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Abstract
Studying the functional heterogeneity of soil microorganisms at different spatial 
scales and linking it to soil carbon mineralization is crucial for predicting the response 
of	soil	carbon	stability	to	environmental	changes	and	human	disturbance.	Here,	a	total	
of	429	soil	samples	were	collected	from	typical	paddy	fields	in	China,	and	the	bacte-
rial and fungal communities as well as functional genes related to carbon mineraliza-
tion	in	the	soil	were	analysed	using	MiSeq	sequencing	and	GeoChip	gene	microarray	
technology.	We	postulate	that	CO2 emissions resulting from bacterial and fungal car-
bon mineralization are contingent upon their respective carbon consumption strate-
gies,	which	rely	on	the	regulation	of	interactions	between	biodiversity	and	functional	
genes.	Our	results	showed	that	the	spatial	turnover	of	the	fungal	community	was	2–4	
times that of the bacterial community from hundreds of meters to thousands of kilo-
metres.	The	effect	of	spatial	scale	exerted	a	greater	impact	on	the	composition	rather	
than	the	functional	characteristics	of	the	microbial	community.	Furthermore,	based	
on	the	establishment	of	functional	networks	at	different	spatial	scales,	we	observed	
that	both	bacteria	and	fungi	within	the	top	10	taxa	associated	with	carbon	minerali-
zation	exhibited	a	prevalence	of	generalist	species	at	the	regional	scale.	This	study	
emphasizes the significance of spatial scaling patterns in soil bacterial and fungal car-
bon	degradation	functions,	deepening	our	understanding	of	how	the	relationship	be-
tween microbial decomposers and soil heterogeneity impacts carbon mineralization 
and subsequent greenhouse gas emissions.
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1  |  INTRODUC TION

Soil microorganisms are important engines of decomposition and 
participate	 in	 terrestrial	carbon	source–sink	dynamics	 (Glassman	
et	al.,	2018;	Jansson	&	Hofmockel,	2020;	Nunan	et	al.,	2020;	Tang	
et	al.,	2018).	Most	soil	microorganisms	are	heterotrophic	and	con-
sume	soil	organic	carbon	(SOC)	as	energy,	and	this	carbon	mineral-
ization	process	can	accelerate	the	emission	of	CO2 from soil to the 
atmosphere. Soil carbon mineralization is a critical process of the 
carbon	cycle	and	 is	directly	 related	 to	soil	 carbon	quality	 (Chow	
et	 al.,	 2006;	 Lal,	 2004).	 The	 special	 characteristics	 of	 the	 soil	
microbial	 community,	 including	 structural	 and	 functional	 traits,	
can	lead	to	changes	in	carbon	decomposition	(Adair	et	al.,	2008; 
Jackson	et	al.,	2003).	Bacteria	and	fungi	are	the	two	main	groups	
of decomposing communities and show a variety of strategies af-
fecting soil carbon sequestration and terrestrial carbon stability 
(Falkowski	et	al.,	2008).	For	example,	bacteria	are	the	main	decom-
posers	 of	 simple	 carbohydrates,	 organic	 acids,	 and	 amino	 acids	
(Myers	et	al.,	2001),	whereas	fungi	are	more	important	than	bac-
teria	in	decomposing	refractory	soil	carbon	(Fontaine	et	al.,	2011).	
Refining the study of diverse carbon decomposition strategies em-
ployed by these microorganisms can yield a more comprehensive 
comprehension of how microbial- mediated soil- climate feedback 
operates.	However,	 the	potential	 far-	reaching	effects	of	hetero-
geneity on many aspects of microbial functional ecology have not 
been well understood or incorporated into our understanding of 
ecosystem functions in response to climate change at multiple 
spatial scales.

Spatial	 scales	 in	 ecology	 represent	 the	 biogeographic	 extent	
within which the mutual influences of neighbouring observations 
become	 effective.	 Species	 coexistence,	 which	 is	 fundamentally	
important	 for	 ecosystem	 function,	 is	 dependent	 on	 the	 spatial	
scale,	 and	 this	 relationship	 has	 been	 linked	 to	 the	management	
of	community	diversity	across	landscapes	(Hart	et	al.,	2017).	The	
scale dependence of ecological patterns is often induced by a sam-
pling effect: increasing the scale of observation could increase the 
number of resources present and utilized so that species show 
a monotonic positive relationship with the scale of observation. 
Bruelheide et al. (2018)	 found	 that	 the	 composition	 and	 driving	
force of the functional traits of communities differed between 
local	areas	(1–1000 m2)	and	large	areas	(25–12,500 km2),	indicating	
that	the	ecological	pattern	depends	on	the	spatial	scale	and	exhib-
its	 a	 characteristic	driving	 scenario.	However,	 it	 remains	unclear	
whether	 the	 spatial	 scales	 of	 different	 microbial	 taxa	 and	 their	
functional traits are important for maintaining ecosystem biogeo-
chemical	 cycling.	 Carbon-	degrading	microbes	 in	 soil	 are	 fractal-	
like	and	tend	to	show	self-	similarity	over	some	range	of	scales.	The	
relative importance of elucidating differences in community sim-
ilarity across spatial scales and quantifying the impact of differ-
ent community compositions on carbon mineralization processes 
should be linked to ecological functions.

The	 distance	 decay	 relationship	 (DDR)	 is	 a	 common	 biogeo-
graphic model in ecology that refers to the decrease in community 

similarity	 with	 geographic	 distance	 (Green	 et	 al.,	 2004; Horner- 
Devine	 et	 al.,	 2004).	 The	 DDR	 of	 microbial	 community	 composi-
tion	has	been	investigated	at	regional	(Green	et	al.,	2004; Griffiths 
et	al.,	2011),	continental	(Lauber	et	al.,	2008),	and	global	(Tedersoo	
et	al.,	2012)	scales.	This	relationship	varies	among	different	micro-
bial	 taxonomic	groups.	By	examining	 the	DDR	of	 soil	diazotrophic	
and	bacterial	communities	from	1 m–700 km,	it	was	found	that	DDR	
slopes	(spatial	turnover	rate)	were	steeper	for	diazotrophs	than	for	
bacteria	(Gao	et	al.,	2019).	For	the	factors	affecting	the	composition	
of	microbial	 communities	 that	 cause	 different	DDR	 patterns,	 it	 is	
generally believed that the important roles of selection and disper-
sion	as	well	as	drift	and	diversification	have	significant	effects	(Ning	
et	al.,	2020).	Environmental	 filtering,	driven	by	factors	such	as	pH	
and	the	SOC	and	NH4

+	contents,	affects	the	spatial	pattern	of	soil	
microorganisms	(Jiao	et	al.,	2019;	Liu	et	al.,	2015;	Yao	et	al.,	2013).	
Probabilistic dispersal can affect DDR patterns independently 
of	 niche	 differences	 (Wang	 et	 al.,	 2017).	 At	 present,	 research	 on	
soil microorganisms is moving forward from community compo-
sition	 to	 functional	 traits	 (Fierer	 &	 Jackson,	 2006;	 Grundmann	 &	
Debouzie,	2000;	Nunan	et	al.,	2002;	Ritz	et	al.,	2004).	However,	it	
is still unclear how the spatial scale and functional characteristics of 
different microbial groups affect soil carbon stability.

