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Abstract
Studying the functional heterogeneity of soil microorganisms at different spatial 
scales and linking it to soil carbon mineralization is crucial for predicting the response 
of soil carbon stability to environmental changes and human disturbance. Here, a total 
of 429 soil samples were collected from typical paddy fields in China, and the bacte-
rial and fungal communities as well as functional genes related to carbon mineraliza-
tion in the soil were analysed using MiSeq sequencing and GeoChip gene microarray 
technology. We postulate that CO2 emissions resulting from bacterial and fungal car-
bon mineralization are contingent upon their respective carbon consumption strate-
gies, which rely on the regulation of interactions between biodiversity and functional 
genes. Our results showed that the spatial turnover of the fungal community was 2–4 
times that of the bacterial community from hundreds of meters to thousands of kilo-
metres. The effect of spatial scale exerted a greater impact on the composition rather 
than the functional characteristics of the microbial community. Furthermore, based 
on the establishment of functional networks at different spatial scales, we observed 
that both bacteria and fungi within the top 10 taxa associated with carbon minerali-
zation exhibited a prevalence of generalist species at the regional scale. This study 
emphasizes the significance of spatial scaling patterns in soil bacterial and fungal car-
bon degradation functions, deepening our understanding of how the relationship be-
tween microbial decomposers and soil heterogeneity impacts carbon mineralization 
and subsequent greenhouse gas emissions.
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1  |  INTRODUC TION

Soil microorganisms are important engines of decomposition and 
participate in terrestrial carbon source–sink dynamics (Glassman 
et al., 2018; Jansson & Hofmockel, 2020; Nunan et al., 2020; Tang 
et al., 2018). Most soil microorganisms are heterotrophic and con-
sume soil organic carbon (SOC) as energy, and this carbon mineral-
ization process can accelerate the emission of CO2 from soil to the 
atmosphere. Soil carbon mineralization is a critical process of the 
carbon cycle and is directly related to soil carbon quality (Chow 
et  al.,  2006; Lal,  2004). The special characteristics of the soil 
microbial community, including structural and functional traits, 
can lead to changes in carbon decomposition (Adair et al., 2008; 
Jackson et al., 2003). Bacteria and fungi are the two main groups 
of decomposing communities and show a variety of strategies af-
fecting soil carbon sequestration and terrestrial carbon stability 
(Falkowski et al., 2008). For example, bacteria are the main decom-
posers of simple carbohydrates, organic acids, and amino acids 
(Myers et al., 2001), whereas fungi are more important than bac-
teria in decomposing refractory soil carbon (Fontaine et al., 2011). 
Refining the study of diverse carbon decomposition strategies em-
ployed by these microorganisms can yield a more comprehensive 
comprehension of how microbial-mediated soil-climate feedback 
operates. However, the potential far-reaching effects of hetero-
geneity on many aspects of microbial functional ecology have not 
been well understood or incorporated into our understanding of 
ecosystem functions in response to climate change at multiple 
spatial scales.

Spatial scales in ecology represent the biogeographic extent 
within which the mutual influences of neighbouring observations 
become effective. Species coexistence, which is fundamentally 
important for ecosystem function, is dependent on the spatial 
scale, and this relationship has been linked to the management 
of community diversity across landscapes (Hart et al., 2017). The 
scale dependence of ecological patterns is often induced by a sam-
pling effect: increasing the scale of observation could increase the 
number of resources present and utilized so that species show 
a monotonic positive relationship with the scale of observation. 
Bruelheide et  al.  (2018) found that the composition and driving 
force of the functional traits of communities differed between 
local areas (1–1000 m2) and large areas (25–12,500 km2), indicating 
that the ecological pattern depends on the spatial scale and exhib-
its a characteristic driving scenario. However, it remains unclear 
whether the spatial scales of different microbial taxa and their 
functional traits are important for maintaining ecosystem biogeo-
chemical cycling. Carbon-degrading microbes in soil are fractal-
like and tend to show self-similarity over some range of scales. The 
relative importance of elucidating differences in community sim-
ilarity across spatial scales and quantifying the impact of differ-
ent community compositions on carbon mineralization processes 
should be linked to ecological functions.

The distance decay relationship (DDR) is a common biogeo-
graphic model in ecology that refers to the decrease in community 

similarity with geographic distance (Green et  al.,  2004; Horner-
Devine et  al.,  2004). The DDR of microbial community composi-
tion has been investigated at regional (Green et al., 2004; Griffiths 
et al., 2011), continental (Lauber et al., 2008), and global (Tedersoo 
et al., 2012) scales. This relationship varies among different micro-
bial taxonomic groups. By examining the DDR of soil diazotrophic 
and bacterial communities from 1 m–700 km, it was found that DDR 
slopes (spatial turnover rate) were steeper for diazotrophs than for 
bacteria (Gao et al., 2019). For the factors affecting the composition 
of microbial communities that cause different DDR patterns, it is 
generally believed that the important roles of selection and disper-
sion as well as drift and diversification have significant effects (Ning 
et al., 2020). Environmental filtering, driven by factors such as pH 
and the SOC and NH4

+ contents, affects the spatial pattern of soil 
microorganisms (Jiao et al., 2019; Liu et al., 2015; Yao et al., 2013). 
Probabilistic dispersal can affect DDR patterns independently 
of niche differences (Wang et  al.,  2017). At present, research on 
soil microorganisms is moving forward from community compo-
sition to functional traits (Fierer & Jackson,  2006; Grundmann & 
Debouzie, 2000; Nunan et al., 2002; Ritz et al., 2004). However, it 
is still unclear how the spatial scale and functional characteristics of 
different microbial groups affect soil carbon stability.

