing model complexity can potentially heighten parameter uncertainty when additional 208 

data is not used to estimate the parameters. Therefore, we assessed the parameter uncertainty for 209 

the aforementioned calibration of the training set across different levels of model complexity. As 210 

expected, parameter uncertainty increased with the number of parameters until it reached around 211 

11 (refer to Supplementary Fig. 16c). However, contrary to our expectations, the curve then 212 

began to decline, suggesting that incorporating more parameters could actually decrease 213 

parameter uncertainty. This counterintuitive result implies that parameters with low sensitivity 214 

indices may still be important for capturing certain data variations. Selecting a simpler model 215 

with fewer parameters and using the data which are not sufficiently informative for those 216 

parameters might not significantly impact the goodness-of-fit, even if parameter uncertainty is 217 

high. Yet, this high parameter uncertainty may not pose a problem for calibration data but could 218 

potentially compromise the model's generalization when applied to other datasets. In summary, 219 

the influences of model complexity on uncertainty initially increase as the number of parameters 220 

grows but subsequently begins to taper off. 221 

  222 
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Supplementary Table 1 | Environmental variables in 2016 223 

Environmental factors Control Warming p-valuea 

Soil carbon content (%) 0.798 ± 0.051b 0.888 ± 0.060 0.359 

Soil nitrogen content (%) 0.088 ± 0.005 0.096 ± 0.006 0.384 

Soil nitrate (mg kg-1) 2.25 ± 0.90 11.45 ± 3.53 2.5×10-5 

Soil ammonia (mg kg-1) 3.51 ± 0.62 2.87 ± 0.51 0.427 

Soil pH 7.30 ± 0.13 7.19 ± 0.18 0.666 

Soil temperature at 7.5 cm 

depth (°C)c 
17.15 ± 0.19 18.88 ± 0.37 0.029 

Soil moisture (% v/v) 11.75 ± 1.17 10.02 ± 0.98 0.365 

Soil moisture when sampled 

(% v/v) 
24.48 ± 2.60 22.64 ± 1.12 0.4 

Aboveground plant biomass 

(g m-2) 
204.9 ± 60.6 107.2 ± 22.7 0.239 

 224 

aThe Significance is determined by using one-sided permutation ANOVA.  225 

 bValues shown in this table are average ± standard error of n = 4 biological replicates.  226 

cBold font represents a significant difference (p < 0.050) between warmed and control samples. 227 

  228 
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Supplementary Table 2 | Potential predictors (independent variables, X) for each factor 229 

(dependent variable, Y) in partial least squares (PLS) analysis. 230 

No. Dependent variable (Y) 
Potential predictors (independent 

variables, X, in PLS)a 

1 Soil total carbon 

Soil temperature, Soil moisture, Soil 

pH, Soil total nitrogen, Aboveground 

plant biomass, Bacterial phylogenetic 

diversity, Bacterial beta-diversity 

(PCs), Active bacterial abundance, 

Relevant functional gene families, 

Respiration, Priming C, C assimilation 

rate. 

2 Soil total nitrogen 

Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Aboveground 

plant biomass, Bacterial phylogenetic 

diversity, Bacterial beta-diversity 

(PCs), Active bacterial abundance, 

Relevant functional gene families, 

Priming C, C assimilation rate. 

3 Mineral nitrogen 

Soil temperature, Soil moisture, Soil 

pH, Soil total nitrogen, Aboveground 

plant biomass, Active bacterial 

abundance, Relevant functional gene 

familiesb, Priming C, C assimilation 

rate. 

4 Aboveground plant biomass 

Soil temperature, Soil moisture, Soil 

pH, Soil total nitrogen, Mineral 

nitrogen, Total C/N ratio, Bacterial 

phylogenetic diversity, Bacterial beta-

diversity (PCs), Active bacterial 

abundance, Relevant functional gene 

families. 

5 Bacterial phylogenetic diversity 

Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Soil total 

nitrogen, Mineral nitrogen, 

Aboveground plant biomass, Total C/N 

ratio, The ratio of aboveground plant 

biomass to mineral nitrogen, Bacterial 

beta-diversity (PCs), Active bacterial 

abundance, Respiration, Priming C, C 

assimilation rate. 

6 Bacterial beta-diversity 
Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Soil total 
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nitrogen, Mineral nitrogen, 

Aboveground plant biomass, Total C/N 

ratio, The ratio of aboveground plant 

biomass to mineral nitrogen, Bacterial 

phylogenetic diversity, Active bacterial 

abundance, Respiration, Priming C, C 

assimilation rate. 

7 Active bacterial abundance 

Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Soil total 

nitrogen, Mineral nitrogen, 

Aboveground plant biomass, Total C/N 

ratio, The ratio of aboveground plant 

biomass to mineral nitrogen, Bacterial 

phylogenetic diversity, Bacterial beta-

diversity (PCs). 

8 
Each of the relevant functional gene 

families 

Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Soil total 

nitrogen, Mineral nitrogen, 

Aboveground plant biomass, Total C/N 

ratio, The ratio of aboveground plant 

biomass to mineral nitrogen, Bacterial 

phylogenetic diversity, Bacterial beta-

diversity (PCs), Active bacterial 

abundance. 