Paddy	soils	 cover	150	million	ha	globally	 (GRiSP,	2013),	 repre-
senting one of the world's most important agricultural ecosystems. 
This	wide	distribution	area	can	provide	an	ideal	habitat	for	studying	
microbial	 functional	 traits	 at	wide	 spatial	 scales.	 In	 this	 study,	we	
collected	a	total	of	429	soil	samples	from	paddy	fields	throughout	
rice	cropping	regions	in	China.	Soil	bacterial	and	fungal	communities	
and	carbon-	degrading	functional	genes	were	analysed	by	16S	rRNA	
and	ITS	amplicon	sequencing	and	a	high-	throughput	functional	gene	
array	GeoChip	(Zhou	et	al.,	2015).	A	spatial	sampling	design	was	used	
to realize the balanced distribution of paired distances at different 
spatial	scales,	 i.e.,	 local	scale	 (1–100 m),	mesoscale	 (0.5–50 km),	 re-
gional	scale	 (100–3500 km),	and	overall	scale	 (1 m–3500 km).	Here,	
we propose that the participation of diverse microorganisms in 
carbon mineralization is contingent upon the carbon consumption 
strategies	exhibited	by	bacteria	and	fungi	at	varying	spatial	scales,	
with these strategies being influenced by the trade- off between 
biodiversity	and	functional	genes.	Our	study	suggested	the	impor-
tance of spatial scaling patterns of soil bacterial and fungal carbon 
degradation	functions,	which	can	deepen	the	understanding	of	how	
the relationship between microbial decomposers and soil heteroge-
neity affects carbon mineralization and subsequent greenhouse gas 
emissions.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and site characteristics

Soil	samples	were	collected	across	China	from	typical	paddy	fields.	
In	total,	39	paddy	fields	in	13	regions	(three	plots	per	region)	were	
selected	to	cover	a	wide	spatial	extent,	from	110°10′	and	126°14′E 
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in	 longitude	 and	 19°32′	 and	 46°58′N	 in	 latitude	 (Figure 1).	 The	
mean	annual	temperature	(MAT)	in	the	region	ranges	from	1.5°C	
to	23.8°C,	and	the	mean	annual	precipitation	(MAP)	ranges	from	
399 mm	to	2216 mm.	In	brief,	11	soil	samples	(biological	replicates)	
were collected with well- designed pairwise distances for each 
field.	Six	soil	samples	were	collected	along	a	75 m	long	soil	tran-
sect,	and	an	additional	five	samples	were	collected	along	a	vertical	
75 m	 long	 transect.	The	distance	between	 two	adjacent	 samples	
along	both	 transects	was	1,	5,	10,	20,	or	40 m.	Each	soil	 sample	
was combined with five soil cores taken at a depth ranging from 0 
to	15 cm,	and	the	litter	layer	was	not	included	in	the	soil	sampling.	
All	soil	samples	were	sealed	in	sterile	sampling	bags,	transported	
to	the	laboratory	on	ice,	and	divided	into	two	subsamples	within	
48 h.	One	subsample	was	kept	at	4°C	for	measuring	the	soil	prop-
erties (Table S1),	and	the	other	was	stored	at	−80°C	for	molecular	
analysis.

2.2  |  Climatic and soil physicochemical 
properties, soil carbon mineralization, and microbial 
biomass analysis

The	climate	attributes,	including	MAT	and	MAP,	were	obtained	from	
the	meteorological	 observation	database	of	 the	 experimental	 sta-
tions.	The	soil	pH	was	determined	with	a	glass	electrode	at	a	2.5:1	
water:	soil	ratio.	A	0.5-	M	K2SO4	extract	was	prepared	to	determine	
the	 dissolved	 organic	 carbon	 (DOC)	 content	 and	 measured	 using	
a	Multi	 N/C	 2100	 analyser	 (Analytik	 Jena,	 Germany).	 Total	 nitro-
gen,	nitrate	(NO3ˉ–N),	and	ammonium	nitrogen	(NH4

+–N)	contents	
were	measured	by	the	Kjeldahl	method	 (Bremner,	1965).	Soil	 total	

P	(TP)	was	digested	with	HF-	HClO4 and then determined using the 
molybdenum- blue method with an atomic absorption spectropho-
tometer	(Zeenit	700P,	Analytik	Jena	AG,	Germany).

Soil	CO2 respiration is regarded as carbon mineralization (Haney 
et	al.,	2008;	Xiao	et	al.,	2018).	Soil	CO2 respiration was measured 
using	the	static	alkali	absorption	method	(Yim	et	al.,	2002).	Twenty	
grams	of	fresh	soil	was	weighed	into	a	250 mL	plastic	bottle,	de-
ionized	water	was	added	 to	adjust	 the	 level	 to	60%	of	 the	max-
imum	 field	 capacity,	 and	 an	 absorption	 bottle	 containing	NaOH	
absorption	 solution	was	placed	 in	a	plastic	bottle.	The	CO2 pro-
duced	by	soil	respiration	was	collected.	The	bottle	was	sealed	and	
placed	in	a	constant-	temperature	incubator	at	28°C	and	protected	
from	light	for	continuous	culture.	The	absorption	solution	was	re-
moved	at	intervals	to	determine	the	NaOH	content,	and	the	acid–
base	titration	method	was	used	to	determine	the	NaOH	content.	
Phenolphthalein	was	used	as	the	indicator.	The	concentrations	of	
NaOH	 in	 the	 absorption	 solutions	of	 the	 control	 group	 (without	
soil	and	only	the	absorption	solution	in	the	plastic	bottle)	and	the	
experimental	group	were	the	amount	of	CO2 respiration (RH)	in	the	
soil	during	this	period.	The	RH	values	ranged	from	0.08 mg/(kg h)	
to	25.20 mg/(kg h).

Phospholipid	fatty	acid	analysis	(PLFA)	was	performed	according	
to	standard	protocols	(Bossio	&	Scow,	1998).	The	main	steps	were	as	
follows.	Fresh	soil	was	extracted	with	an	extract	(chloroform:meth-
anol:phosphate	buffer	volume	ratio = 1:2:0.8)	and	then	eluted	with	
chloroform,	acetone,	and	methanol.	The	phospholipids	were	sepa-
rated	and	extracted,	and	then	methanol	was	esterified	to	form	fatty	
acid	methyl	ester.	The	contents	of	various	 fatty	acids	were	deter-
mined	by	gas	chromatography.	The	MIDI	software	system	was	used	
to analyse the soil microbial biomass and its community structure.

F I G U R E  1 Scenario	of	carbon	mineralization	and	significant	correlations	between	abiotic	and	biotic	factors	in	typical	paddy	fields	
across	China.	(a)	Carbon	mineralization	and	bacterial	and	fungal	biomasses	at	different	latitudes.	The	column	represents	the	mean	values	
of	bacterial	biomass	(mol/g),	fungal	biomass	(mol/g),	and	carbon	mineralization	(mg/(kg d))	of	33	parallel	soil	samples	(triplicates	with	11	
biological	replicates)	among	13	sampling	sites,	and	the	error	bar	represents	the	standard	deviation;	(b)	relationships	between	carbon	
mineralization	and	pH,	dissolved	organic	carbon	(DOC),	bacterial	biomass,	and	fungal	biomass	based	on	Pearson	correlation	analyses.	The	
shaded	areas	show	the	95%	confidence	interval.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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2.3  |  Soil DNA extraction and MiSeq sequencing

Soil	DNA	was	extracted	from	2 g	of	well-	mixed	soil	for	each	sam-
ple by combining freeze- grinding and sodium dodecyl sulphate for 
cell	 lysis	 as	previously	described	 (Zhou	et	 al.,	 1996).	The	quality	
of	the	extracted	DNA	was	assessed	according	to	the	260/280 nm	
and	260/230 nm	absorbance	ratios	by	a	Nanodrop	2000	(Thermo	
Fisher	 Scientific,	Wilmington,	 DE,	 USA).	 All	 DNA	was	 stored	 at	
−80°C.