Paddy soils cover 150 million ha globally (GRiSP, 2013), repre-
senting one of the world's most important agricultural ecosystems. 
This wide distribution area can provide an ideal habitat for studying 
microbial functional traits at wide spatial scales. In this study, we 
collected a total of 429 soil samples from paddy fields throughout 
rice cropping regions in China. Soil bacterial and fungal communities 
and carbon-degrading functional genes were analysed by 16S rRNA 
and ITS amplicon sequencing and a high-throughput functional gene 
array GeoChip (Zhou et al., 2015). A spatial sampling design was used 
to realize the balanced distribution of paired distances at different 
spatial scales, i.e., local scale (1–100 m), mesoscale (0.5–50 km), re-
gional scale (100–3500 km), and overall scale (1 m–3500 km). Here, 
we propose that the participation of diverse microorganisms in 
carbon mineralization is contingent upon the carbon consumption 
strategies exhibited by bacteria and fungi at varying spatial scales, 
with these strategies being influenced by the trade-off between 
biodiversity and functional genes. Our study suggested the impor-
tance of spatial scaling patterns of soil bacterial and fungal carbon 
degradation functions, which can deepen the understanding of how 
the relationship between microbial decomposers and soil heteroge-
neity affects carbon mineralization and subsequent greenhouse gas 
emissions.

2  |  MATERIAL S AND METHODS

2.1  |  Sampling and site characteristics

Soil samples were collected across China from typical paddy fields. 
In total, 39 paddy fields in 13 regions (three plots per region) were 
selected to cover a wide spatial extent, from 110°10′ and 126°14′E 
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    |  3 of 16MA et al.

in longitude and 19°32′ and 46°58′N in latitude (Figure  1). The 
mean annual temperature (MAT) in the region ranges from 1.5°C 
to 23.8°C, and the mean annual precipitation (MAP) ranges from 
399 mm to 2216 mm. In brief, 11 soil samples (biological replicates) 
were collected with well-designed pairwise distances for each 
field. Six soil samples were collected along a 75 m long soil tran-
sect, and an additional five samples were collected along a vertical 
75 m long transect. The distance between two adjacent samples 
along both transects was 1, 5, 10, 20, or 40 m. Each soil sample 
was combined with five soil cores taken at a depth ranging from 0 
to 15 cm, and the litter layer was not included in the soil sampling. 
All soil samples were sealed in sterile sampling bags, transported 
to the laboratory on ice, and divided into two subsamples within 
48 h. One subsample was kept at 4°C for measuring the soil prop-
erties (Table S1), and the other was stored at −80°C for molecular 
analysis.

2.2  |  Climatic and soil physicochemical 
properties, soil carbon mineralization, and microbial 
biomass analysis

The climate attributes, including MAT and MAP, were obtained from 
the meteorological observation database of the experimental sta-
tions. The soil pH was determined with a glass electrode at a 2.5:1 
water: soil ratio. A 0.5-M K2SO4 extract was prepared to determine 
the dissolved organic carbon (DOC) content and measured using 
a Multi N/C 2100 analyser (Analytik Jena, Germany). Total nitro-
gen, nitrate (NO3ˉ–N), and ammonium nitrogen (NH4

+–N) contents 
were measured by the Kjeldahl method (Bremner, 1965). Soil total 

P (TP) was digested with HF-HClO4 and then determined using the 
molybdenum-blue method with an atomic absorption spectropho-
tometer (Zeenit 700P, Analytik Jena AG, Germany).

Soil CO2 respiration is regarded as carbon mineralization (Haney 
et al., 2008; Xiao et al., 2018). Soil CO2 respiration was measured 
using the static alkali absorption method (Yim et al., 2002). Twenty 
grams of fresh soil was weighed into a 250 mL plastic bottle, de-
ionized water was added to adjust the level to 60% of the max-
imum field capacity, and an absorption bottle containing NaOH 
absorption solution was placed in a plastic bottle. The CO2 pro-
duced by soil respiration was collected. The bottle was sealed and 
placed in a constant-temperature incubator at 28°C and protected 
from light for continuous culture. The absorption solution was re-
moved at intervals to determine the NaOH content, and the acid–
base titration method was used to determine the NaOH content. 
Phenolphthalein was used as the indicator. The concentrations of 
NaOH in the absorption solutions of the control group (without 
soil and only the absorption solution in the plastic bottle) and the 
experimental group were the amount of CO2 respiration (RH) in the 
soil during this period. The RH values ranged from 0.08 mg/(kg h) 
to 25.20 mg/(kg h).

Phospholipid fatty acid analysis (PLFA) was performed according 
to standard protocols (Bossio & Scow, 1998). The main steps were as 
follows. Fresh soil was extracted with an extract (chloroform:meth-
anol:phosphate buffer volume ratio = 1:2:0.8) and then eluted with 
chloroform, acetone, and methanol. The phospholipids were sepa-
rated and extracted, and then methanol was esterified to form fatty 
acid methyl ester. The contents of various fatty acids were deter-
mined by gas chromatography. The MIDI software system was used 
to analyse the soil microbial biomass and its community structure.

F I G U R E  1 Scenario of carbon mineralization and significant correlations between abiotic and biotic factors in typical paddy fields 
across China. (a) Carbon mineralization and bacterial and fungal biomasses at different latitudes. The column represents the mean values 
of bacterial biomass (mol/g), fungal biomass (mol/g), and carbon mineralization (mg/(kg d)) of 33 parallel soil samples (triplicates with 11 
biological replicates) among 13 sampling sites, and the error bar represents the standard deviation; (b) relationships between carbon 
mineralization and pH, dissolved organic carbon (DOC), bacterial biomass, and fungal biomass based on Pearson correlation analyses. The 
shaded areas show the 95% confidence interval. [Colour figure can be viewed at wileyonlinelibrary.com]
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2.3  |  Soil DNA extraction and MiSeq sequencing

Soil DNA was extracted from 2 g of well-mixed soil for each sam-
ple by combining freeze-grinding and sodium dodecyl sulphate for 
cell lysis as previously described (Zhou et  al.,  1996). The quality 
of the extracted DNA was assessed according to the 260/280 nm 
and 260/230 nm absorbance ratios by a Nanodrop 2000 (Thermo 
Fisher Scientific, Wilmington, DE, USA). All DNA was stored at 
−80°C.

