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Environmental stress mediates groundwater 
microbial community assembly

Daliang Ning    1,2, Yajiao Wang1,2, Yupeng Fan1,2, Jianjun Wang    1,3, 
Joy D. Van Nostrand1, Liyou Wu1,2, Ping Zhang1,4, Daniel J. Curtis1, Renmao Tian1,5, 
Lauren Lui    6, Terry C. Hazen    7,8,9, Eric J. Alm10, Matthew W. Fields    11, 
Farris Poole12, Michael W. W. Adams    12, Romy Chakraborty    13, David A. Stahl14, 
Paul D. Adams    6,9, Adam P. Arkin    6,9, Zhili He1,15 & Jizhong Zhou    1,2,13,16,17 

Community assembly describes how different ecological processes shape 
microbial community composition and structure. How environmental 
factors impact community assembly remains elusive. Here we sampled 
microbial communities and >200 biogeochemical variables in groundwater 
at the Oak Ridge Field Research Center, a former nuclear waste disposal site, 
and developed a theoretical framework to conceptualize the relationships 
between community assembly processes and environmental stresses. 
We found that stochastic assembly processes were critical (>60% on 
average) in shaping community structure, but their relative importance 
decreased as stress increased. Dispersal limitation and ‘drift’ related to 
random birth and death had negative correlations with stresses, whereas 
the selection processes leading to dissimilar communities increased with 
stresses, primarily related to pH, cobalt and molybdenum. Assembly 
mechanisms also varied greatly among different phylogenetic groups. Our 
findings highlight the importance of microbial dispersal limitation and 
environmental heterogeneity in ecosystem restoration and management.

Disentangling ecological drivers controlling community assembly is 
crucial but challenging, especially in microbial ecology1–3. Community 
assembly refers to the process(es) by which species from a regional pool  
colonize and interact to establish and maintain local communities4.  

By focusing on deterministic assembly, niche-based theories emphasize 
the differences among species in their interactions with one another 
and the environment5. In contrast, neutral theories address the impor-
tance of stochastic assembly, assuming functional equivalence of all 
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Results
Theoretical framework
Four major schemas are proposed to describe the general relationships 
between community assembly processes and environmental stresses.

Schema A: stochasticity and environmental stress. In general, it 
is expected that stochastic assembly decreases as stress increases, 
whereas deterministic assembly increases22,26,33,35. High stress usually 
imposes strong selective pressure19,44,45. As stress increases, many 
species will be more suppressed, but those with higher tolerance or 
adaptation to the stressor(s) will thrive, leading to more deterministic 
community assembly30–36 (Fig. 1a). In contrast, under low/no stress 
environments, species generally can grow faster, resulting in much 
higher frequencies of birth, death and migration, hence stochasticity 
is expected to decrease as stress increases (Fig. 1a). Explicit or implicit 
evidence to support this schema can be found in some studies on 
microbial22,26,33,35,46 and other organismal communities24,28.

Schema B: selection and environmental stress. Deterministic 
assembly is mainly attributed to selection (abiotic filtering and biotic 
interactions)1. If stress benefits a certain species with some specific 
functional traits, higher stress should lead to trait convergence (that 
is, similar trait(s) of co-occurring species)47 as well as phylogenetic 
clustering in communities, assuming phylotype has trait coherence. If 
the stress is homogeneous in the environment, the local communities 
will become more functionally and phylogenetically similar as stress 
increases, resulting in greater homogeneous selection1,48 (Fig. 1b(i)). 
This situation often exists in environments experiencing a single major 
stressor, such as a heat wave49, a certain toxicant50 or abnormal pH51. In 
contrast, if the stress is heterogeneous in the environment, the local 
communities may become more functionally and phylogenetically dis-
similar with higher stresses because heterogeneous stress may select 
functionally and phylogenetically different species, leading to greater 
heterogeneous selection1,48 (Fig. 1b(ii)). This situation can be common 
in heterogeneous environments with complex pollutants and/or other 
stressors46, although it is less documented.

Schema C: dispersal and environmental stress. Higher stress, in gen-
eral, is predicted to retard microbial colonization and establishment (for 
example, refs. 52,53). As a result, the dispersal of microorganisms will be 
more limited as stress increases (Fig. 1c(i)). In contrast, homogenizing 
dispersal requires nearly unlimited dispersal, thus its changes with stress 
could be opposite to those of dispersal limitation or non-significant  
(Fig. 1c(ii)). Homogenizing dispersal may exist in manipulated systems 
(for example, a well-mixed bioreactor) but rarely in natural ecosystems. 
It should be noted that microbial dispersal could either be stochastic  
or deterministic (see Supplementary Discussion A for details).

Schema D: drift and environmental stress. Higher stress usually 
decreases total population size and diversity19, thus reducing probabil-
istic events of birth/death and resulting in less drift (Fig. 1d). This may be 
the main reason for decreased stochasticity under higher stress, but there 
is no quantitative evidence to support this. It should be noted that when 
assessed by null model approaches12,14, the fraction which is not governed 
by selection or dispersal could largely reflect the influence of drift, but 
might also include effects of diversification, weak selection and/or weak 
dispersal1,14; hereafter, the fraction is designated as ‘drift’ for convenience.

Geochemical characteristics and stresses
The site is located within the Bear Creek Valley watershed in Oak Ridge. 
In the contaminated areas, the groundwater is polluted by radionu-
clides (for example, U and Tc), nitrate, sulfide and various heavy metals 
(Cd, Ni, Cr and so on) with abnormal pH (down to 3.1), mainly from the 
former S-3 ponds. The ponds were the primary accumulation site for 
nuclear waste disposal. Although they were closed and capped in 1988, 

individuals/species6. To unify niche and neutral perspectives, Vellend 
proposed a conceptual framework that defines selection, dispersal, 
diversification and drift as four fundamental processes for ecological 
community assembly7. Strictly speaking, ‘neutral’ and ‘stochastic’ are 
not interchangeable, so are ‘niche’ and ‘deterministic’8. In this study, 
we adopt practical definitions linked to Vellend’s framework: ‘deter-
ministic processes’ include selection, as well as non-random dispersal 
and diversification that are related to species-specific traits; ‘stochastic 
processes’ are featured by random changes in birth, death, migration or 
speciation; thus, in microbial communities, drift, dispersal and diver-
sification are largely stochastic1.