For	bacteria,	the	primers	338F	(ACTCC	TAC	GGG	AGG	CAGCA)	
and	 806R	 (GGACT	ACH	VGG	GTW	TCTAAT)	were	 used	 to	 amplify	
the	 V3-	V4	 region	 of	 the	 16S	 rRNA	 gene	 (Lee	 et	 al.,	 2012).	 For	
fungi,	the	primers	ITS1-	1737F	(GGAAG	TAA	AAG	TCG	TAA	CAAGG)	
and	 ITS2-	2043R	 (GCTGC	GTT	CTT	CAT	CGATGC)	 were	 used	 to	
amplify	 the	 ITS1	 region	 of	 the	 ribosomal	 RNA	 gene	 (Degnan	 &	
Ochman,	2012).	 Both	 forward	 and	 reverse	 primers	were	 tagged	
with	 adapter,	 pad,	 and	 linker	 sequences.	 A	 barcode	 unique	 to	
the	reverse	primer	was	added	to	permit	the	multiplexing	of	sam-
ples	(GCCAAT	for	bacteria	and	CTTGTA	for	fungi)	(Mazurkiewicz	
et	al.,	2006).	An	ABI	GeneAmp®	9700	(ABI,	Foster	City,	CA,	USA)	
with	a	20 μL	reaction	system	containing	4 μL	of	5 × FastPfu	Buffer,	
0.8 μL	of	each	primer	(5 μM),	2 μL	of	2.5 mM	dNTPs,	10 ng	template	
DNA,	 and	 0.4 μL	 FastPfu	 Polymerase	 was	 used	 to	 perform	 the	
polymerase	chain	reaction	(PCR)	amplification.	The	PCR	protocol	
for	 bacteria	 consisted	 of	 an	 initial	 predenaturation	 step	 at	 95°C	
for	3 min,	28 cycles	of	30 s	at	94°C,	30 s	at	55°C,	and	45 s	at	72°C,	
and	a	final	10 min	extension	at	72°C.	The	amplification	steps	for	
the	 ITS	were	 similar	 to	 those	of	 the	16S	 rRNA	genes	except	 for	
the	changes	in	the	PCR	conditions,	in	which	the	initial	predenatur-
ation	was	at	95°C	for	3 min,	followed	by	35 cycles	of	30 s	at	95°C,	
30 s	 at	59.3°C,	 and	45 s	 at	72°C,	 and	a	 final	10 min	extension	at	
72°C.	 Three	 PCRs	were	 conducted	 for	 each	 sample.	 They	were	
combined	after	PCR	amplification.	The	PCR	products	were	sepa-
rated	on	a	2.0%	agarose	gel.	We	excised	and	purified	the	band	of	
the	correct	size	using	an	AxyPrep	DNA	Gel	Extraction	Kit	(Axygen	
Scientific,	Union	City,	CA,	USA),	and	quantification	was	performed	
with	QuantiFluor™-	ST	(Promega,	Madison,	WI,	USA).

The	pooled	DNA	was	diluted	to	2 nM,	loaded	onto	the	reagent	
cartridge,	 and	 run	 on	 a	MiSeq	 benchtop	 sequencer	 (Illumina	 Inc.,	
San	Diego,	CA,	USA)	at	the	 Institute	for	Environmental	Genomics,	
University	 of	 Oklahoma,	 according	 to	 the	manufacturer's	 instruc-
tions.	 The	 samples	 were	 prepared	 for	 sequencing	 using	 a	 TruSeq	
DNA	kit	according	to	the	manufacturer's	instructions.	The	purified	
mixture	was	 diluted,	 denatured,	 rediluted,	mixed	with	PhiX	 (equal	
to	30%	of	the	final	DNA	amount),	and	then	submitted	to	an	Illumina	
MiSeq	system	for	sequencing	with	the	Reagent	Kit	v2	2 × 250 bp	as	
described in the manufacturer's manual.

After	sequencing,	raw	sequences	were	selected	based	on	the	
sequence	 length,	quality,	primer,	and	 tag	using	 the	Trimmomatic	
(version	 0.35)	 and	 FLASH	 (version	 1.2.11)	 programs	 (Bolger	
et	al.,	2014;	Magoc	&	Salzberg,	2011).	Sequencing	reads	of	poor	
quality	were	 removed	by	Btrim	 (Kong,	2011).	Chimeras	were	 re-
moved	 by	 Uchime	 (Edgar	 et	 al.,	 2011).	 Reads	 that	 could	 not	 be	

assembled were discarded. Sequences were then subjected to 
chimera	detection	using	the	Uchime	algorithm	(Edgar	et	al.,	2011).	
Operational	 taxonomic	 units	 (OTUs)	 were	 classified	 at	 the	 97%	
similarity	 level	 using	 Usearch	 (version	 7.1),	 and	 the	 taxonomic	
assignment	of	OTUs	was	performed	by	 the	Ribosomal	Database	
Project classifier with a minimal 70% confidence score (Wang 
et	 al.,	 2007).	 For	 the	 16S	 rRNA	 gene,	 taxonomic	 assignment	
was	 performed	 using	 the	 Silva	 Release	 119	 database	 (Quast	
et	al.,	2013);	for	the	ITS,	the	UNITE	version	6.0	database	was	used	
(Koljalg	et	al.,	2013).

2.4  |  GeoChip 5.0 experiments and raw 
data analyses

GeoChip	 5.0	 was	 manufactured	 by	 Agilent	 (Agilent	 Technologies	
Inc.,	Santa	Clara,	CA,	USA)	in	the	8 × 60	K	format.	A	total	of	600	ng	
of	purified	soil	DNA	from	each	sample	was	 labelled	with	the	fluo-
rescent	dye	Cy-	3	 (GE	Healthcare,	CA,	USA)	using	a	 random	prim-
ing	method	as	described	previously	(Tu	et	al.,	2014),	purified	using	a	
QIAquick	Purification	kit	(Qiagen,	CA,	USA)	and	dried	in	a	SpeedVac	
(Thermo	Savant,	NY,	USA)	into	a	powder.	Subsequently,	the	labelled	
DNA	 was	 resuspended	 in	 27.5 μL	 of	 DNase/RNase-	free	 distilled	
water	 and	 mixed	 completely	 with	 42 μL of hybridization solution 
containing 1×	Acgh	blocking,	1×	HI-	RPM	hybridization	buffer,	10 pM	
universal	standard	DNA,	0.05 μg/μL	Cot-	1	DNA,	and	10%	formamide	
(final	concentrations).	Then,	the	solution	was	denatured	at	95°C	for	
3 min,	 incubated	at	37°C	 for	30 min,	 and	hybridized	with	GeoChip	
5.0	arrays	(60	K).	GeoChip	hybridization	was	performed	at	67°C	in	
an	Agilent	hybridization	oven	for	24 h.	After	hybridization,	the	slides	
were	 washed	 using	 Agilent	 Wash	 Buffers	 at	 room	 temperature.	
Then,	the	arrays	were	scanned	at	633	nm	by	a	laser	power	of	100%	
and	a	photomultiplier	 tube	gain	of	75%	with	a	NimbleGen	MS200	
Microarray	 Scanner	 (Roche	 NimbleGen,	 Inc.,	 Madison,	 WI,	 USA).	
The	 image	 data	 were	 extracted	 by	 following	 the	 Agilent	 Feature	
Extraction	program.

The	microarray	data	were	preprocessed	by	the	microarray	anal-
ysis	pipeline	on	 the	 IEG	website	 (http:// ieg. ou. edu/ micro array/  )	 as	
previously	described	 (Tu	et	al.,	2014).	The	main	steps	were	as	 fol-
lows:	 (i)	removing	the	spots	of	poor	quality,	which	had	a	signal-	to-	
noise	 ratio	 of	 less	 than	2.0;	 (ii)	 calculating	 the	 relative	 abundance	
of each soil sample by dividing the total intensity of the detected 
probes,	then	multiplying	by	a	constant	and	taking	the	natural	loga-
rithm;	and	(iii)	removing	the	detected	probes	in	only	two	out	of	eight	
samples from the same sampling sites.

2.5  |  Statistical analysis

Pearson correlation coefficients were calculated using SPSS 20.0 
(SPSS,	Inc.,	Chicago,	IL,	USA)	and	used	to	represent	the	relationship	
between carbon mineralization and the physicochemical properties 
or	microbial	biomass.	Changes	in	environmental	heterogeneity	with	
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distance at four scales were estimated based on the soil physico-
chemical	properties	and	climatic	factors	(MAT	and	MAP)	using	the	
Bray–Curtis	 index.	Richness	and	Shannon	 indexes	based	on	OTUs	
for both bacterial and fungal communities were calculated and re-
flected by the α	diversity	in	the	present	study.	The	β diversity of both 
bacteria	and	fungi	was	ordinated	based	on	the	Bray–Curtis	distance.	
The	 bacterial	 and	 fungal	 community	 structures	 at	 different	 sites	
were	visualized	using	NMDS.	The	similarity	matrices	were	built	using	
the	 Bray-	Curtis	 index.	 All	 of	 these	 analyses	were	 conducted	 in	 R	
(https:// www. r-  proje ct. org/ )	with	the	vegan	package	(Dixon,	2003).

The	DDRs	 at	 the	 four	 spatial	 scales	were	 estimated	 based	 on	
the β diversity of the microbial community with geographic distance 
(local	 scale	 (1–100 m),	mesoscale	 (0.5–50 km),	 regional	 scale	 (100–
3500 km),	 and	 overall	 scale	 (1m–3500 km)).	 The	 turnover	 rates	 (v)	
were represented as the slope of the linear least squares regression 
of	the	relationship,	which	was	calculated	as	follows:

To	assess	the	statistical	significance	of	turnover	rates	among	the	
four	 spatial	 scales,	 a	matrix	permutation	 test	was	 conducted	with	
999	permutations	(McArdle	&	Anderson,	2001).