9 Respiration 

Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Soil total 

nitrogen, Mineral nitrogen, 

Aboveground plant biomass, Total C/N 

ratio, The ratio of aboveground plant 

biomass to mineral nitrogen, Bacterial 

phylogenetic diversity, Bacterial beta-

diversity (PCs), Active bacterial 

abundance, Relevant functional gene 

families, Respiration, C assimilation 

rate. 

10 Priming C 

Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Soil total 

nitrogen, Mineral nitrogen, 

Aboveground plant biomass, Total C/N 

ratio, The ratio of aboveground plant 

biomass to mineral nitrogen, Bacterial 

phylogenetic diversity, Bacterial beta-

diversity (PCs), Active bacterial 

abundance, Relevant functional gene 
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families, Respiration, C assimilation 

rate. 

11 C assimilation rate 

Soil temperature, Soil moisture, Soil 

pH, Soil total carbon, Soil total 

nitrogen, Mineral nitrogen, 

Aboveground plant biomass, Total C/N 

ratio, The ratio of aboveground plant 

biomass to mineral nitrogen, Bacterial 

phylogenetic diversity, Bacterial beta-

diversity (PCs), Active bacterial 

abundance, Relevant functional gene 

families, Respiration, Priming C. 

 231 

aAll the listed predictors were tested, and the optimum model was based on forward selection 232 

(see Methods for details). Soil temperature, moisture, and pH were not considered as dependent 233 

variables because their key determinants are out of the scope of this study.  234 

bFunctional gene families include C-degradation gene associated with decomposition of starch,        235 

hemicellulose,  pectin,  cellulose, phospholipids,  chitin, lignin, vanillin_lignin. 236 

Supplementary Table 3 | Mantel analysis between families from active communities and 237 

primed C.  238 

Familya rb pc 

Flavobacteriaceae 0.604 0.030 

Nocardioidaceae 0.485 0.037 

Planococcaceae 0.545 0.040 

Rhizobiaceae 0.468 0.026 

Rhodospirillaceae 0.323 0.039 

Sphingomonadaceae 0.362 0.050 
 239 

 240 

aOnly Families with significant correlation (p < 0.050) are presented. 241 

bMantel analysis is based on Pearson correlation coefficient between Bray-Curtis dissimiliarity 242 

and difference of primed C. 243 

cThe Significance is determined by using one-sided Mantel test. No adjustments were made for 244 

multiple comparisons.  245 

 246 
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 247 

 248 

 249 

Supplementary Table 4 | Mantel analysis of the structures of families from inactive 250 

communities and primed C.  251 

Familya rb pc 

Acanthopleuribacteraceae 0.292 0.036 

Chloroflexaceae 0.361 0.009 

Clostridiales_Incertae 

Sedis III 
0.453 0.022 

Paenibacillaceae 2 0.328 0.017 

Thermoleophilaceae 0.255 0.047 

Xanthobacteraceae 0.527 0.027 

 252 

aOnly Families with significant correlation (p < 0.050) are presented. 253 

bMantel analysis is based on Pearson correlation coefficient between Bray-Curtis dissimiliarity 254 

and difference of primed C. 255 

cThe Significance is determined by using one-sided Mantel test. No adjustments were made for 256 

multiple comparisons.  257 

 258 

Supplementary Table 5 | Pearson correlation between the abundances of ASVs from active 259 

or inactive communities and primed C.  260 

ASVa Genus r pb Group 

ASV_2 Bhargavaea 0.717 0.045 Active 

ASV_45 Sphingomonas 0.836 0.010 Active 

ASV_1112 Paenisporosarcina 0.719 0.044 Inactive 

ASV_162 Nitrososphaera 0.717 0.045 Inactive 

ASV_1624 Belnapia 0.691 0.049 Inactive 

ASV_289 Gemmatimonas 0.760 0.029 Inactive 

 261 

aOnly ASVs with significant correlation (p < 0.050) are presented. 262 

bThe Significance is determined by using two-sided Pearson correlation test. No adjustments 263 

were made for multiple comparisons.   264 
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 265 

 266 

 267 

Supplementary Table 6 | Pearson correlation between abundances of each functional gene 268 

group involved in C degradation and Primed C.  269 

 270 

Carbon groups r pb 

Cellulose 0.405 0.090 

Chitin 0.441 0.072 

Hemicellulosea 0.679 0.012 

Pectin 0.355 0.119 

Phospholipids 0.471 0.060 

Starch 0.439 0.074 

Vanillin/Lignin 0.767 0.004 

  271 

aBold font represents a significant difference (p < 0.050) between warmed and control samples. 272 

bThe Significance is determined by using two-sided Pearson correlation test. No adjustments 273 

were made for multiple comparisons.  274 

 275 

 276 

 277 

 278 

 279 

  280 
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 281 

 282 

Supplementary Table 7 | Best-fit microbial parameter values and their 90% percentiles 283 

based on qSIP data assimilation 284 

Parameter Description Best-fit value 90% percentile 

pEP enzyme production rate 0.13 (0.009–0.023) 

Vg maximum specific growth rate 0.05 (0.04–0.05) 

α 
the ratio (α=Vmt/(Vg+Vmt)) relating specific 

maintenance rate (Vmt) to Vg 
0.13 (0.10–0.19) 

KD 
half-saturation constant for microbial 

assimilation of the substrate 
0.5 (0.42–0.5) 

Yg 
intrinsic C use efficiency at reference 

temperature 
0.28 (0.25–0.32) 