Community assembly processes have been extensively studied 
in plant and animal ecology, but much less in microbial ecology until 
recently (Supplementary Fig. 1). With the rapid development and 
broad application of high-throughput sequencing and associated 
experimental and computational technologies9, unravelling assembly 
processes controlling the structure of microbial communities has 
attracted great attention1. However, given the extraordinary diversity 
of microbial communities, quantifying different assembly processes 
is challenging. Towards this challenge, various statistical approaches 
have been developed on the basis of multivariate analyses3, neutral 
theory models10,11 and null models12–14. Their applications to microbial 
communities revealed important insights into microbial assembly 
mechanisms, for example, homogeneous selection of grassland soil 
bacteria enhanced by climate warming14, the predominant role of dis-
persal limitation in groundwater microbial assembly15–17 and dramati-
cally increased stochasticity of microbial functional diversity during 
biostimulation in polluted groundwater13,18. However, how community 
assembly processes change along space, time and environmental 
stresses remain elusive.

Stress is typically referred to as abiotic or biotic constraints on 
the productivity of species and on the development of ecosystem(s)19, 
for example, salinity20–22, toxic contaminants23, drought24,25, fire26 and 
so on. Environmental stresses are major drivers of community varia-
tion19,27. While various previous studies reported that stresses led to 
deterministic assembly of macroorganisms24,27–29 and microorgan-
isms20,22,23,25,26,30–37, microbial community assembly was also found to 
be more stochastic in many stressful environments23,38–41. To reconcile 
such divergent findings, it is critical to develop general frameworks to 
encapsulate the relationships between microbial community assembly 
processes and stress gradients. Thus, we examined the planktonic 
fractions of bacterial communities in groundwater at the Oak Ridge 
Field Research Center site (Oak Ridge, Tennessee, USA). Because of 
past nuclear waste disposal, the groundwater has been contaminated 
with extremely high levels of uranium, nitrate, technetium and various 
heavy metals. The pH in the groundwater varies greatly, ranging from 
3.1 to 10.5 (refs. 42,43). Such wide ranges of diverse stressors are rarely 
found elsewhere. With extensive team effort, the site biogeochemistry 
and microbial community diversity of ~100 representative wells were 
comprehensively characterized, with more than 200 biogeochemical 
variables measured42,43, which are very rare in typical microbial ecology 
studies. Thus, this groundwater ecosystem provides an unprecedented 
opportunity to discern the relationships between community assembly 
processes and environmental stresses. Two specific questions were 
addressed in this study: (1) How do different assembly processes of 
the groundwater communities change with environmental stresses 
and across different microbial lineages? (2) Which environmental 
factor(s) are most important in mediating the changes in community 
assembly processes in response to stresses? In this Article, we propose 
a theoretical framework to conceptualize the relationships between 
community assembly processes and environmental stresses (Fig. 1), 
followed by evaluations of the groundwater microbial communities. 
Our results revealed that stochasticity, dispersal limitation and ‘drift’ 
decrease, but determinism and heterogeneous selection increase with 
environmental stress.
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contaminants from these ponds leached out, creating a groundwater 
contaminant plume across the site42,43. We measured over 200 variables, 
including geographic factors, temperature and various geochemical 
characteristics in gaseous, liquid and solid phases, covering pH, con-
ductivity, C, N, O, S, P, Cl, Br and 176 measurements of 56 metals in dif-
ferent phases (Supplementary Table 1). The results demonstrated that 
the groundwater microbial communities were under multiple stressors 
in the contaminated areas, including abnormal osmotic pressure from 
high salinity (conductivity up to 20,620 μS cm−1), extreme acidity (pH 
down to 3.1) or alkalinity (pH up to 10.0), extremely high concentra-
tions of nitrate (up to 14,446 mg l−1), uranium (up to 16.6 mg l−1) and 
other metals (Supplementary Table 1 and Extended Data Fig. 1). We 
formulated a stress index (SI) as the observed concentration of each 
stress indicator divided by its reference level from water regulations, 
guidelines or a toxicity database (Supplementary Tables 2 and 3). After 
log transformation, the maximum stress index (MSI) in each sample 
showed a significant negative correlation (r = −0.603, P < 10−9) with the 
observed number of reference taxa that are common and abundant 
in uncontaminated areas (Extended Data Fig. 2), suggesting that MSI 
can be used as a rough classification of stress levels. On the basis of 
MSI, the 91 samples were divided into 7 stress levels (n = 13 per level; 
Supplementary Table 3 and Fig. 2a). The MSI values and stress levels 
were mapped to illustrate their spatial distribution (Fig. 2a,b). The 
wells around the contamination source ponds had the highest stress 
level, with maximum SIs for nitrate (9 samples), U (3 samples) or H+ (1 
sample; Extended Data Fig. 1a–c and Supplementary Table 3). The wells 
downstream of the source pond also had high stress (MSI > 10), but the 
MSI decreased with distance from the source pond. Besides MSI, we 
also explored two other stress metrics based on stressor number and 
reference taxa richness and three other options to define stress levels 
(Methods and Supplementary Fig. 2).

Deterministic versus stochastic assembly
The planktonic fractions of bacterial communities from groundwa-
ter were analysed by 16S ribosomal (r)RNA gene sequencing, with a 

total of 28,644 observed operational taxonomic units (OTUs) (97% 
similarity). The environmental stresses showed a negative correla-
tion with bacterial richness based on iChao1 estimation (r = −0.284, 
P = 0.006; Extended Data Fig. 3), while there were no significant correla-
tions based on Shannon index (r = −0.165, P = 0.117). The stresses also 
showed significant impacts on taxonomic (permutational multivariate 
analysis of variance (ANOVA) F = 1.66, P = 0.004) and phylogenetic 
(F = 2.93 P = 0.056; Supplementary Table 4) β-diversity, suggesting 
that deterministic processes such as environmental filtering might 
have impacted the diversity patterns.