For bacteria, the primers 338F (ACTCC​TAC​GGG​AGG​CAGCA) 
and 806R (GGACT​ACH​VGG​GTW​TCTAAT) were used to amplify 
the V3-V4 region of the 16S rRNA gene (Lee et  al.,  2012). For 
fungi, the primers ITS1-1737F (GGAAG​TAA​AAG​TCG​TAA​CAAGG) 
and ITS2-2043R (GCTGC​GTT​CTT​CAT​CGATGC) were used to 
amplify the ITS1 region of the ribosomal RNA gene (Degnan & 
Ochman, 2012). Both forward and reverse primers were tagged 
with adapter, pad, and linker sequences. A barcode unique to 
the reverse primer was added to permit the multiplexing of sam-
ples (GCCAAT for bacteria and CTTGTA for fungi) (Mazurkiewicz 
et al., 2006). An ABI GeneAmp® 9700 (ABI, Foster City, CA, USA) 
with a 20 μL reaction system containing 4 μL of 5 × FastPfu Buffer, 
0.8 μL of each primer (5 μM), 2 μL of 2.5 mM dNTPs, 10 ng template 
DNA, and 0.4 μL FastPfu Polymerase was used to perform the 
polymerase chain reaction (PCR) amplification. The PCR protocol 
for bacteria consisted of an initial predenaturation step at 95°C 
for 3 min, 28 cycles of 30 s at 94°C, 30 s at 55°C, and 45 s at 72°C, 
and a final 10 min extension at 72°C. The amplification steps for 
the ITS were similar to those of the 16S rRNA genes except for 
the changes in the PCR conditions, in which the initial predenatur-
ation was at 95°C for 3 min, followed by 35 cycles of 30 s at 95°C, 
30 s at 59.3°C, and 45 s at 72°C, and a final 10 min extension at 
72°C. Three PCRs were conducted for each sample. They were 
combined after PCR amplification. The PCR products were sepa-
rated on a 2.0% agarose gel. We excised and purified the band of 
the correct size using an AxyPrep DNA Gel Extraction Kit (Axygen 
Scientific, Union City, CA, USA), and quantification was performed 
with QuantiFluor™-ST (Promega, Madison, WI, USA).

The pooled DNA was diluted to 2 nM, loaded onto the reagent 
cartridge, and run on a MiSeq benchtop sequencer (Illumina Inc., 
San Diego, CA, USA) at the Institute for Environmental Genomics, 
University of Oklahoma, according to the manufacturer's instruc-
tions. The samples were prepared for sequencing using a TruSeq 
DNA kit according to the manufacturer's instructions. The purified 
mixture was diluted, denatured, rediluted, mixed with PhiX (equal 
to 30% of the final DNA amount), and then submitted to an Illumina 
MiSeq system for sequencing with the Reagent Kit v2 2 × 250 bp as 
described in the manufacturer's manual.

After sequencing, raw sequences were selected based on the 
sequence length, quality, primer, and tag using the Trimmomatic 
(version 0.35) and FLASH (version 1.2.11) programs (Bolger 
et al., 2014; Magoc & Salzberg, 2011). Sequencing reads of poor 
quality were removed by Btrim (Kong, 2011). Chimeras were re-
moved by Uchime (Edgar et  al.,  2011). Reads that could not be 

assembled were discarded. Sequences were then subjected to 
chimera detection using the Uchime algorithm (Edgar et al., 2011). 
Operational taxonomic units (OTUs) were classified at the 97% 
similarity level using Usearch (version 7.1), and the taxonomic 
assignment of OTUs was performed by the Ribosomal Database 
Project classifier with a minimal 70% confidence score (Wang 
et  al.,  2007). For the 16S rRNA gene, taxonomic assignment 
was performed using the Silva Release 119 database (Quast 
et al., 2013); for the ITS, the UNITE version 6.0 database was used 
(Koljalg et al., 2013).

2.4  |  GeoChip 5.0 experiments and raw 
data analyses

GeoChip 5.0 was manufactured by Agilent (Agilent Technologies 
Inc., Santa Clara, CA, USA) in the 8 × 60 K format. A total of 600 ng 
of purified soil DNA from each sample was labelled with the fluo-
rescent dye Cy-3 (GE Healthcare, CA, USA) using a random prim-
ing method as described previously (Tu et al., 2014), purified using a 
QIAquick Purification kit (Qiagen, CA, USA) and dried in a SpeedVac 
(Thermo Savant, NY, USA) into a powder. Subsequently, the labelled 
DNA was resuspended in 27.5 μL of DNase/RNase-free distilled 
water and mixed completely with 42 μL of hybridization solution 
containing 1× Acgh blocking, 1× HI-RPM hybridization buffer, 10 pM 
universal standard DNA, 0.05 μg/μL Cot-1 DNA, and 10% formamide 
(final concentrations). Then, the solution was denatured at 95°C for 
3 min, incubated at 37°C for 30 min, and hybridized with GeoChip 
5.0 arrays (60 K). GeoChip hybridization was performed at 67°C in 
an Agilent hybridization oven for 24 h. After hybridization, the slides 
were washed using Agilent Wash Buffers at room temperature. 
Then, the arrays were scanned at 633 nm by a laser power of 100% 
and a photomultiplier tube gain of 75% with a NimbleGen MS200 
Microarray Scanner (Roche NimbleGen, Inc., Madison, WI, USA). 
The image data were extracted by following the Agilent Feature 
Extraction program.

The microarray data were preprocessed by the microarray anal-
ysis pipeline on the IEG website (http://​ieg.​ou.​edu/​micro​array/​​) as 
previously described (Tu et al., 2014). The main steps were as fol-
lows: (i) removing the spots of poor quality, which had a signal-to-
noise ratio of less than 2.0; (ii) calculating the relative abundance 
of each soil sample by dividing the total intensity of the detected 
probes, then multiplying by a constant and taking the natural loga-
rithm; and (iii) removing the detected probes in only two out of eight 
samples from the same sampling sites.