 285 

286 
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Supplementary Table 8 | Governing equation for each soil C pool in the MEND model 287 

C pool variation Equation  

Particulate organic carbon (POC) 

decomposed by oxidative enzymes (PO) 

𝑑𝑃O
𝑑𝑡

= 𝐼𝑃𝑂 + (1 − 𝑔𝐷) ∙ 𝐹12 − 𝐹1 (S1) 

POC pool decomposed by hydrolytic 

enzymes (PH) 

𝑑𝑃H
𝑑𝑡

= 𝐼𝑃𝐻 − 𝐹2 (S2) 

Mineral-associated organic carbon 

(MOC, M) 

𝑑𝑀

𝑑𝑡
= (1 − 𝑓𝐷) ∙ (𝐹1 + 𝐹2) − 𝐹3 (S3) 

Adsorbed DOC (QOC, Q) 
𝑑𝑄

𝑑𝑡
= 𝐹4 − 𝐹5 (S4) 

Dissolved organic carbon (DOC, D) 

𝑑𝐷

𝑑𝑡
= 𝐼𝐷 + 𝑓𝐷 ∙ (𝐹1 + 𝐹2) + 𝑔𝐷 ∙ 𝐹12 + 𝐹3

+ (𝐹14,𝐸𝑃𝑂 + 𝐹14,𝐸𝑃𝐻
+ 𝐹14,𝐸𝑀) − 𝐹6 − (𝐹4 − 𝐹5) 

(S5) 

MBA 

𝑑𝐵𝐴

𝑑𝑡
= 𝐹6 − (𝐹7 − 𝐹8) − (𝐹9 + 𝐹10) − 𝐹12

− (𝐹13,𝐸𝑃𝑂 + 𝐹13,𝐸𝑃𝐻
+ 𝐹13,𝐸𝑀) 

(S6) 

MBD 
𝑑𝐵𝐷

𝑑𝑡
= (𝐹7 − 𝐹8) − 𝐹11 (S7) 

Enzymes for PO (EPO) 
𝑑𝐸𝑃1
𝑑𝑡

= 𝐹13,𝐸𝑃𝑂 − 𝐹14,𝐸𝑃𝐻 (S8) 

Enzymes for PH (EPH) 
𝑑𝐸𝑃2
𝑑𝑡

= 𝐹13,𝐸𝑃𝑂 − 𝐹14,𝐸𝑃𝐻 (S9) 

Enzymes for M (EM) 
𝑑𝐸𝑀

𝑑𝑡
= 𝐹13,𝐸𝑀 − 𝐹14,𝐸𝑀 (S10) 

Respiration(𝐶𝑂2) 
𝑑𝐶𝑂2
𝑑𝑡

= (𝐹9 + 𝐹10) + 𝐹11 (S11) 

Carbon balance 

𝑑

𝑑𝑡
(𝑃O + 𝑃H +𝑀 + 𝑄 + 𝐷 + 𝐵𝐴 + 𝐵𝐷

+ 𝐸𝑃O + 𝐸𝑃H + 𝐸𝑀)
= 𝐼𝑃1 + 𝐼𝑃2 + 𝐼𝐷
− (𝐹9 + 𝐹10 + 𝐹11) 

 

(S12) 
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Supplementary Table 9 | Component fluxes in the MEND model 289 

Flux description Equation  

Particulate organic carbon (POC) 

pool 1 (PO) decomposition (F1) 

 

𝐹1 = 𝑉𝑃𝑂 ∙ 𝐸𝑃𝑂 ∙ 𝑃𝑂 (𝐾𝑃𝑂 + 𝑃𝑂)⁄  
(S13) 

POC pool 2 (PH) decomposition 
 

𝐹2 = 𝑉𝑃𝐻 ∙ 𝐸𝑃𝐻 ∙ 𝑃𝐻 (𝐾𝑃𝐻 + 𝑃𝐻)⁄  
(S14) 

Mineral-associated organic carbon  

(MOC, M) decomposition 

 

𝐹3 = 𝑉𝑀 ∙ 𝐸𝑀 ∙ 𝑀 (𝐾𝑀 +𝑀)⁄  
(S15) 

Adsorption (F4) and desorption (F5) 

between dissolved organic carbon 

(DOC, D) and adsorbed DOC (QOC, 

Q) 

𝐹4 = 𝑘𝑎𝑑𝑠 ∙ (1 − 𝑄/𝑄𝑚𝑎𝑥) ∙ 𝐷 

𝐹5 = 𝑘𝑑𝑒𝑠 ∙ (𝑄/𝑄𝑚𝑎𝑥) 
 

(S16) 

(S17) 

DOC (D) uptake by microbes 𝐹6 =
1

𝑌𝑔
∙ (𝑉𝑔 + 𝑉𝑚𝑡)

𝐷 ∙ 𝐵𝐴

𝐾𝐷 + 𝐷
 (S18) 

Dormancy (F7) and reactivation (F8) 

between active (MBA) and dormant 

(MBD) microbial biomass  (BA and 

BD) 

𝐹7 = [1 − 𝐷/(𝐾𝐷 + 𝐷)] ∙ 𝑉𝑚𝑡 ∙ 𝐵𝐴 

𝐹8 = 𝐷/(𝐾𝐷 + 𝐷) ∙ 𝑉𝑚𝑡 ∙ 𝐵𝐷 

(S19) 