To further test our hypothesis with respect to stochastic-vs- 
deterministic assembly, we employed several well-established comple-
mentary approaches. First, multivariate analysis was utilized to esti-
mate community variation explained by environmental variables after 
controlling for spatial influence, the so-called environment effect3. 
Taking advantage of our comprehensive measurements, the environ-
ment effect was estimated at each stress level, dramatically changing 
from 16.5% to 66.9% as stress increased, leading to a significant posi-
tive correlation with MSI (R2 = 0.904, P = 0.001; Fig. 3a). In addition to 
the multivariate analysis, various approaches were used to estimate 
stochasticity by comparing observed with random expectations simu-
lated by neutral theory or other null models, including neutral taxa 
percentage (Extended Data Fig. 4a), normalized stochasticity ratio 
(NST, Fig. 3b), stochastic turnover ratio (Extended Data Fig. 4b) or 
stochastic process influence (Extended Data Fig. 4c). The results of all 
approaches demonstrated a significant decrease in stochastic assembly 
as stress increased (R2 = 0.740–0.967, P < 0.014; Fig. 3a,b and Extended 
Data Fig. 4). At the four lower stress levels (MSI < 9.5), the estimated 
stochasticity values ranged from 55% to 85% on average, and the 25% 
bootstrapping quartiles of stochasticity were always higher than 50%. 
Correspondingly, the average environment effect was lower than 22% 
at the four low stress levels. These results suggested the predominant 
roles of stochastic processes in shaping the groundwater bacterial 
communities without severe contamination. The highest stress level 
(MSI > 145) showed the highest environmental effect (66.9%) and the 
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Fig. 1 | Schematic representation of the relationships between community 
assembly processes and stress. a, Deterministic assembly generally increases 
while stochastic assembly decreases as stress increases. b, Higher stress may 
result in greater importance of homogeneous selection (i) or heterogeneous 
selection (ii). c, In general, higher stress increases dispersal limitation (i) and 
decreases homogenizing dispersal (ii). Nevertheless, if homogenizing dispersal 
is neglegible, its variation with stress may not be detectable (dashed line in 
(ii)). d, The influence of ecological drift generally decreases as stress increases. 
Definitions of terms1: ‘selection’ refers to major niche-based processes that shape 
community structure due to fitness differences among different organisms, 
including effects of abiotic conditions (environmental filtering) and biotic 
interactions (for example, competition, facilitation, mutualism, predation and 
host filtering and so on). ‘Homogeneous selection’ refers to selection under 

homogeneous abiotic and biotic environmental conditions leading to more-
similar structures among communities. ‘Heterogeneous selection’ refers to 
selection under heterogeneous environmental conditions leading to more-
dissimilar structures among communities. ‘Dispersal’ refers to movement and 
successful colonization (establishment) of an individual organism from one 
location to another via both active and passive mechanisms. ‘Dispersal limitation’ 
means that movement of individuals to and/or establishment of individuals 
(colonization) in a new location is restricted. ‘Homogenizing dispersal’ 
indicates a very high rate of dispersal among communities, which homogenizes 
communities such that their structures are very similar. ‘Drift’ refers to random 
changes in the relative abundances of different species within a community due 
to the inherent stochastic processes of birth, death and reproduction.
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lowest stochasticity (down to 41%). Nevertheless, the estimated sto-
chasticity was still 41%–67% based on different methods, even still 
significantly (P < 0.001) higher than 50% based on NST (Fig. 3b) and 
the method of inferring community assembly mechanisms by the 
phylogenetic-bin-based null model (iCAMP; Extended Data Fig. 4c), 
indicating that stochasticity decreased but was still essential in shaping 
bacterial assembly in this highly contaminated environment. Besides 
MSI-based assessment, the other options showed similar patterns 
(Supplementary Fig. 3). Overall, the results clearly supported Schema 
A (Fig. 1a) of our theoretical framework.

Relative influence of different assembly processes
The relative importance of different assembly processes was estimated 
with iCAMP, which showed improved quantitative performance from 
previous approaches14. Across the whole site, heterogeneous selec-
tion played a major role (20.3 ± 15.0%; Fig. 3c), while homogeneous 
selection had a relatively small role in controlling spatial community 
turnovers (10.3 ± 8.0%, mean ± s.d.; Extended Data Fig. 5a). Hetero-
geneous selection obviously increased as the stress rose (R2 = 0.826, 
P = 0.004) and became the second most influential (30.0 ± 4.3%;  
Fig. 3d) process at the highest stress level, whereas homogeneous 
selection did not show any significant change across different stress 
levels (R2 = 0.026, P = 0.727; Extended Data Fig. 5a). Overall, dispersal 
limitation dominated the community turnovers (44.2 ± 13.4%) and 
showed the strongest relative influence across all stress levels (from 
39% to 48% on average; Fig. 3c), corresponding to the strong physical 
filtering/trapping effect of subsurface environment on microorganisms 
in groundwater. Despite its dominance across all stress levels, disper-
sal limitation significantly decreased as stress increased (R2 = 0.697, 

P = 0.019; Fig. 3e), in accordance with shorter distances and better 
dispersal conditions in highly contaminated areas54. In contrast, homo-
genizing dispersal showed the lowest influence (1.9 ± 2.1%; Fig. 3c) and 
no significant change with stress (P = 0.250; Extended Data Fig. 5b). 
‘Drift’ also played a significant role (23 ± 4.6%; Fig. 3c) in shaping com-
munity diversity, and its importance significantly decreased (R2 = 0.738, 
P = 0.013) as stress increased (Fig. 3f). Besides MSI-based assessment, 
other options showed similar trends of heterogeneous selection, dis-
persal limitation and ‘drift’ as stress increased (Supplementary Fig. 3). 
All the results are consistent with our predictions based on Schemas B 
and D but opposite to those based on Schema C (Fig. 1b–d).

Assembly processes in different phylogenetic groups
In the iCAMP analysis, the observed OTUs were divided into 262 phylo-
genetic groups (bins) on the basis of the phylogenetic signal threshold; 
each was assessed separately for the relative importance of different 
assembly processes (Fig. 4a). Overall, dispersal limitation, heteroge-
neous selection and ‘drift’ dominated 60%, 31% and 6.5% of the bins, 
corresponding to 68%, 13% and 17% relative abundance, respectively. 
In contrast, homogeneous selection dominated only 2.7% of the bins, 
and homogenizing dispersal did not overwhelm other processes in 
any bin. When counting in the abundance of each bin, the impact of 
heterogeneous selection and dispersal limitation were mainly (>60%) 
attributed to the responses of bins in γ- and α-Proteobacteria, Verru-
comicrobiota, Bacteroidota and Nitrospirota (Fig. 4b). The three most 
abundant bins governed by heterogeneous selection were from yet 
uncultivated phyla, including a candidate phylum WPS-2, an unclassi-
fied phylum and a candidate phylum RCP2-54 (Supplementary Table 5a).  
For the dominant taxon in each of these three bins, the BLAST-based 
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high-identity hits (>99%) in NCBI databases are all as yet uncultivated 
and from very similar habitats, suggesting high probabilities to discover 
unknown species with essential functions in this site55,56. In contrast, the 
top three bins governed by dispersal limitation and those by ‘drift’ are 
from the phyla of Proteobacteria and Bacteroidota. Their dominant taxa 
generally had high-identity BLAST hits from various distinct habitats, 
implicating larger niche width (Supplementary Table 5b).