2.5  |  Statistical analysis

Pearson correlation coefficients were calculated using SPSS 20.0 
(SPSS, Inc., Chicago, IL, USA) and used to represent the relationship 
between carbon mineralization and the physicochemical properties 
or microbial biomass. Changes in environmental heterogeneity with 
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distance at four scales were estimated based on the soil physico-
chemical properties and climatic factors (MAT and MAP) using the 
Bray–Curtis index. Richness and Shannon indexes based on OTUs 
for both bacterial and fungal communities were calculated and re-
flected by the α diversity in the present study. The β diversity of both 
bacteria and fungi was ordinated based on the Bray–Curtis distance. 
The bacterial and fungal community structures at different sites 
were visualized using NMDS. The similarity matrices were built using 
the Bray-Curtis index. All of these analyses were conducted in R 
(https://​www.​r-​proje​ct.​org/​) with the vegan package (Dixon, 2003).

The DDRs at the four spatial scales were estimated based on 
the β diversity of the microbial community with geographic distance 
(local scale (1–100 m), mesoscale (0.5–50 km), regional scale (100–
3500 km), and overall scale (1m–3500 km)). The turnover rates (v) 
were represented as the slope of the linear least squares regression 
of the relationship, which was calculated as follows:

To assess the statistical significance of turnover rates among the 
four spatial scales, a matrix permutation test was conducted with 
999 permutations (McArdle & Anderson, 2001).

A random forest (RF) classification analysis was conducted to es-
timate the important predictors of both bacterial and fungal diversity 
among the variables soil pH, DOC, NO3

−–N, NH4
+–N, TN, TP, MAT, 

and MAP by determining how much the mean square error (MSE) 
increased when the data for a given predictor were permuted ran-
domly while other predictors remained unchanged. Simultaneously, 
both bacterial and fungal α diversity (Shannon index) and β diversity 
were used to estimate the effect of microbial diversity on carbon 
mineralization. The randomForest R package (Liaw & Wiener, 2002) 
was used to conduct these analyses, and the rfUtilities and rfPer-
mute packages were used to assess the significance of the model 
and each predictor, respectively. Multiple comparisons (least sig-
nificant difference, LSD) were used to calculate differences in the 
various indicators at different scales, such as microbial diversity 
(richness and Shannon index), soil physico-chemical properties, car-
bon mineralization, topological network parameters, and functional 
gene abundance. All data passed the normality test before the oper-
ation. The potential contribution of carbon functional genes to soil 
carbon mineralization at the four spatial scales was compared using 
RF analysis, and heatmaps were used to characterize the abundance 
of carbon degradation functional genes at the four scales. Heatmaps 
use colour changes to reflect data information in a two-dimensional 
matrix or table.

Based on the expected relationships among microbial community 
indexes and carbon mineralization, we developed the partial least 
squares path model (PLS-PM) (Dolce et al., 2018) linking α-diversity, 
β-diversity, carbon functional gene, and carbon mineralization. The 
nonparametric bootstrapping (1000 resamples in this study) was 
used to estimate the precision of the PLS parameter estimates. The 
95% bootstrap confidence interval was used to judge whether the 
estimated path coefficients were significant. The path coefficients 

represent the direction and strength of the direct effects between 
the two variables. In addition, we calculated the standardized total 
effect of each potential variable. PLS-PM was performed using the 
package “plspm” in r3.2.5 (Tenenhaus et al., 2005). The adjust p val-
ues of multiple comparisons were calculated based on Benjamini–
Hochberg multiple-testing correction by false discovery rate (FDR). 
The model's reliability was evaluated using the Goodness of Fit 
(GoF) statistic.

Co-occurrence networks were constructed to identify the spe-
cialists and generalists of bacterial or fungal taxa that dominantly 
contributed to carbon mineralization at different spatial scales by 
combining related functional genes and using RF analysis to deter-
mine the degree of linkage. The four spatial scales were defined as 
follows: local scale (1–100 m) included 39 sampling network points 
(13 sites ×3 parallel points); mesoscale (0.5–50 km) included 13 
networks (13 sites); regional scale (100–3500 km) was included 3 
networks (three parallel), and overall scale (1 m–3500 km) was de-
fined as 1 total network. Subsequently, the subnetworks at each 
local, meso, and regional scale were individually integrated, and the 
interrelationships among the co-occurrence networks across these 
four scales were depicted alongside the overall scale. Topology-
based analysis of large networks was employed to understand the 
co-occurrence patterns in the microbial communities. Intrakingdom 
interaction networks for soil bacteria and fungi were constructed 
by using the Cytoscape software plugin (v 3.7.1, Co-occurrence net-
work inference (CoNet) (Faust et al., 2012)). The OTUs of 429 sam-
ples were categorized into 4 groups based on the spatial scales as 
well as OTU annotation files, which were then uploaded and filtered 
by a minimum 1/3 threshold across the total OTUs. Subsequently, 
the Pearson, Spearman, Bray–Curtis, and Kullback–Leibler correla-
tion methods were used to evaluate pairwise associations by CoNet 
(Faust et al., 2012; Matchado et al., 2021). The initial thresholds for 
all four measures were selected to retrieve 1000 positive and 1000 
negative edges. For each measure and edge, 1000 renormalized 
permutations and 1000 bootstrap scores were generated to alle-
viate compositionality bias. A measure-specific p value was com-
puted first and then merged with Brown's method (Brown, 1975). 
Edges with merged p values less than .05 were retained after mul-
tiple testing using the Benjamini–Hochberg procedure (Benjamini & 
Hochberg, 1995). The co-occurrence networks were visualized with 
the interactive Gephi platform (0.9.2). The Euclidean distance of the 
network parameters was calculated to compare differences at the 
four spatial scales.