(S20) 

MBA (BA) growth respiration (F9) 

and maintenance respiration (F10) 

𝐹9 = (
1

𝑌𝑔
− 1)

𝑉𝑔 ∙ 𝐷 ∙ 𝐵𝐴

𝐾𝐷 + 𝐷
 

𝐹10 = (
1

𝑌𝑔
− 1)

𝑉𝑚𝑡 ∙ 𝐷 ∙ 𝐵𝐴

𝐾𝐷 + 𝐷
 

(S21) 

 

 

(S22) 

MBD (BD) maintenance respiration 𝐹11 = 𝛽 ∙ 𝑉𝑚𝑡 ∙ 𝐵𝐷 (S23) 

MBA (BA) mortality 𝐹12 = 𝛾 ∙ 𝑉𝑚𝑡∙BA (S24) 

Synthesis of enzymes for P1 (EPO, 

F13,EPO), enzymes for PH (EPH, 

F13,EPH), and enzymes for M (EM, , 

F13,EM) 

𝐹13,𝐸𝑃1 = 𝑃𝑂/(𝑃𝑂 + 𝑃𝐻) ∙ 𝑃𝐸𝑃 ∙ 𝑉𝑚𝑡 ∙ 𝐵𝐴 

𝐹13,𝐸𝑃𝐻 = 𝑃𝐻/(𝑃𝑂 + 𝑃𝐻) ∙ 𝑃𝐸𝑃 ∙ 𝑉𝑚𝑡 ∙ 𝐵𝐴 

𝐹13,𝐸𝑀 = 𝑃𝐸𝑀 ∙ 𝑉𝑚𝑡 ∙ 𝐵𝐴 

(S25) 

Turnover of enzymes (EP1, EP2, 

EM) 

𝐹14,𝐸𝑃𝑂 = 𝑟𝐸 ∙ 𝐸𝑃𝑂 

𝐹14,𝐸𝑃𝐻 = 𝑟𝐸 ∙ 𝐸𝑃𝐻 

𝐹14,𝐸𝑀 = 𝑟𝐸 ∙ 𝐸𝑀 

(S26) 
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Supplementary Table 10| Response functions of soil pH, temperature, and moisture in 

MEND model. 

Function description Equation Eq# 

Reaction rate (v) at a 

specific soil 

water potential (ψ), soil 

temperature (T), and soil 

pH (pH) 

𝑣 = 𝑣𝑟𝑒𝑓 ∙ 𝑓(𝜓) ∙ 𝑓(𝑇) ∙ 𝑓(𝑝𝐻) 

(S27) 

Response function of soil 

pH 
𝑓(𝑝𝐻) = exp⁡[− [

𝑝𝐻 − 𝑝𝐻𝑜𝑝𝑡

𝑝𝐻𝑠𝑒𝑛
] 

(S28) 

Temperature sensitivity 

of carbon use efficiency 

(Yg) 

𝑌𝑔(𝑇) = 𝑌𝑔(𝑇𝑟𝑒𝑓) − 𝑘𝑌𝑔(𝑇 − 𝑇𝑟𝑒𝑓) 
(S29) 

Arrhenius equation or 

Q10 method to simulate 

the response of 

other parameters to 

changes in 

temperature 

𝑓(𝑇) = exp [−
𝐸𝑎

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
)] 

𝑓(𝑇) = 𝑄10

𝑇−𝑇𝑟𝑒𝑓
10  

𝑄10 = ⁡exp [
𝐸𝑎

𝑅 ∙ 𝑇𝑟𝑒𝑓
∙
10

𝑇
] 

 

(S30) 

 

(S31) 

 

(S32) 

 

Soil moisture response 

function for SOM 

decomposition by 

oxidative enzymes 

𝑓𝑙𝑖𝑔(𝜓)

=

{
  
 

  
 

0, ⁡⁡𝜓 ≤ −102.5

0.625 − 0.25 × 𝑙𝑜𝑔10(−𝜓),⁡⁡−10
2.5 < 𝜓 ≤ −101.5⁡

1, ⁡⁡−101.5 < 𝜓 ≤ −10−2.5

[2.5⁡ + ⁡0.4⁡ × ⁡𝑙𝑜𝑔10(−𝜓)]

1.5
, −102.5 < 𝜓 ≤ −10−4

0.6, ⁡⁡𝜓 > −10−4

 

(S33) 

 

Soil moisture response 

function for 

SOM decomposition by 

hydrolytic 

enzymes 

𝑓𝑐𝑒𝑙 =

{
 
 

 
 

0,𝜓 ≤ 𝜓𝑚𝑖𝑛⁡

1 − [

𝑙𝑛 (
𝜓
𝜓𝑓𝑐

)

𝑙𝑛 (
𝜓

𝜓𝑚𝑖𝑛
)
]

𝑏

, 𝜓𝑚𝑖𝑛 < 𝜓 ≤ 𝜓𝑓𝑐⁡

1, 𝜓 > 𝜓𝑓𝑐

 
(S34) 

 

Soil moisture response 

function for microbial 

mortality, dormancy & 

resuscitation 

𝑓𝐴2𝐷(𝜓) =
(−𝜓)𝜔

(−𝜓)𝜔 + (−𝜓𝐴2𝐷)𝜔
 

𝑓𝐷2𝐴(𝜓) =
(−𝜓𝐷2𝐴)