A	random	forest	(RF)	classification	analysis	was	conducted	to	es-
timate the important predictors of both bacterial and fungal diversity 
among	the	variables	soil	pH,	DOC,	NO3

−–N,	NH4
+–N,	TN,	TP,	MAT,	

and	MAP	by	determining	how	much	 the	mean	square	error	 (MSE)	
increased when the data for a given predictor were permuted ran-
domly	while	other	predictors	remained	unchanged.	Simultaneously,	
both bacterial and fungal α	diversity	(Shannon	index)	and	β diversity 
were used to estimate the effect of microbial diversity on carbon 
mineralization.	The	randomForest	R	package	(Liaw	&	Wiener,	2002)	
was	used	 to	conduct	 these	analyses,	 and	 the	 rfUtilities	and	 rfPer-
mute packages were used to assess the significance of the model 
and	 each	 predictor,	 respectively.	 Multiple	 comparisons	 (least	 sig-
nificant	difference,	LSD)	were	used	 to	calculate	differences	 in	 the	
various	 indicators	 at	 different	 scales,	 such	 as	 microbial	 diversity	
(richness	and	Shannon	index),	soil	physico-	chemical	properties,	car-
bon	mineralization,	topological	network	parameters,	and	functional	
gene	abundance.	All	data	passed	the	normality	test	before	the	oper-
ation.	The	potential	contribution	of	carbon	functional	genes	to	soil	
carbon mineralization at the four spatial scales was compared using 
RF	analysis,	and	heatmaps	were	used	to	characterize	the	abundance	
of carbon degradation functional genes at the four scales. Heatmaps 
use colour changes to reflect data information in a two- dimensional 
matrix	or	table.

Based	on	the	expected	relationships	among	microbial	community	
indexes	 and	 carbon	mineralization,	we	developed	 the	partial	 least	
squares	path	model	(PLS-	PM)	(Dolce	et	al.,	2018)	linking	α-	diversity,	
β-	diversity,	carbon	functional	gene,	and	carbon	mineralization.	The	
nonparametric	 bootstrapping	 (1000	 resamples	 in	 this	 study)	 was	
used	to	estimate	the	precision	of	the	PLS	parameter	estimates.	The	
95%	bootstrap	confidence	interval	was	used	to	 judge	whether	the	
estimated	path	coefficients	were	significant.	The	path	coefficients	

represent the direction and strength of the direct effects between 
the	two	variables.	In	addition,	we	calculated	the	standardized	total	
effect of each potential variable. PLS- PM was performed using the 
package	“plspm”	in	r3.2.5	(Tenenhaus	et	al.,	2005).	The	adjust	p val-
ues	of	multiple	comparisons	were	calculated	based	on	Benjamini–
Hochberg	multiple-	testing	correction	by	false	discovery	rate	(FDR).	
The	 model's	 reliability	 was	 evaluated	 using	 the	 Goodness	 of	 Fit	
(GoF)	statistic.

Co-	occurrence	networks	were	constructed	to	identify	the	spe-
cialists	 and	generalists	of	 bacterial	 or	 fungal	 taxa	 that	dominantly	
contributed to carbon mineralization at different spatial scales by 
combining	related	functional	genes	and	using	RF	analysis	to	deter-
mine	the	degree	of	linkage.	The	four	spatial	scales	were	defined	as	
follows:	 local	scale	(1–100 m)	 included	39	sampling	network	points	
(13 sites ×3	 parallel	 points);	 mesoscale	 (0.5–50 km)	 included	 13	
networks	 (13	 sites);	 regional	 scale	 (100–3500 km)	 was	 included	 3	
networks	 (three	parallel),	 and	overall	 scale	 (1 m–3500 km)	was	de-
fined	 as	 1	 total	 network.	 Subsequently,	 the	 subnetworks	 at	 each	
local,	meso,	and	regional	scale	were	individually	integrated,	and	the	
interrelationships among the co- occurrence networks across these 
four	 scales	 were	 depicted	 alongside	 the	 overall	 scale.	 Topology-	
based analysis of large networks was employed to understand the 
co-	occurrence	patterns	in	the	microbial	communities.	Intrakingdom	
interaction networks for soil bacteria and fungi were constructed 
by	using	the	Cytoscape	software	plugin	(v	3.7.1,	Co-	occurrence	net-
work	inference	(CoNet)	(Faust	et	al.,	2012)).	The	OTUs	of	429	sam-
ples were categorized into 4 groups based on the spatial scales as 
well	as	OTU	annotation	files,	which	were	then	uploaded	and	filtered	
by	a	minimum	1/3	threshold	across	the	total	OTUs.	Subsequently,	
the	Pearson,	Spearman,	Bray–Curtis,	and	Kullback–Leibler	correla-
tion	methods	were	used	to	evaluate	pairwise	associations	by	CoNet	
(Faust	et	al.,	2012;	Matchado	et	al.,	2021).	The	initial	thresholds	for	
all four measures were selected to retrieve 1000 positive and 1000 
negative	 edges.	 For	 each	 measure	 and	 edge,	 1000	 renormalized	
permutations and 1000 bootstrap scores were generated to alle-
viate	 compositionality	 bias.	 A	 measure-	specific	 p value was com-
puted	 first	 and	 then	merged	with	Brown's	method	 (Brown,	1975).	
Edges with merged p values less than .05 were retained after mul-
tiple	testing	using	the	Benjamini–Hochberg	procedure	(Benjamini	&	
Hochberg,	1995).	The	co-	occurrence	networks	were	visualized	with	
the	interactive	Gephi	platform	(0.9.2).	The	Euclidean	distance	of	the	
network parameters was calculated to compare differences at the 
four spatial scales.

The	weighted	beta	nearest	taxon	index	(βNTI)	and	Bray–Curtis-	
based	Raup-	Crick	(RCbray)	values	were	calculated	via	a	null	model	
methodology to differentiate the ecological processes that regulate 
community	assembly	(Stegen	et	al.,	2015).	Specifically,	deterministic	
processes include heterogeneous selection (βNTI	>2)	and	homoge-
neous selection (βNTI	<	 −2);	 stochastic	 processes	 include	 homo-
geneous dispersal (|βNTI| < 2,	 RCbray	<	 −0.95),	 the	 dispersal	 limit	
(|βNTI| < 2,	 RCbray	>0.95),	 and	 undominated	 processes	 (|βNTI| < 2	
and	 |RCbray| < 0.95).	These	analyses	were	performed	with	 the	 ‘pi-
cante’	and	‘vegan’	packages	in	R.

(1)v =
ln(1 − β diversity)

ln(Geographic distance)

 1365294x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17235 by U
niversity O

f O
klahom

a, W
iley O

nline L
ibrary on [30/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.r-project.org/


6 of 16  |     MA et al.