The weighted beta nearest taxon index (βNTI) and Bray–Curtis-
based Raup-Crick (RCbray) values were calculated via a null model 
methodology to differentiate the ecological processes that regulate 
community assembly (Stegen et al., 2015). Specifically, deterministic 
processes include heterogeneous selection (βNTI >2) and homoge-
neous selection (βNTI < −2); stochastic processes include homo-
geneous dispersal (|βNTI| < 2, RCbray < −0.95), the dispersal limit 
(|βNTI| < 2, RCbray >0.95), and undominated processes (|βNTI| < 2 
and |RCbray| < 0.95). These analyses were performed with the ‘pi-
cante’ and ‘vegan’ packages in R.

(1)v =
ln(1 − β diversity)

ln(Geographic distance)

 1365294x, 2024, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ec.17235 by U
niversity O

f O
klahom

a, W
iley O

nline L
ibrary on [30/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://www.r-project.org/


6 of 16  |     MA et al.

3  |  RESULTS

3.1  |  Soil carbon mineralization and the distribution 
of the bacterial and fungal community structure and 
carbon degradation functional genes

Soil carbon mineralization was determined for all 429 samples across 
paddy fields in China (Figure  1a). These different patterns of car-
bon mineralization are closely related to complex environmental 
characteristics such as geographical patterns, climatic conditions, 
agricultural practices, soil types, and microbial activities. For exam-
ple, at the northeastern sampling sites (HL, CC, and SY), the extent 
of soil carbon mineralization was 16.31 ± 2.71, 42.77 ± 27.35, and 
23.92 ± 17.53 mg/(kg d), respectively; on the North China Plain (YY 
and FQ), the values increased to 58.66 ± 24.31 and 45.29 ± 8.81 mg/
(kg d), respectively; in the Yangtze River's middle and lower 
reaches (HY, ZX, QZ, and LA), a fluctuating tendency was observed 
(40.57 ± 23.82, 16.27 ± 8.57, 57.76 ± 17.49, and 29.39 ± 17.04 mg/
(kg d), respectively); and in the South China region (CT, JO, HK, 
and QX), the values progressively increased from 38.07 ± 20.61 to 
40.57 ± 23.82, 41.84 ± 16.45, and 52.14 ± 24.18 mg/(kg d). Taking 
soil attributes as an example, soil pH ranged from 3.56 to 8.65, and 
DOC ranged from 57.15 mg/kg to 509.83 mg/kg. The variation in 
the soil geochemical variables representing soil heterogeneity in-
creased with spatial distance, i.e., local < meso < regional (Figure S1). 
Pearson's correlation was used to analyse the relationships between 
C mineralization and the soil properties and microbial biomass 
(Figure  1b, Table  S2). C mineralization was significantly positively 
correlated with soil pH and DOC among all of the geochemical at-
tributes measured (p < .05) and highly correlated with bacterial bio-
mass (p = .001) and fungal biomass (p = .033) at the latitudinal scale.

The total numbers of bacterial and fungal reads were 24,291,099 
and 12,461,277, respectively, across all 429 samples. To minimize the 
impact of read count variation from different samples, all samples 
were resampled to 20,000 and 10,000 reads per sample for bacte-
ria and fungi, respectively. A total of 70,145 operational taxonomic 
units (OTUs, 97% similarity cut-off) of the bacterial community and 
49,165 OTUs (97% similarity) of the fungal community were identi-
fied. The soil microbial community diversity exhibited heterogene-
ity at the four spatial scales (Figure S2). For example, Proteobacteria 
was the dominant bacterial phylum (30.28 ± 4.66%) at all sites, fol-
lowed by Cyanobacteria (14.30 ± 10.25%). Mortierellomycota was the 
dominant fungal phylum (54.67 ± 26.30%) at all sites, followed by 
Ascomycota (19.58 ± 11.20%). The soil microbial community showed 
significant regional distribution characteristics (Figure 2a, Table S3). 
The plots indicated that the composition of both soil bacteria and 
fungi showed significant regional differences associated with the 
climatic zone.

To better understand how microbial functional genes could im-
pact the decomposition of SOC in different climatic zones, GeoChip 
5.0 array high-throughput screening with integrated critically func-
tional genes involved in various carbon cycling processes (Figure 2b) 
was performed. Carbon-degrading functional genes coding both 

labile and resistant carbon degradation were profiled for all paddy 
samples. The results showed that the abundance of the func-
tional genes involved in carbon degradation presented significant 
differences between bacteria (19 core genes) and fungi (19 core 
genes). For example, the functional genes in the bacterial groups 
were attributed more to proteins that encode starch-degrading 
genes, including apu (8.77 ± 0.36, relative gene abundance), cda 
(568.04 ± 1.17), nplT (500.24 ± 3.90), and pula (764.29 ± 1.45), while 
those in the fungal groups were more associated with the degrada-
tion of recalcitrant carbon compounds, such as cellulose, hemicel-
lulose, chitin, and lignin, including exoglucanase (554.59 ± 1.11), xyla 
(1.52 ± 0.22), deacetylase (737.79 ± 1.19), ligninase (1074.98 ± 2.00), 
and mnp (2210.32 ± 3.61). In addition, we used Pearson's correla-
tion to analyse the relationship between bacterial and fungal di-
versity and their respective carbon functional genes (Figure  S3). 
The β diversity of bacteria showed a significant positive correlation 
with carbon decomposition genes (14/19), while there were no sig-
nificant differences between α diversity and functional genes. For 
fungi, most of the carbon decomposition functional genes were 
positively correlated with β diversity (11/19), and only a few genes 
were negatively correlated with α diversity (Shannon and richness 
index) (2/19). The findings suggest that both bacteria and fungi ex-
hibit a significant positive correlation with the abundance of carbon 
functional genes (C-functional genes) at the spatial scale rather than 
within individual sampling sites. Furthermore, most of the functional 
genes related to carbon decomposition showed significant differ-
ences in the four climate zones, such as amyA, glucoamylase, ara, and 
glx, and the responses of bacteria and fungi were not completely 
consistent. The results indicated a series of specific traits and func-
tions of the microbial community that might be responsible for the 
different routes to carbon metabolism.