𝜔

(−𝜓)𝜔 + (−𝜓𝐷2𝐴)𝜔
 

 

(S35) 

 

(S36) 

 

  



21 
 

Supplementary Table 11 | MEND model parameters 

ID 
Parame

ter 
Description Prior range 

Initial 

Parameter 

value 

Units 

1 LF0 Initial fraction of POC1 in POC (0.1, 1.0) 0.3 ― 

2 r0 Initial active fraction of microbes (0.01, 1) 0.2 ― 

3 fINP  Scaling factor for litter input rate (0.1,1)   

4 VPO Max specific decomposition rate for PO (0.1, 100) 75 
mg C∙mg-1 

C∙h-1 

5 VPH Max specific decomposition rate for PH (0.1, 100) 75 
mg C∙mg-1 

C∙h-1 

6 VM Max specific decomposition rate for M (0.1, 100) 75 
mg C∙mg-1 

C∙h-1 

7 KPO 
Half-saturation constant (K) for PO 

decomposition 
(40, 100) 100 mg C∙g-1 soil 

8 KPH K for PH decomposition (1, 40) 6 mg C∙g-1 soil 

9 KM K for MOC decomposition (100, 1000) 492 mg C∙g-1 soil 

10 Qmax Max sorption capacity (0.5, 5) 2.5 mg C∙g-1  soil 

11 Kba Binding affinity (1, 16) 6 
(mg C∙g-1 

soil)-1 

12 kdes Desorption rate (0.0001, 0.01) 0.006 
mg C∙g-1 

soil∙h-1 

13 rE Turnover rate of enzymes (0.0001, 0.01) 0.01 
mg C∙mg-1 

C∙h-1 

14 pEP 

[Vm×pEP] is the production rate of EP 

(EP1 + EP2), Vm is the specific 

maintenance rate for active microbes 

(0.0001, 0.05) 0.01 ― 

15 fpEM 
fpEM  = pEM/pEP , [Vmt×pEM] is the 

production rate of EM 
(0.5, 3.0) 1 ― 

16 fD 
Fraction of decomposed POC allocated 

to DOC 
(0.05, 1) 0.5 ― 

17 gD 
Fraction of dead microbes allocated to 

DOC 
(0.01, 1) 0.5 ― 

18 Vg Max specific growth rate (0.001, 0.1) 0.05 
mg C∙mg-1 

C∙h-1 

19 α = Vmt /( Vg + Vmt) (0.01, 0.5) 0.04 ― 

20 KD K for microbial uptake (0.01, 0.5) 0.26 mg C∙g-1 soil 

21 Yg 
True growth yield at reference 

temperature (Tref) 
(0.2, 0.6) 0.3 ― 

22 kYg Temperature slope for Yg (0.001,0.016) 0.01 (°C)-1 

23 Q10  Q10 for temperature response function    

24 γ Max microbial mortality rate = Vm× γ (0.1, 20) 1 ― 

25 β Ratio of dormant maintenance rate to Vm (0.0005,0.05) 0.001 ― 

26 ψA2D 
Soil water potential (SWP) threshold for 

microbial dormancy 
(−0.6, −0.2) −0.4 MPa 
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27 τ 
ψD2A = ψA2D × τ, ψD2A is the SWP 

threshold for microbial resuscitation 
(0.1, 0.95) 0.25 ― 

28 ω 
Exponential in SWP function for 

microbial dormancy or resuscitation 
(1, 6) 4 ― 

 

 

Supplementary Table 12 | Objective functions used for different response variables in the 

MEND model parameterization  

Response variables Description Objective function 

Cumulative CO2 efflux Cumulative CO2 calculated from 

laboratory-measured daily 

respiration rate 

MARE between simulation 

and observation 

Rh In situ heterotrophic respiration 
R2 between simulated Rh and 

observed Rh 

MBC 
In situ reference MBC value = 2% 

× soil organic carbon content 

MARE < 50% of reference 

MBC value 

Active fraction 
Active fraction = active MBC / 

total MBC 

MARE between simulation 

and observation 

EnzCo 
Concentration (EnzC) of oxidative 

enzyme 

MARE between simulated 

EnzC and expected EnzC 

Expected EnzC = Simulated 

EnzC at control × RR 

EnzCh 
Hydrolytic enzyme concentration 

 

MARE between Simulated 

EnzC and Expected EnzC 

Expected EnzC = Simulated 

EnzC at control × RR 

 

RR is the response ratio of gene abundance under warming to that under control. R2 denotes the 

coefficient of determination, MARE is the mean absolute relative error, see Methods Eqs. 5-6 for 

details. 
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Supplementary Fig. 1 | Biochemical composition of DOM measured by FT-ICR MS. The 

relative proportion is the mean value of four replicates of warmed or control samples. The DOM 

colors are defined as follow: Amino Sugar (teal), Carbohydrates (yellow), Condensed aromatics 

(purple), Lignin (Red), Lipid (navy blue), Other (orange), Protein (light green), Tannin (pink), 

Unsaturated hydrocarbons (Grey). Source data are provided as a Source Data file. 