Spatial variations in different assembly processes
The influence of different assembly processes on the groundwater 
microbial communities was mapped to visualize their spatial variations. 
The map of heterogeneous selection showed four hot areas (Fig. 2c),  
including the area around the contamination source ponds and  
several areas featured with low pH, high nitrate, high concentrations 
of heavy metals (for example, U) or their combinations. Dispersal  
limitation was generally influential across the site (Fig. 2d). The 
sampling positions with higher scores of dispersal limitation were  
found around the boundaries corresponding to the sharp change in 
dissolved oxygen (Extended Data Fig. 1d), indicating physical barri-
ers for microbial dispersal in groundwater. In summary, the hotspots 
of heterogeneous selection and dispersal limitation, although solely 
estimated from microbiome data, showed reasonable consistency  
with the spatial distribution of environmental stressors and hydro-
geological conditions.

Environmental variables affecting community assembly
Since community assembly was largely governed by heterogeneous 
selection and dispersal limitation with clear patterns along stress 

gradients, some environmental and spatial variables should play 
important roles in controlling groundwater microbial community 
assembly. A cross-validated Mantel test was developed to show asso-
ciations between individual variables and each assembly process. 
The estimated relative importance of different assembly processes 
was first transformed to central log ratios for use in the Mantel test to 
ameliorate compositional data issues57. The significant (R2

CV > 0.01, 
P < 0.05) pairwise correlations were visualized with a network (Fig. 5). 
Heterogeneous selection obviously showed much more and stronger 
asso ciations with measured environmental variables (35%), including  
pH and various metals in the supernatant and suspended solid, with 
average R2

CV = 0.043 and maximum R2
CV = 0.126 (Supplementary  

Table 6). In contrast, ‘drift’, homogeneous selection and homogenizing 
dispersal were only significantly correlated with <8.5% of the variables, 
with all R2

CV being <0.03; dispersal limitation did not show significant 
correlation with any individual variable (all R2

CV < 0, although some 
P < 0.05).

Considering strong collinearity among measured variables (grey 
lines in Extended Data Fig. 6) and having fewer samples than variables, 
orthogonal partial least squares (OPLS) was applied to reveal major 
determinants underlying the variation in each assembly process 
(Supplementary Table 7). The OPLS models of different processes are 
significant (P ≤ 0.005 for R2

Y, the variance of the dependent variable 
Y explained by the model) without obvious overfitting (P ≤ 0.01 for 
Q2

Y, the predictive accuracy of the model), except for the model of 
homogenizing dispersal (P = 0.15 for R2

Y, P = 0.09 for Q2
Y). The OPLS 

model explained 48.3% of the variation in heterogeneous selection, 
with pH, Co, Mo and Eu as top important variables (variable importance 
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levels. a,b, Determinism and stochasticity of groundwater bacterial assembly, 
reflected by environmental effect as estimated via multivariate analysis (a) 
and phylogenetic normalized stochasticity ratio (pNST) based on null model 
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(see Extended Data Fig. 5 for homogeneous selection (HoS) and homogenizing 

dispersal (HD)). The violin and boxplots in a,b,d–f are based on bootstrapping 
results at each stress level (n = 13 per level; bootstrapping 1,000 times). Colours 
of violin and boxplots indicate the stress levels. In boxplots: centre line, median; 
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range; dots, 
outliers; triangles, mean value at each stress level. Black line, grey shadow, R2 and 
P values are the trendline, 95% confidence interval, coefficient of determination 
and significance, respectively, based on linear regression of the mean values as a 
function of log-transformed MSI.
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in projection, VIP > 2), implicating abnormal pH and deficiency in Co 
and Mo as the major drivers of selection variation (detailed in Supple-
mentary Discussion B). In contrast, the model only explained 11.3% of 
the variation in dispersal limitation, in which some chemical properties 
(for example, Mo and Zn, VIP > 2) were more important than geographic 
distance (VIP = 0.345). This might be because microbial dispersal in 
groundwater is primarily controlled by site geology and complicated 
groundwater flow pathways where some chemical substances and 
microbes could be constrained by similar site geological conditions.

Discussion
Understanding how ecological communities respond to environmental 
stresses is a critical topic in ecology19. Although the impacts of various 
stresses on microbial community diversity, structure and interactions 
have been examined in microbial ecology (for example, refs. 19,32,58), 
knowledge on how community assembly processes are affected by 
stress remains rudimentary. This study proposed a theoretical frame-
work to conceptualize the general relationships between community 
assembly processes and environmental stresses and tested them with 
groundwater bacterial communities over a wide range of stress condi-
tions. Consistent with our theoretical prediction, the importance of 
deterministic processes increased with stress (Fig. 1a). These results 
are also supported by several previous studies, demonstrating that 
microbial community assembly under stress is largely determinis-
tic20,22,23,25,26,30–37. However, it should be noted that, theoretically, the 
opposite alternatives could also exist. For instance, if the stress is so 

harmful or even fatal that no species can persist or get any advantage, 
the observed species co-occurrence could be very random, hence 
higher stress could lead to more stochastic assembly59.

While the importance of deterministic assembly was established 
by numerous studies in the early age of microbial ecology1, the impor-
tance of stochastic processes in microbial assembly has been appreci-
ated just in the recent decade1,14,18,38,60. This study showed that stochastic 
processes are still essential even under high stress, which is in agree-
ment with other groundwater studies13,17,18,61–63. Considering the large 
randomness of microbial dispersal in groundwater due to filtering, 
adsorbing and trapping effects in subsurface porous structures, this 
is understandable. Besides, many studies on microbial assembly in 
other ecosystems also suggest that stochastic assembly could be very 
important even under extreme environments38–41. Thus, compared 
with the dominance of deterministic processes in stressful environ-
ments20,22,26,37, the increase in determinism with stresses should be 
more general.

While other assembly processes (for example, selection) varied 
with stress gradients as we predicted (see Supplementary Discussion B 
for details)19,21,24,27–29,42,51,64–78, dispersal limitation was negatively related 
to stress, opposite to Schema C. This is reasonable when microbial 
dispersal relies more on physical transport conditions (see Supplemen-
tary Discussion C for details)15–17,54,79,80. Also, knowledge on community 
assembly mechanisms under stress conditions is important for better 
subsurface modelling81 (see Supplementary Discussion D for details). 
In addition, great caution is needed in data interpretation due to some 
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caveats related to dispersal2,3,82,83, methodology1,13,14 and biofilms (see 
Supplementary Discussion A for details).