3.2  |  Spatial turnovers of the soil microbial 
community structure and functional genes from local 
to regional scales

The distance decay relationship (DDR) of the soil microbial com-
munities was examined at four spatial scales (local: 1–100 m, meso: 
1–50 km, regional: 100–3500 km, and overall: 1 m-3500 km). A sig-
nificant linear regression between the ln-transformed community 
similarities and geographic distance was observed for the bacterial 
and fungal communities (p < .01, Figure  3a,b). The spatial turno-
ver rate of the fungal community was 2–4 times higher than that 
of the bacterial community at all spatial scales. Different microbial 
taxonomic spatial turnovers were further calculated at the phylum 
level (Figure  S4, Table  S4). The spatial scale dependence of DDR 
turnover in different phyla was consistent with that of the whole 
community. The spatial turnover rate was calculated using the slope 
of the DDR linear least square regression, revealing a hierarchi-
cal pattern of community heterogeneity, with bacterial and fungal 
communities exhibiting higher heterogeneity at larger spatial scales 
(regional > overall > meso > local).
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    |  7 of 16MA et al.

Then, we analysed the microbial functional heterogeneity at 
the level of functional genes related to carbon decomposition 
(Figure 3c,d). Variations in microbial functional genes, such as amyA, 
acetylglucosaminidase, and exoglucanase, increased with geograph-
ical distance. In contrast to the community structure pattern, the 
highest functional heterogeneity occurred at the regional scale for 
bacteria and at the mesoscale for fungi. These results indicate that 
the functional genes involved in carbon decomposition change with 
increasing spatial distance. Random forest analysis was used to ex-
amine the contributions of environmental factors to bacterial and 
fungal α and β diversities. The main drivers of microbial α diversity 
varied at the four spatial scales (Figure  S5a). Soil NH4

−–N (13.4%) 
and TP (43.5%) were the main influential factors for bacteria at the 
local and meso scales, respectively. Soil NO3

−–N (24.8%) contributed 
most to fungal diversity at the meso scale, and no significant fac-
tors were found at the local scale. The influence of climatic factors 

increased with spatial scale, with MAP and MAT contributing most 
to the variations in bacterial and fungal α diversities at the regional 
and overall scales. In contrast, soil pH was the most important driver 
of bacterial β diversity at the four spatial scales (Figure  S5b). The 
influence of MAP and MAT increased and contributed most to fungal 
β diversity at the regional and overall scales.

3.3  |  Linkage of soil microbial structural and 
functional traits to soil carbon mineralization

Considering that the contribution of biodiversity and functional 
genes to carbon mineralization is influenced by both organismal 
characteristics and environmental factors, including climate vari-
ables (MAT and MAP), as well as environmental parameters (DOC 
and pH), we incorporated these factors into our model, along with 

F I G U R E  2 Structure of bacterial and fungal communities and the abundances of functional genes involved in carbon mineralization. (a) 
Nonmetric multidimensional scaling (NMDS) of bacterial (above) and fungal (below) communities based on Bray–Curtis distances. Colours 
from dark blue (HL) to red (HK) represent samples across northern to southern China from 47.579° N to 19.758° N. (b) Columns represent the 
average abundance of functional genes involved in the decomposition of starch, hemicellulose, cellulose, chitin, and lignin in bacteria (above) 
and fungi (below) at middle temperate (blue), warm temperate (yellow), subtropical (orange), and tropical (red) temperatures. Error bars 
represent the standard deviation. Significant differences (p < .05) in gene abundance in each climatic zone-paired group based on one-way 
ANOVA (multiple comparisons, Fisher's LSD test) are shown above the error bars. [Colour figure can be viewed at wileyonlinelibrary.com]
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α/β diversity and carbon decomposition gene data. Bacterial diver-
sity (both α and β diversity) had a greater impact on carbon miner-
alization at the four spatial scales than fungal diversity (Figure 4a,b). 
Bacterial and fungal α and β diversity contributed most at the meso 
scale. The significant gene groups that contributed to carbon min-
eralization were amyA, glucoamylase, and chitinase for the bacterial 
community and ara, cellobiase, chitin_deacetylase, ligninase, and mnp 
for the fungal community (Figure 4c,d). This result also indicates that 
bacterial functional genes mostly affected the labile carbon fraction, 
while fungal groups mainly affected the recalcitrant carbon fraction. 
We then constructed a structural equation model (SEM) using the 
partial least squares path analysis method (PLS-PM) with biodiver-
sity (both α and β diversity), functional genes, and heterotopic respi-
ration (equal to carbon mineralization) (Figure S6). Through analysis 
of the SEM, the bacterial carbon functional genes at different scales 

had a correlation of 0.96 to 0.97 (p < .001). The correlation between 
fungal carbon functional genes and carbon mineralization at the 
meso scale was −0.02 (p < .001). However, the effects of changes 
in spatial scale on species diversity were more pronounced. At the 
meso scale, the β diversity of bacteria and fungi contributed equal to 
0.25 to carbon mineralization. As the scale increased, the contribu-
tion of β diversity decreased to less than 0.001. These findings sug-
gest that the influence of spatial scaling on the microbial community 
is characterized by asynchronous variations in their functional traits, 
and the spatial scale effect has more influence on the composition of 
the microbial community than on its functional characteristics. Co-
occurrence networks were constructed to link soil carbon minerali-
zation and soil structural and functional traits together at different 
spatial scales (Figure 5, Table 1; Figure S7, Table S5). The dominance 
of bacterial taxa in the comprehensive functional network increased 

F I G U R E  3 Distance decay patterns indicating the community structural and carbon functional traits of soil bacteria and fungi at the four 
spatial scales. (a) Scatter plot representing the distance decay relationships (DDRs) of soil bacterial communities based on the Bray–Curtis 
distance at different spatial scales. The slope of the oblique line (v) represents the microbial spatial turnover rate (Formula 1). Local: 1–100 m; 
meso: 1–50 km; regional: 100–3500 km; and overall: 1 m–3500 km. (b) The DDRs of soil fungi at different spatial scales. (c) Heatmap of the 
variability of the carbon functional genes of bacteria at different spatial scales. (d) Variability of the carbon functional genes of fungi at 
different spatial scales. [Colour figure can be viewed at wileyonlinelibrary.com]
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    |  9 of 16MA et al.