3  |  RESULTS

3.1  |  Soil carbon mineralization and the distribution 
of the bacterial and fungal community structure and 
carbon degradation functional genes

Soil	carbon	mineralization	was	determined	for	all	429	samples	across	
paddy	 fields	 in	China	 (Figure 1a).	 These	 different	 patterns	 of	 car-
bon	 mineralization	 are	 closely	 related	 to	 complex	 environmental	
characteristics	 such	 as	 geographical	 patterns,	 climatic	 conditions,	
agricultural	practices,	soil	types,	and	microbial	activities.	For	exam-
ple,	at	the	northeastern	sampling	sites	(HL,	CC,	and	SY),	the	extent	
of	 soil	 carbon	 mineralization	 was	 16.31 ± 2.71,	 42.77 ± 27.35,	 and	
23.92 ± 17.53 mg/(kg d),	respectively;	on	the	North	China	Plain	 (YY	
and	FQ),	the	values	increased	to	58.66 ± 24.31	and	45.29 ± 8.81 mg/
(kg d),	 respectively;	 in	 the	 Yangtze	 River's	 middle	 and	 lower	
reaches	(HY,	ZX,	QZ,	and	LA),	a	fluctuating	tendency	was	observed	
(40.57 ± 23.82,	 16.27 ± 8.57,	 57.76 ± 17.49,	 and	 29.39 ± 17.04 mg/
(kg d),	 respectively);	 and	 in	 the	 South	 China	 region	 (CT,	 JO,	 HK,	
and	QX),	 the	values	progressively	 increased	 from	38.07 ± 20.61	 to	
40.57 ± 23.82,	 41.84 ± 16.45,	 and	 52.14 ± 24.18 mg/(kg d).	 Taking	
soil	attributes	as	an	example,	soil	pH	ranged	from	3.56	to	8.65,	and	
DOC	 ranged	 from	 57.15 mg/kg	 to	 509.83 mg/kg.	 The	 variation	 in	
the soil geochemical variables representing soil heterogeneity in-
creased	with	spatial	distance,	i.e.,	local < meso < regional	(Figure S1).	
Pearson's correlation was used to analyse the relationships between 
C	 mineralization	 and	 the	 soil	 properties	 and	 microbial	 biomass	
(Figure 1b,	 Table S2).	 C	mineralization	was	 significantly	 positively	
correlated	with	soil	pH	and	DOC	among	all	of	the	geochemical	at-
tributes measured (p < .05)	and	highly	correlated	with	bacterial	bio-
mass (p = .001)	and	fungal	biomass	(p = .033)	at	the	latitudinal	scale.

The	total	numbers	of	bacterial	and	fungal	reads	were	24,291,099	
and	12,461,277,	respectively,	across	all	429	samples.	To	minimize	the	
impact	of	 read	count	variation	 from	different	samples,	all	 samples	
were	resampled	to	20,000	and	10,000	reads	per	sample	for	bacte-
ria	and	fungi,	respectively.	A	total	of	70,145	operational	taxonomic	
units	(OTUs,	97%	similarity	cut-	off)	of	the	bacterial	community	and	
49,165	OTUs	(97%	similarity)	of	the	fungal	community	were	identi-
fied.	The	soil	microbial	community	diversity	exhibited	heterogene-
ity at the four spatial scales (Figure S2).	For	example,	Proteobacteria 
was	the	dominant	bacterial	phylum	(30.28 ± 4.66%)	at	all	sites,	fol-
lowed by Cyanobacteria	(14.30 ± 10.25%).	Mortierellomycota was the 
dominant	 fungal	 phylum	 (54.67 ± 26.30%)	 at	 all	 sites,	 followed	 by	
Ascomycota	(19.58 ± 11.20%).	The	soil	microbial	community	showed	
significant regional distribution characteristics (Figure 2a,	Table S3).	
The	plots	 indicated	 that	 the	composition	of	both	soil	bacteria	and	
fungi showed significant regional differences associated with the 
climatic zone.

To	better	understand	how	microbial	functional	genes	could	im-
pact	the	decomposition	of	SOC	in	different	climatic	zones,	GeoChip	
5.0 array high- throughput screening with integrated critically func-
tional genes involved in various carbon cycling processes (Figure 2b)	
was	 performed.	 Carbon-	degrading	 functional	 genes	 coding	 both	

labile and resistant carbon degradation were profiled for all paddy 
samples.	 The	 results	 showed	 that	 the	 abundance	 of	 the	 func-
tional genes involved in carbon degradation presented significant 
differences	 between	 bacteria	 (19	 core	 genes)	 and	 fungi	 (19	 core	
genes).	 For	 example,	 the	 functional	 genes	 in	 the	 bacterial	 groups	
were attributed more to proteins that encode starch- degrading 
genes,	 including	 apu	 (8.77 ± 0.36,	 relative	 gene	 abundance),	 cda 
(568.04 ± 1.17),	nplT	(500.24 ± 3.90),	and	pula	(764.29 ± 1.45),	while	
those in the fungal groups were more associated with the degrada-
tion	of	 recalcitrant	carbon	compounds,	 such	as	cellulose,	hemicel-
lulose,	chitin,	and	lignin,	including	exoglucanase	(554.59 ± 1.11),	xyla 
(1.52 ± 0.22),	 deacetylase	 (737.79 ± 1.19),	 ligninase	 (1074.98 ± 2.00),	
and mnp	 (2210.32 ± 3.61).	 In	 addition,	 we	 used	 Pearson's	 correla-
tion to analyse the relationship between bacterial and fungal di-
versity and their respective carbon functional genes (Figure S3).	
The	β diversity of bacteria showed a significant positive correlation 
with	carbon	decomposition	genes	(14/19),	while	there	were	no	sig-
nificant differences between α	diversity	and	functional	genes.	For	
fungi,	 most	 of	 the	 carbon	 decomposition	 functional	 genes	 were	
positively correlated with β	diversity	(11/19),	and	only	a	few	genes	
were negatively correlated with α diversity (Shannon and richness 
index)	(2/19).	The	findings	suggest	that	both	bacteria	and	fungi	ex-
hibit a significant positive correlation with the abundance of carbon 
functional	genes	(C-	functional	genes)	at	the	spatial	scale	rather	than	
within	individual	sampling	sites.	Furthermore,	most	of	the	functional	
genes related to carbon decomposition showed significant differ-
ences	in	the	four	climate	zones,	such	as	amyA,	glucoamylase,	ara,	and	
glx,	 and	 the	 responses	 of	 bacteria	 and	 fungi	were	 not	 completely	
consistent.	The	results	indicated	a	series	of	specific	traits	and	func-
tions of the microbial community that might be responsible for the 
different routes to carbon metabolism.

3.2  |  Spatial turnovers of the soil microbial 
community structure and functional genes from local 
to regional scales

The	 distance	 decay	 relationship	 (DDR)	 of	 the	 soil	 microbial	 com-
munities	was	examined	at	four	spatial	scales	(local:	1–100 m,	meso:	
1–50 km,	 regional:	100–3500 km,	 and	overall:	 1 m-	3500 km).	A	 sig-
nificant linear regression between the ln- transformed community 
similarities and geographic distance was observed for the bacterial 
and fungal communities (p < .01,	 Figure 3a,b).	 The	 spatial	 turno-
ver	 rate	 of	 the	 fungal	 community	was	2–4	 times	higher	 than	 that	
of the bacterial community at all spatial scales. Different microbial 
taxonomic	spatial	turnovers	were	further	calculated	at	the	phylum	
level (Figure S4,	 Table S4).	 The	 spatial	 scale	 dependence	 of	 DDR	
turnover in different phyla was consistent with that of the whole 
community.	The	spatial	turnover	rate	was	calculated	using	the	slope	
of	 the	 DDR	 linear	 least	 square	 regression,	 revealing	 a	 hierarchi-
cal	pattern	of	community	heterogeneity,	with	bacterial	and	 fungal	
communities	exhibiting	higher	heterogeneity	at	larger	spatial	scales	
(regional > overall > meso > local).
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    |  7 of 16MA et al.

Then,	 we	 analysed	 the	 microbial	 functional	 heterogeneity	 at	
the level of functional genes related to carbon decomposition 
(Figure 3c,d).	Variations	in	microbial	functional	genes,	such	as	amyA,	
acetylglucosaminidase,	 and	 exoglucanase,	 increased	with	 geograph-
ical	 distance.	 In	 contrast	 to	 the	 community	 structure	 pattern,	 the	
highest functional heterogeneity occurred at the regional scale for 
bacteria	and	at	the	mesoscale	for	fungi.	These	results	indicate	that	
the functional genes involved in carbon decomposition change with 
increasing	spatial	distance.	Random	forest	analysis	was	used	to	ex-
amine the contributions of environmental factors to bacterial and 
fungal α and β	diversities.	The	main	drivers	of	microbial	α diversity 
varied at the four spatial scales (Figure S5a).	 Soil	NH4

−–N	 (13.4%)	
and	TP	(43.5%)	were	the	main	influential	factors	for	bacteria	at	the	
local	and	meso	scales,	respectively.	Soil	NO3

−–N	(24.8%)	contributed	
most	 to	 fungal	diversity	at	 the	meso	scale,	 and	no	 significant	 fac-
tors	were	found	at	the	local	scale.	The	influence	of	climatic	factors	

increased	with	spatial	scale,	with	MAP	and	MAT	contributing	most	
to the variations in bacterial and fungal α diversities at the regional 
and	overall	scales.	In	contrast,	soil	pH	was	the	most	important	driver	
of bacterial β diversity at the four spatial scales (Figure S5b).	 The	
influence	of	MAP	and	MAT	increased	and	contributed	most	to	fungal	
β diversity at the regional and overall scales.