In conclusion, the results presented in this study are important for 
both basic and applied ecology research. Several theoretical schemas 
have been developed, which should be useful in formulating test-
able and compelling hypotheses for experimental studies. Since this 
framework was tested with groundwater microbiome data, further 
studies are needed to determine whether it is applicable to other eco-
systems and/or under different stress conditions. Our findings also 
have important implications for ecosystem restoration and environ-
mental management. As demonstrated in this study, stochastic pro-
cesses, particularly dispersal limitation, play critical roles in shaping 
groundwater microbiomes, even under high stress conditions. Thus, 
to achieve a desired ecosystem state, any groundwater restoration 
programme must consider approaches to overcome dispersal limita-
tion, for example, via inoculation. In addition, heterogeneous selection 
is important in mediating groundwater microbiome structure and is 
strongly associated with several key environmental factors such as pH, 
microelements or toxic metals. Thus, bioremediation strategies should 
also consider its importance to achieve restoration goals by altering 
the heterogeneity of environmental conditions and/or specific key 
environmental factors such as pH, nutrients and electron donors, as 
previously demonstrated18,84.

Methods
Experimental site and sampling
The Department of Energy’s Oak Ridge Field Research Center site 
consists of 243 acres of contaminated area and 402 acres of an uncon-
taminated background area in Oak Ridge, Tennessee. More detailed 
information can be found in previous publications42,43 and the website 
http://www.esd.ornl.gov/orifrc. Groundwater samples were collected 
from 97 representative wells (91 wells with more complete data were 

used in this study; Fig. 2a) on the basis of a careful design to reflect the 
large geochemical gradient across the site42.

Physical and chemical analyses
Temperature, pH, dissolved oxygen, conductivity and redox, were 
determined by an In-Situ Troll 9500 system (In-Situ Inc.). Sulfide and 
ferrous iron concentrations were measured using the US Environmental 
Protection Agency (EPA) methylene blue method (Hach; EPA Method 
8131) and the 1,10-phenanthroline method (Hach; EPA Method 8146), 
respectively. Dissolved gases (He, H2, N2, O2, CO, CO2, CH4 and N2O) were 
measured on an SRI 8610C gas chromatograph (SRI Instruments) with 
argon carrier gas, using a method derived from EPA RSK-175 and the US 
Geological Survey Reston Chlorofluorocarbon Laboratory procedures. 
Dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) 
concentrations were determined with a Shimadzu TOC-V CSH analyser 
(EPA Method 415.1). The concentrations of anions (bromide, chloride, 
nitrate, phosphate and sulfate) were determined using a Dionex 2100 
system (Thermo Fisher) with an AS9 column and a carbonate eluent 
(US EPA Methods 300.1 and 317.0). Metals and trace elements in the 
groundwater were determined on an inductively coupled plasma mass 
spectrometry (ICP-MS) instrument (Elan 6100; PerkinElmer) using 
a method similar to EPA Method 200.7. Metals were analysed in sus-
pended solid, supernatant and pellet85 samples. Each sample was vigor-
ously shaken before taking 6 ml as ‘suspended solid’ sample. Another 
aliquot (6 ml) of each sample was centrifuged at 7,000 × g for 15 min to 
get the supernatant and pellet parts. The three parts were acidified to 
2% using concentrated HNO3 and analysed by ICP-MS (7500ce, Agilent). 
Physical and chemical data were stored using Excel in Microsoft 365.

Of the 202 measured environmental and spatial variables, 20 
variables have no missing value, 175 variables have only 1 missing value 
and 7 variables have 4–12 missing values. For each variable not ana-
lysed in a sample, the missing value was estimated by multiple linear 
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regression using other variables measured in the sample. The R2 values 
of the models were as high as 0.99 ± 0.04 (Supplementary Table 8).  
Thus, we accepted the estimates of missing values and used them in 
further analysis.

To map the measured variables, Akima’s method was applied for 
bivariate interpolation and smooth surface fitting using the linear 
model function ‘interp’ in the R package ‘akima’ (v.0.5-1.2)86. To evaluate 
the interpolation, the Monte Carlo method was applied to calculate the 
cross-validated R2 (R2

CV) of the interpolation, with 90% of the samples 
randomly selected as the training set each time. The linear interpolation 
of 25 environmental variables and 5 ubiquitous taxa showed R2

CV > 0.25 
and P < 0.05 (permutational test), and was thus considered relatively 
reliable. Then, the geographic distribution of the variables was visual-
ized with colour-filled contour maps using the function ‘filled.contour’ 
in the R package ‘graphics’ (v.4.2.2). For a variable without reliable 
linear interpolation, an optimum predictive model was built with the 
30 reliably interpolated variables as predictors, by forward selection 
of the linear model or a random forest87 model based on R2

CV. The 
models fed with log-transformed and/or untransformed predictor 
values were compared for optimum prediction with maximum R2

CV. 
Meanwhile, the dependent variable values were transformed by logit 
function to avoid the predicted values exceeding reasonable range. 
With the optimum model, the variable values at unsampled positions 
were predicted; only when the model of a variable showed R2

CV > 0.25 
and P < 0.05 were the predicted values used to draw a colour-filled 
contour map. We emphasize that the maps only help to visualize the 
general trends, and the interpolation or prediction at a specific position 
could have poor accuracy.