proportionally with the spatial scale (from 63.20% to 83.67%). This 
observation aligns with the outcomes obtained from random forest 
analysis, indicating that bacteria make a greater contribution to car-
bon mineralization than fungi. Moreover, the network demonstrated 
the highest number of nodes (338) and edges (6277) at the meso 
scale, accompanied by a corresponding network heterogeneity value 
of 0.924. However, there was a significant decline in the total num-
ber of nodes entering the network as the spatial scale increased. The 
evident outcome is that no carbon decomposition functional genes 
were successfully integrated at both regional and overall scales. The 
top 10 OTUs were selected based on a weighted ranking in the local, 
meso, and regional scale subnetworks (Table S5). There was a signifi-
cant increase in the abundance of generalist microorganisms as the 
spatial scale expanded. Notably, both bacteria and fungi within the 
top 10 taxa were generalist species at the regional scale. This finding 

suggests that as the spatial scale increases, microbial interactions 
become more frequent and generalists can enhance their carbon 
decomposition capacity through functional complementarity. This 
finding also highlights the predominant influence of spatial scale on 
microbial community composition, surpassing its impact on func-
tional genes associated with carbon decomposition.

4  |  DISCUSSION

The strength of the relationship linking changes in biodiver-
sity to changes in functional traits depends on scale (Bengtsson 
et al., 2002). In the present study, the spatial turnover rates of soil 
bacteria and fungi (at the phylum level) were approximately consist-
ent with the spatial scaling effects in terms of the whole community 

F I G U R E  4 Contribution of both biodiversity and functional gene diversity to carbon mineralization processes. Contribution of (a) α 
diversity and (b) β diversity to carbon mineralization at four spatial scales. The average predictive values of bacterial and fungal diversity for 
carbon mineralization (% of increasing mean squared error (MSE)) were calculated by random forest (RF) analysis. Contributions of functional 
genes in (c) bacteria and (d) fungi to carbon mineralization are represented by the average predictive values. The significance levels of the 
predictors are as follows: *p < .05; **p < 0.01. [Colour figure can be viewed at wileyonlinelibrary.com]
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(Figure 3a,b; Figure S3). However, functional gene variances related 
to carbon decomposition between bacteria and fungi were less de-
pendent on spatial turnover, and the most significant contribution 
of carbon functional genes by bacteria and fungi occurred at the 
meso scale (Figure S6). The correlation between bacterial α diversity 
and carbon functional genes exhibited a significant increase as the 
scale increased. The fungal diversity (α and β) remained the most 
prominent correlation at the meso scale. These findings indicate that 

spatial scaling effects on the microbial community are asynchronous 
variations among their functional traits, and the spatial scale effect 
has more influence on the composition of the bacteria community 
than on its functional characteristics.

To explain the asynchronous variation between biodiversity and 
carbon mineralization functional traits, we propose two theories. 
The first is that probabilistic dispersal influences local dynamics. 
Thompson et al. (2017) showed that moderate dispersal can permit 

F I G U R E  5 Co-occurrence network analyses for carbon mineralization in the four spatial scales. The network pathway shows the 
fundamental linkages between functional bacterial and fungal communities and related genes associated with carbon mineralization. Each 
node (red or blue spot) in the four spatial scales represents an operational taxonomic unit (OTU, at the genus level) of bacteria or fungi that 
contributes to carbon mineralization (Cm), and each edge represents a positive or negative interaction. The size of each node represents 
the magnitude referred to as Cm, and the gradient colour of each edge represents the weight of significant regulation. The bold italic words 
indicate the top 10 OTUs (bacteria or fungi) contributing to Cm based on the weight scale. Genus* represents the generalist taxon detected 
with a probability exceeding 50% among each subnetwork. The italicized words represent critical genes of bacteria (purple dots) and fungi 
(green dots) that regulate Cm processes. [Colour figure can be viewed at wileyonlinelibrary.com]
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species to efficiently track spatial changes in the optimal environ-
ment and increase their functions. A previous study demonstrated 
that the probability of the dispersion of microorganisms decreased 
when the individuals were larger than 20 μm in diameter (Wilkinson 
et al., 2012), while microbes smaller than approximately 1 μm in di-
ameter were not subject to dispersion (Finlay, 2002). The null model 
indicated that homogeneous dispersal (66.43% and 69.23%) and 
heterogeneous selection (32.40% and 30.77%) dominated the bac-
terial community composition at the local and meso scales. More 
undominated processes (57.69%) affected the bacterial commu-
nity composition at the regional scale. This resulted in a decrease 
in homogeneous dispersal (17.95%) and heterogeneous selection 
composition (20.51%) (Figure  S8). Bacteria are more susceptible 
to dispersal limitation than fungi due to their smaller size (size-
hypothesis), resulting in the higher average functional abundance 
occurring in bacteria than in fungi at multiple scales. Movement 
from patch to patch by mobile consumers can stabilize the function 
(Loreau et al., 2003). The second hypothesis is that soil heterogene-
ity increases the range of environmental conditions (environmental 
filtering). Heterogeneity is a fundamental property of soil that un-
derpins the emergence and maintenance of soil microbial diversity 
(Jansson & Hofmockel, 2020; Nunan et al., 2020). Moreover, hetero-
geneous soil also leads to the chemical heterogeneity of soil organic 
matter, which is the case for high-yield cropland at the landscape 
scale (Shi et al., 2018). Environmental filtering imposed by variable 
abiotic factors results in scenarios with high or low community turn-
over, depending on the consistency of these factors. In the present 
study, the influence of environmental factors (DOM and pH) on the 
α-diversity of bacteria was greater than that of fungi at all spatial 
scales (Figure  S5). DOM affects fundamental biogeochemical pro-
cesses in the soil, such as nutrient cycling and organic matter storage 
(Roth et al., 2019). Soil microbiomes have a strong impact on DOM 
composition (Li et al., 2018), and bacteria have a greater effect on 
DOM composition than fungi (Roth et al., 2019). We hypothesized 
that some fungi, such as ectomycorrhizal fungi, preferentially de-
grade large rice-derived polymers (such as lignin) and partially miner-
alize and transform them into a diverse suite of small molecules that 
are subsequently consumed by bacteria during microbial processing. 
This process requires higher turnover for fungi than for bacteria, re-
sulting in an increase in bacterial diversity (Liang et al., 2017).