3.3  |  Linkage of soil microbial structural and 
functional traits to soil carbon mineralization

Considering	 that	 the	 contribution	 of	 biodiversity	 and	 functional	
genes to carbon mineralization is influenced by both organismal 
characteristics	 and	 environmental	 factors,	 including	 climate	 vari-
ables	 (MAT	and	MAP),	 as	well	 as	environmental	parameters	 (DOC	
and	pH),	we	incorporated	these	factors	into	our	model,	along	with	

F I G U R E  2 Structure	of	bacterial	and	fungal	communities	and	the	abundances	of	functional	genes	involved	in	carbon	mineralization.	(a)	
Nonmetric	multidimensional	scaling	(NMDS)	of	bacterial	(above)	and	fungal	(below)	communities	based	on	Bray–Curtis	distances.	Colours	
from	dark	blue	(HL)	to	red	(HK)	represent	samples	across	northern	to	southern	China	from	47.579° N	to	19.758° N.	(b)	Columns	represent	the	
average	abundance	of	functional	genes	involved	in	the	decomposition	of	starch,	hemicellulose,	cellulose,	chitin,	and	lignin	in	bacteria	(above)	
and	fungi	(below)	at	middle	temperate	(blue),	warm	temperate	(yellow),	subtropical	(orange),	and	tropical	(red)	temperatures.	Error	bars	
represent the standard deviation. Significant differences (p < .05)	in	gene	abundance	in	each	climatic	zone-	paired	group	based	on	one-	way	
ANOVA	(multiple	comparisons,	Fisher's	LSD	test)	are	shown	above	the	error	bars.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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α/β diversity and carbon decomposition gene data. Bacterial diver-
sity (both α and β	diversity)	had	a	greater	impact	on	carbon	miner-
alization at the four spatial scales than fungal diversity (Figure 4a,b).	
Bacterial and fungal α and β diversity contributed most at the meso 
scale.	The	significant	gene	groups	that	contributed	to	carbon	min-
eralization were amyA,	glucoamylase,	and	chitinase for the bacterial 
community and ara,	cellobiase,	chitin_deacetylase,	ligninase,	and	mnp 
for the fungal community (Figure 4c,d).	This	result	also	indicates	that	
bacterial	functional	genes	mostly	affected	the	labile	carbon	fraction,	
while fungal groups mainly affected the recalcitrant carbon fraction. 
We	then	constructed	a	structural	equation	model	 (SEM)	using	the	
partial	 least	squares	path	analysis	method	(PLS-	PM)	with	biodiver-
sity (both α and β	diversity),	functional	genes,	and	heterotopic	respi-
ration	(equal	to	carbon	mineralization)	(Figure S6).	Through	analysis	
of	the	SEM,	the	bacterial	carbon	functional	genes	at	different	scales	

had	a	correlation	of	0.96	to	0.97	(p < .001).	The	correlation	between	
fungal carbon functional genes and carbon mineralization at the 
meso	 scale	was	−0.02	 (p < .001).	However,	 the	 effects	 of	 changes	
in	spatial	scale	on	species	diversity	were	more	pronounced.	At	the	
meso	scale,	the	β diversity of bacteria and fungi contributed equal to 
0.25	to	carbon	mineralization.	As	the	scale	increased,	the	contribu-
tion of β	diversity	decreased	to	less	than	0.001.	These	findings	sug-
gest that the influence of spatial scaling on the microbial community 
is	characterized	by	asynchronous	variations	in	their	functional	traits,	
and the spatial scale effect has more influence on the composition of 
the	microbial	community	than	on	its	functional	characteristics.	Co-	
occurrence networks were constructed to link soil carbon minerali-
zation and soil structural and functional traits together at different 
spatial scales (Figure 5,	Table 1; Figure S7,	Table S5).	The	dominance	
of	bacterial	taxa	in	the	comprehensive	functional	network	increased	

F I G U R E  3 Distance	decay	patterns	indicating	the	community	structural	and	carbon	functional	traits	of	soil	bacteria	and	fungi	at	the	four	
spatial	scales.	(a)	Scatter	plot	representing	the	distance	decay	relationships	(DDRs)	of	soil	bacterial	communities	based	on	the	Bray–Curtis	
distance	at	different	spatial	scales.	The	slope	of	the	oblique	line	(v)	represents	the	microbial	spatial	turnover	rate	(Formula	1).	Local:	1–100 m;	
meso:	1–50 km;	regional:	100–3500 km;	and	overall:	1 m–3500 km.	(b)	The	DDRs	of	soil	fungi	at	different	spatial	scales.	(c)	Heatmap	of	the	
variability	of	the	carbon	functional	genes	of	bacteria	at	different	spatial	scales.	(d)	Variability	of	the	carbon	functional	genes	of	fungi	at	
different	spatial	scales.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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proportionally	with	the	spatial	scale	(from	63.20%	to	83.67%).	This	
observation aligns with the outcomes obtained from random forest 
analysis,	indicating	that	bacteria	make	a	greater	contribution	to	car-
bon	mineralization	than	fungi.	Moreover,	the	network	demonstrated	
the	highest	number	of	 nodes	 (338)	 and	edges	 (6277)	 at	 the	meso	
scale,	accompanied	by	a	corresponding	network	heterogeneity	value	
of	0.924.	However,	there	was	a	significant	decline	in	the	total	num-
ber	of	nodes	entering	the	network	as	the	spatial	scale	increased.	The	
evident outcome is that no carbon decomposition functional genes 
were	successfully	integrated	at	both	regional	and	overall	scales.	The	
top	10	OTUs	were	selected	based	on	a	weighted	ranking	in	the	local,	
meso,	and	regional	scale	subnetworks	(Table S5).	There	was	a	signifi-
cant increase in the abundance of generalist microorganisms as the 
spatial	scale	expanded.	Notably,	both	bacteria	and	fungi	within	the	
top	10	taxa	were	generalist	species	at	the	regional	scale.	This	finding	

suggests	 that	 as	 the	 spatial	 scale	 increases,	microbial	 interactions	
become more frequent and generalists can enhance their carbon 
decomposition	 capacity	 through	 functional	 complementarity.	 This	
finding also highlights the predominant influence of spatial scale on 
microbial	 community	 composition,	 surpassing	 its	 impact	 on	 func-
tional genes associated with carbon decomposition.

4  |  DISCUSSION

The	 strength	 of	 the	 relationship	 linking	 changes	 in	 biodiver-
sity to changes in functional traits depends on scale (Bengtsson 
et	al.,	2002).	In	the	present	study,	the	spatial	turnover	rates	of	soil	
bacteria	and	fungi	(at	the	phylum	level)	were	approximately	consist-
ent with the spatial scaling effects in terms of the whole community 

F I G U R E  4 Contribution	of	both	biodiversity	and	functional	gene	diversity	to	carbon	mineralization	processes.	Contribution	of	(a)	α 
diversity	and	(b)	β	diversity	to	carbon	mineralization	at	four	spatial	scales.	The	average	predictive	values	of	bacterial	and	fungal	diversity	for	
carbon	mineralization	(%	of	increasing	mean	squared	error	(MSE))	were	calculated	by	random	forest	(RF)	analysis.	Contributions	of	functional	
genes	in	(c)	bacteria	and	(d)	fungi	to	carbon	mineralization	are	represented	by	the	average	predictive	values.	The	significance	levels	of	the	
predictors are as follows: *p < .05;	**p < 0.01.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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(Figure 3a,b; Figure S3).	However,	functional	gene	variances	related	
to carbon decomposition between bacteria and fungi were less de-
pendent	on	spatial	 turnover,	and	 the	most	significant	contribution	
of carbon functional genes by bacteria and fungi occurred at the 
meso scale (Figure S6).	The	correlation	between	bacterial	α diversity 
and	carbon	functional	genes	exhibited	a	significant	increase	as	the	
scale	 increased.	 The	 fungal	 diversity	 (α and β)	 remained	 the	most	
prominent	correlation	at	the	meso	scale.	These	findings	indicate	that	

spatial scaling effects on the microbial community are asynchronous 
variations	among	their	functional	traits,	and	the	spatial	scale	effect	
has more influence on the composition of the bacteria community 
than on its functional characteristics.