  



24 
 

                           

Supplementary Fig. 2 | Microbial respiration (a) and priming effect (b) on each day during 

the 7-day incubation with 13C-labelled straw. The bars represent the average ± standard error of 

four biological replicates (n=4) of warmed (red) or control (blue) samples. Significance is denoted 

as follows: #, p ≤ 0.1; *, p ≤ 0.05; **, p ≤ 0.01; and ***, p ≤ 0.001 determined by using one-sided 

permutation ANOVA. No adjustments were made for multiple comparisons, and exact p-values 

are provided in the Source Data file. Source data are provided as a Source Data file. 
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Supplementary Fig. 3 | The microbial priming effect during or 63-day incubation with 13C-

labelled straw. a, the average primed C amounts for both warming and control samples during 

63-day incubation. b, the primed C amounts on each day during the 63-day incubation. These bars 

represent the mean ± standard error of four biological replicates (n=4) of warmed (red) or control 

(blue) samples. Significance is denoted as follows: *, p ≤ 0.05, determined by using one-sided 

permutation ANOVA. No adjustments were made for multiple comparisons, and exact p-values 

are provided in the Source Data file. Source data are provided as a Source Data file.
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Supplementary Fig. 4 | Distribution of 16S rRNA gene abundances with buoyant density. In 

each pane, Up triangles, down triangles, diamonds, and circles represent fractions of biological 

replicate 1, 2, 3, and 4, respectively. Red symbols in the panes of 13C-plant litter represent fractions 

of active bacterial community, in which the corresponding 12C-plant-litter-incubated samples at 

the same densities were close to zero. The symbols represent the mean ± standard error of three 

technical replicates of qPCR. Source data are provided as a Source Data file. 
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Supplementary Fig. 5 | Abundances of active and total bacterial community adjusted by 16S 

rRNA gene copy numbers. The columns represent the mean ± standard error of four biological 

replicates (n=4) of warmed (red) or control (blue) samples. Significance is denoted as follows: **, 

p ≤ 0.01 and ***, p ≤ 0.001, determined by using one-sided permutation ANOVA. Exact p-values 

are provided in the Source Data file. Source data are provided as a Source Data file. 
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Supplementary Fig. 6 | Yearly means of relative abundance of active bacterial ASVs only in 

control samples (a) or shared in both warmed and control samples (b). The least-squares mean 

values were determined by the linear mixed-effects model. Each bar represents the mean ± 

standard error of 28 biological replicates (n=28) of in situ warming (red) or control (blue) samples 

over yearly repeated measures during 2010–2016. Significance is denoted as follows: #, p ≤ 0.1; 

*, p ≤ 0.05, and **, p ≤ 0.01, determined by using ANOVA. No adjustments were made for 

multiple comparisons, and exact p-values are provided in the Source Data file. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 7 | Composition of phylogenetic groups affected by warming-enhanced 

selection. The analysis is based on 16S rRNA gene sequencing data of soil samples during 2010-

2016. Source data are provided as a Source Data file. 
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Supplementary Fig. 8 | Phylogenetic diversities and relative importance analysis after the 7-

day qSIP incubation. a, The phylogenetic diversity of active bacterial community. The columns 

represent the mean ± standard error of four biological replicates (n=4) of warmed (red) or control 

(blue). Significance is denoted as follows: *, p ≤ 0.05 determined by using two-sided ANOVA. 

Exact p-values are provided in the Source Data file. b, The relative importance of environmental 

factors in regulating phylogenetic diversity. The relative importance score was determined by a 

mixed-effects meta-regression model, and the red dash line indicates a threshold value of 0.8. c, 

The phylogenetic diversity of total bacterial community. The columns represent the mean ± 

standard error of four biological replicates (n=4) of warmed (red) or control (blue)  samples. 

Significance is determined by using two-sided ANOVA. Source data are provided as a Source 

Data file. 
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Supplementary Fig. 9 | Taxonomic diversity analysis after the 7-day qSIP incubation. a, The 

taxonomic diversity of active bacterial community. The columns represent the mean ± standard 

error of four biological replicates (n=4) of warmed (red) or control (blue) samples. Significance is 

determined by using one-sided ANOVA. b, The taxonomic diversity of total bacterial community. 

The columns represent the mean ± standard error of four biological replicates (n=4) of warmed or 

control samples. Significance is denoted as follows: *, p ≤ 0.05 determined by using one-sided 

ANOVA. Exact p-values are provided in the Source Data file. Source data are provided as a Source 

Data file.
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Supplementary Fig. 10 | Warming stimulates the C-decomposing capacity in the field during 

2010-2016.  a, Response ratios of microbial carbohydrates utilization capacity determined by 

BIOLOG EcoPlates between the warming and control samples, which were measured before 7-

day incubation. Red symbols represent significantly positive response ratios. Grey symbols 

represent non-significant response ratios. Each symbol represents the mean ± 95% CI of four 

biological replicates (n=4) of warmed or control samples. Significance is denoted as follows: *, p 