Stress levels
On the basis of various physical and chemical measurements, an inte-
grated metric was developed to reflect different stress levels. The high 
concentrations of metals, H+, OH−, some anions and high conductivity 
all increase stress (so-called stress indicators; listed in Supplementary 
Table 2) and were used to evaluate stress levels. We calculated the 
SI of each stressor by dividing the observed value by its reference 
level. The reference levels were from the standards in drinking water 
regulations or guidelines; if not available, the concentrations without 
symptoms or toxic effects in a toxicity database were considered 
(Supplementary Table 2). Similar to Liebig’s law, the stress level of a 
sample should be better determined by the MSI. To evaluate whether 
MSI can roughly represent stress to common microorganisms, Pearson  
correlation was performed between log-transformed MSI and refer-
ence taxa number. The ‘reference taxa’ were identified as taxa with 
mean relative abundance >0.1% and occurrence frequency >50% 
in ‘uncontaminated’ (all SI < 1) samples (Supplementary Table 9).  
Considering that similar sample size at each stress level is better for 
statistical analysis, we classified the 91 samples into 7 stress levels 
(Supplementary Table 3 and option A in Supplementary Fig. 2). To 
explore within-stress-level environmental dispersion at different 
stress levels, the permutational test of multivariate homogeneity of 
group dispersions (PERMDISP)88 was performed using the functions  
‘betadisper’ and ‘permutest.betadisper’ in the R package ‘vegan’  
(v.2.5-7)89. PERMDISP is based on within-group Euclidean distances  
of all measured environmental variables standardized to zero mean 
and unit variance. To test the robustness of our conclusions, the  
samples were also grouped to different stress levels by three other 
options (Supplementary Notes and Fig. 2): Option B: grouping by the 
number of stressors that are defined as stress indicators with SI > 1 in 
a sample; Option C: grouping by the suppressed rate of reference taxa 
richness calculated as relative difference from the maximum reference 
taxa richness in uncontaminated samples; and Option D: grouping by 
hierarchical clustering of samples based on stressor concentrations 
and then selecting samples in each group to make the environmental 
dispersion the same in different groups.

Sequencing
The sequencing data are from our previous study42. An aliquot 
(4 l) of each sample was sequentially filtered through 10-μm- and 
0.2-μm-pore-size filters. DNA was extracted from 0.2 μm filters using 
a modified Miller method42, and the V4 region of 16S rRNA genes 
was amplified and sequenced on a MiSeq sequencer (Illumina). The 
primers were 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R 
(5′-GGACTACHVGGGTWTCTAAT-3′). The sequencing data were pro-
cessed using USEARCH (v.6.0.307) and custom scripts at https://github.
com/spacocha/16S_pre-processing_scripts/ to generate OTUs at 97% 
identify42. The phylogenetic tree was built using FastTree (v.2.1.11)90 
after sequence alignment with PyNAST (v.1.2.2)91. Taxonomic classifi-
cation was implemented in QIIME2 (v.2021.2) with the sklearn-based 
taxonomy classifier (v.0.23.1)92, using Silva SSU 138 (ref. 93) as a refer-
ence database. Bacterial richness was estimated by the improved Chao 
1 index (iChao1)94. Taxonomic and phylogenetic beta diversity were 
measured using Bray–Curtis dissimilarity and β-mean nearest taxon 
distance (βMNTD)95. We also generated amplicon sequence variant 
tables using UNOISE in USEARCH (v.11.0.667), which showed similar 
trends as OTUs, although less significant (Supplementary Fig. 4).

Phylogenetic signal
To infer niche selection with phylogenetic diversity metrics, species 
niche preference should have phylogenetic signal, for example, sig-
nificant association between niche difference and phylogenetic dis-
tance. To test phylogenetic signal, niche value was calculated as the 
abundance-weighted mean of each environmental factor across all 
samples for each OTU95 and its difference between two OTUs represents 
the between-taxa niche difference. In this way, the pairwise niche dif-
ferences were calculated using the ‘dniche’ function in the R package 
iCAMP (v.1.6.1). To visualize the range of phylogenetic distances show-
ing significant correlation with niche differences, the relationship 
curves were drawn and Mantel correlogram analysis12,96 and stepwise 
Mantel test were performed using the function ‘big.mantel.correlog’ 
in the R package iCAMP. The ‘big.mantel.correlog’ is based on ‘mantel’ 
and ‘mantel.correlog’ in the R package ‘vegan’89 and improved to handle 
big datasets by using the R package ‘bigmemory’ (v.4.6.1) (see more 
details in Extended Data Fig. 7).

Multivariate analysis
Since phylogenetic signal was found significant within a short phylo-
genetic distance (Extended Data Fig. 7), βMNTD, which showed most 
values (>90%) to be within a distance of 0.2, was calculated with the 
function ‘bmntd.big’ in the R package ‘NST’ (v.3.1.10)13 and used as 
the dependent variable in distance-based redundancy analysis97. All 
measured environmental variables were scaled to zero mean and unit 
variance. Geographic distance was transformed using principal coor-
dinates of neighbourhood matrix98 with default setting in the function 
‘pcnm’ of the R package ‘vegan’89. The distance-based redundancy 
analysis was performed for each stress level separately, with forward 
model selection based on adjusted R2 and P values using the functions 
‘capscale’ and ‘ordiR2step’ in ‘vegan’.

Neutral theory model
A ‘neutral taxon’ was identified as an OTU whose occurrence frequency 
is within the 95% confidence interval of the frequency predicted by its 
relative abundance in the regional pool according to the neutral theory 
model10,11,14. Then, the abundance-weighted percentage of neutral 
taxa (NP) in a sample was calculated as the relative abundance sum of 
neutral OTUs in the sample10. The regional pool was not simply calcu-
lated as the arithmetic average of observed samples, considering the 
geographically uneven sampling and the large difference in biomass 
among wells. To estimate the regional pool, the density of each taxon 
in each well was assessed by multiplying observed relative abundance 
and acridine orange direct counts. Then, the log-transformed density 
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of each taxon was subjected to bivariate interpolation with Akima’s 
method to assess its densities in evenly distributed grids without meas-
ured wells. Subsequently, the regional pool, counting all the grids, was 
input as ‘meta.com’ when NP was calculated using the function ‘snm.
comm’ in the package iCAMP (v.1.6.1)14.

Null-model-based analysis
A previous framework based on null models of the entire community 
(QPEN)12,48 was applied to assess the relative importance of different 
community assembly processes. For each pair of communities (sam-
ples), if the phylogenetic dissimilarity measured by βMNTD was signifi-
cantly higher (β nearest taxon index, βNTI > 2) or lower (βNTI < −2) than 
the null model expectation, the community turnover was considered 
to be governed by heterogeneous or homogeneous selection, respec-
tively. If the phylogenetic dissimilarity was not differentiable from the  
null expectation (−2 ≤ βNTI ≤ 2) and taxonomic dissimilarity (Bray– 
Curtis) was significantly higher (the modified Raup–Crick metric based 
on Bray–Curtis dissimilarity, RCBray > 0.95) or lower (RCBray < −0.95) than 
the null model expectation, the community turnover was regarded as 
controlled by dispersal limitation or homogenizing dispersal, respec-
tively. If neither phylogenetic nor taxonomic dissimilarity was differen-
tiable from null expectations (−2 ≤ βNTI ≤ 2 and −0.95 ≤ RCBray ≤ 0.95), 
the turnover was regarded as governed by stochastic drift, diversi-
fication, weak selection and dispersal1, named ‘undominated’12,48 or 
‘drift’14 for short. In each group (for example, a stress level), the relative 
importance of a certain process was assessed by the percentage of 
pairwise turnovers governed by the process. For comparison with other 
stochasticity indexes, the turnovers governed by dispersal limitation, 
homogenizing dispersal or ‘drift’ processes were deemed as stochastic 
turnovers and their percentage in a group was utilized as a measure of 
stochasticity, named stochastic turnover ratio.