To	explain	the	asynchronous	variation	between	biodiversity	and	
carbon	mineralization	 functional	 traits,	 we	 propose	 two	 theories.	
The	 first	 is	 that	 probabilistic	 dispersal	 influences	 local	 dynamics.	
Thompson	et	al.	(2017)	showed	that	moderate	dispersal	can	permit	

F I G U R E  5 Co-	occurrence	network	analyses	for	carbon	mineralization	in	the	four	spatial	scales.	The	network	pathway	shows	the	
fundamental linkages between functional bacterial and fungal communities and related genes associated with carbon mineralization. Each 
node	(red	or	blue	spot)	in	the	four	spatial	scales	represents	an	operational	taxonomic	unit	(OTU,	at	the	genus	level)	of	bacteria	or	fungi	that	
contributes	to	carbon	mineralization	(Cm),	and	each	edge	represents	a	positive	or	negative	interaction.	The	size	of	each	node	represents	
the	magnitude	referred	to	as	Cm,	and	the	gradient	colour	of	each	edge	represents	the	weight	of	significant	regulation.	The	bold	italic	words	
indicate	the	top	10	OTUs	(bacteria	or	fungi)	contributing	to	Cm	based	on	the	weight	scale.	Genus*	represents	the	generalist	taxon	detected	
with	a	probability	exceeding	50%	among	each	subnetwork.	The	italicized	words	represent	critical	genes	of	bacteria	(purple	dots)	and	fungi	
(green	dots)	that	regulate	Cm	processes.	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]
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species to efficiently track spatial changes in the optimal environ-
ment	and	increase	their	functions.	A	previous	study	demonstrated	
that the probability of the dispersion of microorganisms decreased 
when	the	individuals	were	larger	than	20 μm in diameter (Wilkinson 
et	al.,	2012),	while	microbes	smaller	than	approximately	1 μm in di-
ameter	were	not	subject	to	dispersion	(Finlay,	2002).	The	null	model	
indicated	 that	 homogeneous	 dispersal	 (66.43%	 and	 69.23%)	 and	
heterogeneous	selection	(32.40%	and	30.77%)	dominated	the	bac-
terial community composition at the local and meso scales. More 
undominated	 processes	 (57.69%)	 affected	 the	 bacterial	 commu-
nity	 composition	at	 the	 regional	 scale.	This	 resulted	 in	 a	decrease	
in	 homogeneous	 dispersal	 (17.95%)	 and	 heterogeneous	 selection	
composition	 (20.51%)	 (Figure S8).	 Bacteria	 are	 more	 susceptible	
to dispersal limitation than fungi due to their smaller size (size- 
hypothesis),	 resulting	 in	 the	 higher	 average	 functional	 abundance	
occurring in bacteria than in fungi at multiple scales. Movement 
from patch to patch by mobile consumers can stabilize the function 
(Loreau	et	al.,	2003).	The	second	hypothesis	is	that	soil	heterogene-
ity increases the range of environmental conditions (environmental 
filtering).	Heterogeneity	 is	a	fundamental	property	of	soil	 that	un-
derpins the emergence and maintenance of soil microbial diversity 
(Jansson	&	Hofmockel,	2020;	Nunan	et	al.,	2020).	Moreover,	hetero-
geneous soil also leads to the chemical heterogeneity of soil organic 
matter,	which	 is	 the	 case	 for	high-	yield	 cropland	at	 the	 landscape	
scale	(Shi	et	al.,	2018).	Environmental	filtering	imposed	by	variable	
abiotic factors results in scenarios with high or low community turn-
over,	depending	on	the	consistency	of	these	factors.	In	the	present	
study,	the	influence	of	environmental	factors	(DOM	and	pH)	on	the	
α- diversity of bacteria was greater than that of fungi at all spatial 
scales (Figure S5).	DOM	affects	 fundamental	biogeochemical	pro-
cesses	in	the	soil,	such	as	nutrient	cycling	and	organic	matter	storage	
(Roth	et	al.,	2019).	Soil	microbiomes	have	a	strong	impact	on	DOM	
composition	(Li	et	al.,	2018),	and	bacteria	have	a	greater	effect	on	
DOM	composition	than	fungi	 (Roth	et	al.,	2019).	We	hypothesized	
that	 some	 fungi,	 such	 as	 ectomycorrhizal	 fungi,	 preferentially	 de-
grade	large	rice-	derived	polymers	(such	as	lignin)	and	partially	miner-
alize and transform them into a diverse suite of small molecules that 
are subsequently consumed by bacteria during microbial processing. 
This	process	requires	higher	turnover	for	fungi	than	for	bacteria,	re-
sulting	in	an	increase	in	bacterial	diversity	(Liang	et	al.,	2017).

Soil pH is another key factor influencing bacterial and fun-
gal	 communities	 (Chu	 et	 al.,	 2010;	 Fierer	 &	 Jackson,	 2006; Liu 
et	al.,	2014).	In	contrast	to	that	of	bacteria,	the	spatial	distribution	of	
soil	fungi	was	associated	with	the	soil	pH,	possibly	because	fungi	are	
adapted	to	wider	pH	ranges	than	bacteria	(Lauber	et	al.,	2008; Rousk 
et	al.,	2010).	Therefore,	bacteria	are	more	sensitive	to	environmental	
filtering	 (with	 low	 community	 turnover)	 than	 fungi	 at	 local	 spatial	
scales.	In	contrast,	a	recent	study	revealed	that	the	spatial	turnover	
of bacterial communities was greater than that of fungal commu-
nities	 in	 boreal	 forest	 soils	 (Ma	 et	 al.,	 2017).	 The	 relative	 impor-
tance of underlying factors (environmental variables or geographic 
distance)	 contributing	 to	 distance	 decay	 relationships	 (DDRs)	 also	
differs	 across	 different	 habitats,	 such	 as	 alpine	 grassland,	 desert,	TA
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desert	 grassland,	 typical	 grassland,	 and	 an	 entire	 transect	 (Wang	
et	al.,	2017).	Natural	ecosystems	such	as	forests	and	bamboo	forests	
are	 less	disturbed	by	humans.	Thus,	 soil	 fungal	communities	pres-
ent	more	plant	specificity	than	soil	bacterial	communities	(Urbanova	
et	al.,	2015),	especially	rhizospheric	fungi	(Mummey	&	Rillig,	2006).	
Paddy	fields	are	typical	human-	managed	ecosystems,	and	bacterial	
dispersal limitation may be lower due to modern farming activities 
(Gao	et	al.,	2019).

Consistent	with	their	functional	traits,	bacteria	contribute	more	
than fungi during the process of carbon mineralization at multiple 
spatial	scales.	Irrespective	of	the	community	α or β	diversity,	the	ran-
dom forest results showed that the involvement of bacteria in carbon 
metabolism was significantly greater than that of fungi (Figure 4a,b).	
The	 coexistence	patterns	between	bacteria	 and	 fungi,	 induced	by	
spatial	scaling	effects,	serve	as	reliable	indicators	for	bioassessment	
at	the	meso	scale	(Loreau,	2000).

Due to the potential dependence of microbial diversity on habi-
tat	type	at	different	spatial	scales	(Lozupone	&	Knight,	2007; Zinger 
et	al.,	2014),	microorganisms	often	exhibit	characteristic	specializa-
tion towards a localized resource patch or generalization towards 
a	 broader	 range	 of	 compounds	 (Allison	 et	 al.,	 2014).	 We	 further	
analysed the potential of bacteria and fungi to metabolize differ-
ent	carbon	sources,	 ranging	from	 labile	to	recalcitrant	carbon.	We	
found that the bacterial community contributed more to labile car-
bon decomposition (amyA and glucoamylase),	while	fungi	were	more	
involved in recalcitrant carbon degradation (ara,	 cellobiase,	 chitin_
deacetylase,	 ligninase,	and	mnp)	 (Figure 4c,d).	Even	for	the	metabo-
lism	of	recalcitrant	carbon,	bacteria	contributed	1.2	times	as	much	as	
fungi	to	the	related	functional	genes.	This	finding	is	consistent	with	
previous studies showing that bacteria are the main decomposers 
of	simple	carbohydrates,	organic	acids,	and	amino	acids,	while	fungi	
are more important for the decomposition of refractory soil carbon 
(Fontaine	et	al.,	2011;	Myers	et	al.,	2001).	The	greater	phylogenetic	
diversity and breadth of the metabolic capacities of bacteria appear 
to have a stronger effect on the decomposition of carbon compared 
with	that	of	fungi	(Glassman	et	al.,	2018).