≤ 0.05, as determined by using the one-sided Response Ratio test25. b, Response ratios of key 

carbon cycling genes between the warming and control samples during 2010-2016. Red represents 

increased relative abundance in warming samples, while blue represents increased relative 

abundance in control samples. Significance is denoted as follows: *, p ≤ 0.05, as determined by 

using the one-sided Response Ratio test25 (95% CI). No adjustments were made for multiple 

comparisons. Source data are provided as a Source Data file.  
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Supplementary Fig. 11 | Conceptual frameworks derived from the stoichiometric 

decomposition26,27  and microbial N mining28,29 hypotheses. The stoichiometric decomposition 

hypothesis proposes that microbial activity, including decomposition and respiration, is highest 

when substrate stoichiometry matches microbial demands. The microbial N mining hypothesis 

proposes that microorganisms use labile C as an energy source to decompose native SOC for 

additional N. a, if the C/N ratio exceeds the optimal C/N ratio of the microbial demand, with an 

increase in available N, the C/N ratio approaches the optimal stoichiometry, resulting in stronger 

microbial activity and consequently higher C decomposition and priming effect;  b, With an 

increase of fresh C input, the C/N ratio deviates from the optimal stoichiometry, leading to a greater 

deficiency of C, weaker microbial activity, and lower C decomposition and priming effect. c, if 

the C/N ratio is lower than the optimal C/N ratio of the microbial demand , an increase in available 

N causes the C/N ratio to deviate further from the optimal C/N ratio, weaker microbial activity, 

and lower C decomposition and priming effect; d, with an increase of fresh C input, the C/N ratio 

approaches to the optimal stoichiometry, resulting in stronger microbial activity and consequently 

higher C decomposition and priming effect. e, The priming effect for ‘N mining’ mitigates N 

deficiency when N is deficient for microbes, but becomes less important as available N increases; 

f, An increase in fresh C input can result in a more pronounced priming effect due to both the 

relative N deficiency and the enhanced energy from labile C. g, If the N is sufficient for microbes, 

the priming effect becomes unnecessary and displays an N-independent pattern. h, when N is 

sufficient, but C is limited, microorganisms might resort to decomposing the native SOC for C, 
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leading to a decrease in the priming effect as fresh C input increases. i, When C isn't a limiting 

factor, the priming effect might not confer a noticeable advantage to microorganisms, hence 

showing no clear trend with changes in fresh C input. 

 

Supplementary 

Supplementary Fig. 12| Abundance of families highly correlated with primed C in both 

active and inactive communities. The columns represent the mean ± standard error of four 

biological replicates (n=4) for the abundance of families that are highly correlated with primed 

C. Significance is indicated by *, 0.010 < p ≤ 0.050, determined by using one-sided permutation 

ANOVA. NS: not significant. Exact p-values are provided in the Source Data file. Source data 

are provided as a Source Data file. 
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Supplementary Supplementary Fig. 13 | Abundance of ASVs highly correlated with primed 

C in both active and inactive communities. The columns represent the mean ± standard error of 

four biological replicates (n=4) for the abundance of ASVs that are highly correlated with primed 

C. Significance is indicated by #,  p ≤ 0.10; and *,  p ≤ 0.05, determined by using one-sided 

permutation ANOVA. Exact p-values are provided in the Source Data file. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 14| Calibration results of lab-MEND, field-MEND and TECO models. 

a, Lab-MEND simulated responses of EPO and EPH vs. observed responses microbial functional 

gene abundance. b, Lab-MEND simulated microbial active fractions vs. observed microbial active 

fractions. c, Field-MEND simulated microbial active fractions vs. observed microbial active 

fractions. d, Field-MEND simulated enzyme concentrations vs. observed in situ microbial 

functional gene abundance. e, TECO simulated in situ Rh vs. observed in situ Rh. EPO, EPH : 

oxidative enzymes and hydrolytic enzymes for degrading POC in MEND. As gene abundance and 

enzyme concentrations have different units, they cannot be compared directly. Alternatively, we 

compared their responses to warming (by dividing the values under warming with values under 

control) or temporal variation (by scaling it to a standard normal distribution), which would 

remove the unit differences. For figure a, b, c, data is shown as mean ± Standard Deviation (SD), 

n = 4 biological replicated for observed values, n = 24 hourly values for simulated values. MARE: 

mean absolute relative error. r: correlation coefficient. R2: coefficient of determination. Source 

data are provided as a Source Data file. 
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Supplementary Fig. 15 | MEND model simulations based on qSIP and field data. a, 

Comparison of the growth yield (Yg) parameter uncertainty ranges without and with incorporation 

of active fraction data during calibration (n = 3692 accepted parameter values for without group, 

n = 1429 for with group determined by Critical Objective Function Index (COFI) method). b, 

Simulated microbial growth rate. c, Simulated active microbial fraction. d, Simulated 

decomposition rates of mineral-associated organic C (MOC), particulate organic C degraded by 

oxidative enzyme (POCO) and particulate organic C degraded by hydrolytic enzyme (POCH). The 

presented simulated microbial growth rate, active microbial fraction, and decomposition rates were 

the 2016 annual averages. The medians in boxplots are shown as a line, the boxes show the 

interquartile range (the 1st and 3rd quartiles), and the whiskers show the upper and lower extremes, 

determined to be equal to or less than 1.5 times the interquartile range against the 1st and 3rd 

quartiles. The error bar in figure b, c, and d represents mean ± SD (n = 11473 accepted calibrated 

models for Control and n = 8360 for Warming) of selected variable simulated by models using 

accepted parameter sets determined by COFI method. Significance is indicated by ****, p < 