A phylogenetic-bin-based framework (iCAMP) was recently devel-
oped from QPEN and demonstrated improved quantitative perfor-
mance14. Considering that different taxa in the same community can 
be dominated by different assembly processes, iCAMP divides the 
observed taxa into different phylogenetic groups (bins) and identifies 
the assembly processes governing each bin’s turnovers in a similar way 
as QPEN. For each bin, the fraction of pairwise turnovers with signifi-
cantly higher (β net relatedness index of a bin (βNRIbin) > 1.96) or lower 
(βNRIbin < −1.96) phylogenetic dissimilarity (β mean pairwise distance) 
than the null expectation reflects the influence of heterogeneous 
or homogeneous selection, respectively. The fraction of turnovers 
with non-significant phylogenetic dissimilarity (−2 ≤ βNRIbin ≤ 2) but 
significantly higher (RCbin > 0.95) or lower (RCbin < −0.95) taxonomic 
dissimilarity (Bray–Curtis) than the null expectation reflects the influ-
ence of dispersal limitation or homogenizing dispersal, respectively. 
The remainder (−2 ≤ βNRIbin ≤ 2 and −0.95 ≤ RCbin ≤ 0.95) represents the 
influence of ‘drift’. The relative influence of each assembly process in 
each bin was summarized and weighted with the bins’ relative abun-
dances to identify the major bins governed by each process, which 
was then used to quantify the process influence at the community 
level14. The QPEN, iCAMP, bin-level statistics and related significance 
test were performed using the functions ‘qpen’, ‘icamp.big’, ‘icamp.
bins’ and ‘icamp.boot’ in the R package iCAMP (v.1.6.1), respectively.

Assembly process influence map
In a previous study48, the influence of an assembly process at each 
location was estimated as its mean relative importance in all commu-
nity turnovers between this location and all other locations. We made 
some modification considering the uneven geographic distribution 
of measured wells in this study. Bivariate interpolation was applied 
to estimate the relative importance of each process in community 
turnovers among evenly distributed grids from the values among 
measured wells. Then, the process influence at each well was calculated 
as its mean relative importance in turnovers between the well and all 

other grids. Subsequently, the process influence was visualized as 
a colour-filled contour map as described above for mapping other 
measured variables.

Associations among processes and environmental variables
The relative importance of each assembly process estimated by iCAMP 
was transformed to centred log ratio to avoid a compositional data 
issue57. Then, the transformed values of each process were analysed for 
correlation with each log-transformed environmental variable using 
Mantel test with cross validation. Pairwise correlations among environ-
mental variables were assessed using a cross-validated linear model. 
The Monte Carlo method was applied for the cross validation, with 
90% of the data used for training and 10% used as test data. To visualize 
the correlations, significant associations with R2

CV > 0.01 and P < 0.05 
were used to draw a network, and the modules were identified using 
greedy optimization99. Considering the collinearity, the contributions 
of different environmental variables to each process were assessed 
by OPLS100 using the function ‘opls’ in the R package ‘ropls’ (v.1.30.0). 
The significance test was modified to be based on the permutation of 
samples rather than pairwise values (similar to permutation in Mantel 
test). In the OPLS output, R2

Y and R2
X represent the percentage of Y (that 

is, relative importance of each assembly process in this study) and X 
(that is, environmental variables in this study) dispersion (that is, the 
sum of squares) explained by the model, respectively. Q2

Y reflects 
the overall predictive performance of the model, calculated by cross 
validation; if Q2

Y is not significant (PQ2Y > 0.05), the model may have 
been overfitted.

Statistics and reproducibility
Statistical analyses were completed using the R software (v.4.2.2) and 
specific methods detailed above. Since the assumptions of parametric 
tests (for example, normality, equal variances and so on) were not valid 
in many analyses, we used bootstrapping, permutational test and Man-
tel test for comparisons and association analyses, and we performed 
cross validation to improve the reliability of the results as described 
above. Our previous study showed that null model-based approaches 
such as NST require sufficient biological replicates (for example, >6) 
to ensure statistical power13. Thus, the sample size in each stress level 
was set to ≥8 in all the four different options (Supplementary Notes). 
As mentioned above, we excluded 6 wells with too many missing data 
(>6 environmental variables not available) and used the data from 91 
wells in this study.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Data are accessible from a KBase narrative (https://narrative.kbase.
us/narrative/145709), the current static version of which is https://
kbase.us/n/145709/13/. The 16S rRNA gene sequencing data are from 
our prior study42 and are available in MG-RAST with accession code 
mgp8190. The taxonomy classifier trained on Silva SSU 138 is from 
QIIME2 (v.2021.2), available at https://data.qiime2.org/2021.2/com-
mon/silva-138-99-515-806-nb-classifier.qza. Source data are provided 
with this paper.

Code availability
All custom scripts and the latest version of the R package iCAMP are 
available from GitHub (https://github.com/DaliangNing/iCAMP1).
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Extended Data Fig. 1 | Maps of the concentrations of representative 
environmental variables in groundwater. a, Nitrate-nitrogen. b, pH. c, Uranium 
(U). d, Dissolved oxygen (DO). The bubble size represents the value at each 

sampling position; R2
CV is cross-validated R2 of the model used to generate each 

map; P values (one-sided) are based on permutational test; the uppercase A - D 
indicate hotspots of heterogeneous selection, the same as in Fig. 2.
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Extended Data Fig. 2 | Correlation between reference taxa number and 
log-transformed maximum stress index (ln MSI). Each data point represents 
a sample. The line and shadow are the trendline and 95% confidence interval 

based on linear regression. r and P show Pearson correlation coefficient and 
significance (two-sided). The ‘reference taxa’ are defined as relatively abundant 
and common taxa in uncontaminated samples.
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Extended Data Fig. 3 | Variation of bacterial alpha diversity along the 
stress gradient. a, Richness estimated by iChao1 index; b, Shannon index. 
The line and shadow show the trendline and 95% confidence interval based on 