Bacteria and fungi have distinct substrate preferences and met-
abolic	differences,	and	the	co-	occurrence	of	distinct	roles	of	fungi	
or bacteria is central to understanding soil carbon mineralization 
(Rousk	&	Frey,	2015).	 In	 the	present	 study,	bacteria	 and	 fungi	 ex-
hibited a variety of potential microbial interactions in paddy fields in 
China.	The	proportions	of	highly	abundant	bacteria	and	fungi	related	
to carbon metabolism at the four spatial scales were as follows: local 
(bacteria = 63.20%	vs.	 fungi = 36.00%),	meso	 (bacteria = 74.85%	vs.	
fungi = 24.85%),	regional	(bacteria = 81.97%	vs.	fungi = 16.39%),	and	
overall	(bacteria = 83.67%	vs.	fungi = 14.29%)	(Figure 5 and Table 1).	
Bacteria were more strongly associated with carbon mineralization 
than	 fungi	 in	 the	co-	occurrence	network,	which	 is	consistent	with	
the strength of their functional traits at multiple scales being higher 
than that of fungi.

Bacteria and fungi share the same habitats and are therefore al-
most certain to frequently interact with each other in soil (Zhang 
et	al.,	2014).	Therefore,	based	on	coexistence	theory,	larger	scales	of	

space	encompass	a	greater	range	of	environments,	which	increases	
species'	opportunities	for	niche	partitioning	(Hart	et	al.,	2017)	and	
promotes	 spatial	 niche	 complementarity	 (Williams	 et	 al.,	 2017).	
We speculate that positive or negative co- occurrences may repre-
sent potential interactions in which individual interacting partners 
complement or compete during carbon processes at these spatial 
scales	(de	Menezes	et	al.,	2017).	The	importance	of	competition	as	
the	major	 structural	 force	 could	 emerge;	meanwhile,	 the	 commu-
nity	might	be	made	up	of	several	specialists,	with	each	consuming	
a	limited	range	of	substrates,	thus	reducing	the	competition	among	
each member of the community and increasing complementar-
ity	 (Hooper	et	al.,	2005).	When	 the	 top	10	bacteria	or	 fungi	were	
sorted	by	weight,	there	was	a	discernible	decline	 in	specialist	taxa	
as the spatial scale increased. Gravel et al. (2011)	 found	 that	gen-
eralist assemblages were more productive across a range of carbon 
substrates	because	of	their	superior	ability	to	exploit	 the	 imposed	
heterogeneity	 in	the	resource	environment,	while	the	slope	of	the	
biodiversity-	ecosystem	functioning	(BEF)	relationship	was	stronger	
for the assemblages of specialists because of the enhanced niche 
complementarity.	The	fact	that	the	community	of	bacteria	and	fungi	
can underpin carbon metabolism via complementarity within and 
among soil niches means that spatial scale effects can generate a 
positive effect on carbon mineralization.

Soil	 organic	 carbon	 (SOC)	 is	 a	 nonrenewable	 resource	 that	 is	
currently being depleted at a faster rate than it is being formed 
(Lal,	2003).	 Any	 changes	 in	 either	 soil	 conditions	 or	management	
practices will alter the geochemical or environmental chemical pro-
cesses that subsequently impact the cycling of carbon and nitrogen in 
agroecosystems,	which	finally	leads	to	the	production	of	greenhouse	
gases	(i.e.,	CH4,	N2O,	and	CO2)	(Li	et	al.,	2004;	Sass	et	al.,	2002).	With	
increases in crop- specific yields (240% increase in global dry bio-
mass	production)	(Gray	et	al.,	2014)	facilitated	by	the	development	
and adoption of improved cultivars and management accompanied 
by	technological	advances	in	the	past	50 years,	atmospheric	CO2 has 
increased	by	as	much	as	50%	in	the	Northern	Hemisphere	(Graven	
et	 al.,	2013;	Keeling	et	 al.,	 1996).	 Increasing	evidence	has	pointed	
to	the	role	of	soil	microorganisms,	which	are	 important	engines	of	
decomposition	and	participate	in	terrestrial	carbon	source–sink	dy-
namics	(Glassman	et	al.,	2018;	Jansson	&	Hofmockel,	2020;	Nunan	
et	al.,	2020;	Tang	et	al.,	2018).	 In	 the	present	study,	pH	and	DOC	
were two abiotic factors that were positively correlated with car-
bon mineralization. Both of them participate in the processes of 
carbon conversion mediated by microorganisms via a series of 
redox	 reactions	 to	exchange	or	provide	unbound	electrons	 (Chow	
et	 al.,	2006;	Cook	&	Allan,	 1992;	 Lundquist	 et	 al.,	 1999),	 produce	
new	oxidants	(e.g.,	O2,	NO3

−,	Mn4+,	Fe3+	and	SO4
2−)	(Li	et	al.,	2004),	

and	 consequently	discharge	greenhouse	gases.	However,	 in	 large-	
scale	studies,	we	usually	ignore	the	contribution	of	microorganisms	
to	 greenhouse	 gas	 emissions.	 This	 is	 because	while	 these	 studies	
can	test	the	underlying	mechanisms	at	the	local	scale,	they	cannot	
also	directly	address	theoretical	predictions	at	a	broader	scale	(Isbell	
et	al.,	2018;	Thompson	et	al.,	2018).	Multiple	scale	measures	can	be	
used to predict the spatial patterns of turnover in microbial diversity 
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associated	with	functioning	that	are	inherent	to	observational	data,	
especially	at	large	spatial	scales	(Gonzalez	et	al.,	2020).	Soil	hetero-
geneity and spatial- scale effects have notable asynchronous effects 
on	the	microbial	community	composition	and	functional	traits.	They	
can also drive patterns of synchrony across large spatial scales based 
on	niche	complementarity.	With	larger	datasets,	including	time	se-
ries	across	a	network	of	spatial	 locations	 in	 the	future,	we	can	 in-
crease our confidence in uncontrolled variables that co- vary with 
diversity	 and	 carbon	 mineralization	 functioning,	 and	 characterize	
the scales of synchrony and cross- coherence regarding species fluc-
tuations at different levels.

Our	study	compared	bacterial	and	fungal	biogeographic	patterns	
and	carbon	decomposition	at	four	spatial	scales,	from	the	local	scale	
to	the	continental	scale.	pH	and	DOC	were	two	abiotic	factors	that	
were	 positively	 correlated	 with	 carbon	 mineralization.	 There	 is	 a	
trade- off in microbial traits that determines the proportion of micro-
bial organic carbon invested in biosynthesis. Bacteria had a greater 
capacity for dispersal over different spatial scales than fungi based 
on	the	DDR,	which	represents	a	reasonable	explanation	for	the	re-
lationship between microbial communities and soil organic matter 
metabolism.	The	bacterial	 community	contributed	more	 to	carbon	
mineralization because the catabolic breadth of bacteria was more 
focused	 on	 labile	 carbon	 decomposition,	 while	 fungi	 were	 more	
involved	 in	 recalcitrant	 carbon	 degradation.	 Functional	 traits	 and	
microbial communities were influenced by spatial scaling effects 
and	 showed	 striking	 asynchrony.	 Niche	 complementarity	 can	 ho-
mogenize functional traits and promote the metabolism of carbon 
by	microorganisms.	With	 limited	 soil	 resources,	 the	 community	 is	
made	up	of	several	specialists,	with	each	consuming	a	limited	range	
of	 substrates.	However,	 as	 the	 spatial	 scale	 increases,	 there	 is	 an	
escalating	 interaction	 among	 diverse	 generalist	 groups,	 leading	 to	
an	 accelerated	 carbon	 decomposition	 process.	 Overall,	 our	 study	
provides new insights for predicting the unique functional charac-
teristics	of	the	most	diverse	and	complex	microorganisms	in	spatial	
community ecology.
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