0.0001, determined by the two-sided Wilcoxon test. No adjustments were made for multiple 

comparisons, and exact p-values are provided in the Source Data file. Source data are provided as 

a Source Data file. 
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Supplementary Fig. 16 | MEND parameter sensitivity analysis and the impact of parameter 

number on model performance. a. The heatmap represents the sensitivity index for each 

parameter's effect on simulated variables in the MEND model. The sensitivity index is defined as 

the median of the discrepancies between acceptable and unacceptable parameter samples, as 

identified by the Multi-Objective Parameter Sensitivity Analysis (MOPSA) method. The terms 

ENZSOM, ENZPOMO, and ENZPOMH denote the sum of enzymes involved in C degradation 

and the enzyme pools EPO, EPH within MEND, respectively. The descriptions of variables and 

parameters are available in Supplementary Tables 8 and 11. b. This panel illustrates the influence 

of model complexity on training and test errors. The dataset, which includes variables such as Rh 

and gene abundance, was partitioned into a training set (the first 3/4 data) for model calibration 

and a test set (the subsequent 1/4 data) to evaluate model generalization. Model complexity is 

represented by calibrating different numbers of parameters, chosen based on their sensitivity index 

rankings from among 14 parameters in the field-MEND model. For each complexity level, three 

distinct parameter sets were evaluated. An increase in test error coupled with a decrease in training 

error, following the addition of parameters, could indicate overfitting to the training data30. 

Conversely, a trend of decreasing test error with an increasing number of calibrated parameters 

may suggest that the model is appropriately complex and not overfitted. Prediction errors are 

quantified as 1-R² when comparing simulated and observed Rh, with error bars indicating the 

standard error from the three parameter sets at each complexity level. c. The effect of model 

complexity on parameter uncertainty is quantified using the Coefficient of Variation (CV). The 

error bar in figure b and c represents mean ± Standard Error of Mean (SEM) (n = 3 combinations 
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of parameters). The CV for each complexity level is the average across all calibrated parameters. 

Source data are provided as a Source Data file. 
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Supplementary Fig. 17 | Simulated monthly and yearly enzyme concentrations compared 

with observed GeoChip gene abundance. a, Simulated enzyme concentration vs. observed gene 

abundance for oxidative enzyme under control condition. b). Simulated enzyme concentration vs. 

observed gene abundance for hydrolytic enzyme under control condition. c). Simulated enzyme 
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concentration vs. observed gene abundance for oxidative enzyme under warming condition. d). 

Simulated enzyme concentration vs. observed gene abundance for hydrolytic enzyme under 

warming condition. To remove the unit and magnitude differences, we normalized the gene 

abundance and enzyme concentrations. The goodness-of-fit was either shown as correlation 

coefficient (r) to capture temporal variation or mean relative mean absolute relative error (MARE) 

to capture warming responses of enzymes (see supplementary Table 12 for the objective functions 

used in calibration). Source data are provided as a Source Data file. 
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Supplementary Fig. 18 | Annual SOC change induced by replenishment and priming, and 

the consequent net SOC change simulated by lab-MEND and field-MEND. a. Estimation of 

SOC changes under lab incubation conditions. Replenishment refers to the amount of new (added) 

C remaining in soil C pools after microbial respiration within a year of simulation. The priming 

effect is the difference in C loss from native SOC between the substrate addition treatment and the 

control. The net effect of litter addition on SOC change is the difference between replenishment 

and priming. The change in SOC induced by each process was scaled to the initially added litter 

C amount. b. Estimation of SOC changes under field conditions in 2016. For the field condition, 

litter addition is replaced by plant carbon input. The priming effect is the difference in C loss from 

native SOC between the normal condition (with plant carbon input) and an assumed condition 

(without plant carbon input for a whole year). Source data are provided as a Source Data file. 
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Supplementary Fig. 19 | The diagram of the Microbial-ENzyme Decomposition (MEND) 

model30 and Terrestrial ECOsystem (TECO) model. a, MEND. The organic C pools include 

(1) particulate organic C (POC), which is divided into two components: POCO (denoted by state 

variable PO in governing equations) degraded by oxidative enzymes EPO and POCH (PH degraded 

by hydrolytic enzymes EPH; (2) mineral-associated organic C (MOC, M) degraded by enzymes 

EM; (3) dissolved organic C (DOC, D); (4) adsorbed DOC (QOC, Q): active MOC that adsorbs 

and desorbs DOC; (5) active microbial biomass (MBA, BA) and dormant microbial biomass (MBD, 

BD); and (6) enzyme pools EPO, EPH, and EM. External litter inputs (Inputs) can be divided into 

IPO, IPH, and ID denoting inputs to the pools of POCO, POCH, and DOC, respectively. Ra represents 

autotrophic respiration. Rh represents heterotrophic respiration. b, TECO. Rh is the sum of respired 

CO2 during litter and soil C decomposition. 
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Supplementary Fig. 20 | The flowchart of model calibration and experiments with field-

MEND and lab-MEND. Grey boxes mainly represent steps of field-MEND model and green 

boxes represent steps of lab-MEND. The arrow indicates the results of the former box serve as 

the input, parameters, or the model for the latter box. The field-MEND and lab-MEND shared 

similar calibration algorithms (the steps within the red frame) expect that field-MEND model use 

field warming experiment data as well as lab-MEND derived parameters to adjust the initial 

parameter sets used in calibration. The model experiment helps to determine the best models 

outside the calibration steps. 
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