linear regression. r and P are Pearson correlation coefficient and significance 
(two-sided). The significant Pearson correlation indicates a general decrease in 
bacterial richness as stress increased in the groundwater.
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Extended Data Fig. 4 | Determinism and stochasticity of groundwater 
bacterial assembly at different stress levels. a, Abundance-weighted 
percentage of neutral taxa (NP) based on neutral theory model. b, Stochastic 
turnover ratio, that is, percentage of community turnovers governed by 
stochastic assembly processes based on a framework of entire-community null 
model analysis (QPEN). c, Relative importance of stochastic assembly processes 
based on a framework of phylogenetic-bin null model analysis (iCAMP). MSI, 
maximum stress index. The violin and box plots are based on bootstrapping 

results at each stress level (n = 13 in each level; bootstrapping 1000 times). 
Colors of violin plots indicate the stress levels. In box plots, center line, median; 
box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; dots, 
outliers; triangle, mean value at each stress level. Black line, gray shadow, R2, 
and P are the trendline, 95% confidence interval, coefficient of determination, 
and significance based on linear regression of the mean values as a function of 
log-transformed MSI.
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Extended Data Fig. 5 | Variation of groundwater bacterial assembly processes 
along the stress gradient. a, Homogeneous selection (HoS). b, Homogenizing 
dispersal (HD). The violin and box plots are based on bootstrapping results at 
each stress level (n = 13 in each level; bootstrapping 1000 times). Colors of violin/
box plots indicate the stress levels. In box plots, center line, median; box limits, 

upper and lower quartiles; whiskers, 1.5x interquartile range; dots, outliers; 
triangle, mean value at each stress level. Black line, gray shadow, R2, and P values 
are the trendline, 95% confidence interval, coefficient of determination, and 
significance based on linear regression of the mean values as a function of log-
transformed MSI.
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Extended Data Fig. 6 | Association network of environmental variables and 
relative importance of community assembly processes. Links show significant 
correlation (cross-validated R2

CV > 0.01 and P < 0.05); P values (one-sided) were 
calculated based on permutational test (1000 times) for correlations among 
environmental factors and Mantel test (permutated 1000 times) for correlations 
between assembly processes and environmental factors, then, adjusted by false 
discovery rate (FDR) method; line width reflecting the R2

CV. Node area is related 

to its degree (associated node number). Nodes are grouped by modules based 
on greedy optimization. Dep. (T) and Dep. (B), depth of the screen top and 
bottom, respectively; geo.distance, geographic distance; cond., conductivity. 
Heterogeneous selection (HeS) showed much more strong associations 
with environmental variables and mainly with pH and metals in water phase 
(supernatant and suspended solid). The numerous gray links demonstrated the 
high density of strong associations among environmental variables.

http://www.nature.com/naturemicrobiology


Nature Microbiology

Article https://doi.org/10.1038/s41564-023-01573-x

Extended Data Fig. 7 | Relationship between bacterial phylogenetic distance 
and niche preference difference (phylogenetic signal). a, Mantel correlogram. 
b, Relationship curve and stepwise Mantel test. Mantel correlogram was 
performed as previously described. Stepwise Mantel test was used to evaluate 
the correlation between niche preference difference and phylogenetic distance 
within the phylogenetic distance from 0 to a certain value. On the relationship 
curves, each niche difference value is the mean value in each phylogenetic 
distance ‘class’ within a distance interval of 0.02. The niche preference difference 
was estimated based on nine representative environmental variables. In the 
nine variables, pH, U, and nitrate (NO3) are major stressors in the contaminated 
area; Yb-sup, Sulfide, 52Cr-ss, Cu-sup, Sr, and Rb-plt were identified as 
‘centroid’ variables which showed the nearest distance to the centroids of six 
environmental variable clusters, to represent the variation of each cluster. The 

clusters were identified by hierarchical clustering based on pairwise correlation 
among environmental variables. The distances to centroid were calculated by 
multivariate homogeneity of groups dispersions using function ‘betadisper’ in 
R package ‘vegan’. P values (one-sided) are based on Mantel test (permutated 
1000 times) and adjusted by false discovery rate (FDR) method. The Mantel 
correlograms and stepwise Mantel tests showed generally significant (P < 0.05) 
phylogenetic signal, validating the use of phylogenetic diversity to infer the 
influence of environmental selection. However, the trends in the relationship 
curves and the change of correlation coefficients and P values revealed the 
tipping points of phylogenetic signal at short phylogenetic distances around 0.2 
to 0.6, supporting the necessity to use the phylogenetic-bin-based null model 
approach (iCAMP) which better exploits phylogenetic signal within relatively 
short phylogenetic distance.

http://www.nature.com/naturemicrobiology







	Environmental stress mediates groundwater microbial community assembly
	Results
	Theoretical framework
	Schema A: stochasticity and environmental stress
	Schema B: selection and environmental stress
	Schema C: dispersal and environmental stress
	Schema D: drift and environmental stress

	Geochemical characteristics and stresses
	Deterministic versus stochastic assembly
	Relative influence of different assembly processes
	Assembly processes in different phylogenetic groups
	Spatial variations in different assembly processes
	Environmental variables affecting community assembly

	Discussion
	Methods
	Experimental site and sampling
	Physical and chemical analyses
	Stress levels
	Sequencing
	Phylogenetic signal
	Multivariate analysis
	Neutral theory model
	Null-model-based analysis
	Assembly process influence map
	Associations among processes and environmental variables
	Statistics and reproducibility
	Reporting summary

	Acknowledgements
	Fig. 1 Schematic representation of the relationships between community assembly processes and stress.
	Fig. 2 Maps of sampling positions, stress and relative importance of community assembly processes.
	Fig. 3 Variation in community assembly processes at different stress levels.
	Fig. 4 Variations in assembly mechanisms across different phylogenetic groups.
	Fig. 5 Environmental variables significantly correlated with each assembly process.
	Extended Data Fig. 1 Maps of the concentrations of representative environmental variables in groundwater.
	Extended Data Fig. 2 Correlation between reference taxa number and log-transformed maximum stress index (ln MSI).
	Extended Data Fig. 3 Variation of bacterial alpha diversity along the stress gradient.
	Extended Data Fig. 4 Determinism and stochasticity of groundwater bacterial assembly at different stress levels.
	Extended Data Fig. 5 Variation of groundwater bacterial assembly processes along the stress gradient.
	Extended Data Fig. 6 Association network of environmental variables and relative importance of community assembly processes.
	Extended Data Fig. 7 Relationship between bacterial phylogenetic distance and niche preference difference (phylogenetic signal).