Soil pH is another key factor influencing bacterial and fun-
gal communities (Chu et  al.,  2010; Fierer & Jackson,  2006; Liu 
et al., 2014). In contrast to that of bacteria, the spatial distribution of 
soil fungi was associated with the soil pH, possibly because fungi are 
adapted to wider pH ranges than bacteria (Lauber et al., 2008; Rousk 
et al., 2010). Therefore, bacteria are more sensitive to environmental 
filtering (with low community turnover) than fungi at local spatial 
scales. In contrast, a recent study revealed that the spatial turnover 
of bacterial communities was greater than that of fungal commu-
nities in boreal forest soils (Ma et  al.,  2017). The relative impor-
tance of underlying factors (environmental variables or geographic 
distance) contributing to distance decay relationships (DDRs) also 
differs across different habitats, such as alpine grassland, desert, TA
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desert grassland, typical grassland, and an entire transect (Wang 
et al., 2017). Natural ecosystems such as forests and bamboo forests 
are less disturbed by humans. Thus, soil fungal communities pres-
ent more plant specificity than soil bacterial communities (Urbanova 
et al., 2015), especially rhizospheric fungi (Mummey & Rillig, 2006). 
Paddy fields are typical human-managed ecosystems, and bacterial 
dispersal limitation may be lower due to modern farming activities 
(Gao et al., 2019).

Consistent with their functional traits, bacteria contribute more 
than fungi during the process of carbon mineralization at multiple 
spatial scales. Irrespective of the community α or β diversity, the ran-
dom forest results showed that the involvement of bacteria in carbon 
metabolism was significantly greater than that of fungi (Figure 4a,b). 
The coexistence patterns between bacteria and fungi, induced by 
spatial scaling effects, serve as reliable indicators for bioassessment 
at the meso scale (Loreau, 2000).

Due to the potential dependence of microbial diversity on habi-
tat type at different spatial scales (Lozupone & Knight, 2007; Zinger 
et al., 2014), microorganisms often exhibit characteristic specializa-
tion towards a localized resource patch or generalization towards 
a broader range of compounds (Allison et  al.,  2014). We further 
analysed the potential of bacteria and fungi to metabolize differ-
ent carbon sources, ranging from labile to recalcitrant carbon. We 
found that the bacterial community contributed more to labile car-
bon decomposition (amyA and glucoamylase), while fungi were more 
involved in recalcitrant carbon degradation (ara, cellobiase, chitin_
deacetylase, ligninase, and mnp) (Figure 4c,d). Even for the metabo-
lism of recalcitrant carbon, bacteria contributed 1.2 times as much as 
fungi to the related functional genes. This finding is consistent with 
previous studies showing that bacteria are the main decomposers 
of simple carbohydrates, organic acids, and amino acids, while fungi 
are more important for the decomposition of refractory soil carbon 
(Fontaine et al., 2011; Myers et al., 2001). The greater phylogenetic 
diversity and breadth of the metabolic capacities of bacteria appear 
to have a stronger effect on the decomposition of carbon compared 
with that of fungi (Glassman et al., 2018).

Bacteria and fungi have distinct substrate preferences and met-
abolic differences, and the co-occurrence of distinct roles of fungi 
or bacteria is central to understanding soil carbon mineralization 
(Rousk & Frey, 2015). In the present study, bacteria and fungi ex-
hibited a variety of potential microbial interactions in paddy fields in 
China. The proportions of highly abundant bacteria and fungi related 
to carbon metabolism at the four spatial scales were as follows: local 
(bacteria = 63.20% vs. fungi = 36.00%), meso (bacteria = 74.85% vs. 
fungi = 24.85%), regional (bacteria = 81.97% vs. fungi = 16.39%), and 
overall (bacteria = 83.67% vs. fungi = 14.29%) (Figure 5 and Table 1). 
Bacteria were more strongly associated with carbon mineralization 
than fungi in the co-occurrence network, which is consistent with 
the strength of their functional traits at multiple scales being higher 
than that of fungi.

Bacteria and fungi share the same habitats and are therefore al-
most certain to frequently interact with each other in soil (Zhang 
et al., 2014). Therefore, based on coexistence theory, larger scales of 

space encompass a greater range of environments, which increases 
species' opportunities for niche partitioning (Hart et al., 2017) and 
promotes spatial niche complementarity (Williams et  al.,  2017). 
We speculate that positive or negative co-occurrences may repre-
sent potential interactions in which individual interacting partners 
complement or compete during carbon processes at these spatial 
scales (de Menezes et al., 2017). The importance of competition as 
the major structural force could emerge; meanwhile, the commu-
nity might be made up of several specialists, with each consuming 
a limited range of substrates, thus reducing the competition among 
each member of the community and increasing complementar-
ity (Hooper et al., 2005). When the top 10 bacteria or fungi were 
sorted by weight, there was a discernible decline in specialist taxa 
as the spatial scale increased. Gravel et al.  (2011) found that gen-
eralist assemblages were more productive across a range of carbon 
substrates because of their superior ability to exploit the imposed 
heterogeneity in the resource environment, while the slope of the 
biodiversity-ecosystem functioning (BEF) relationship was stronger 
for the assemblages of specialists because of the enhanced niche 
complementarity. The fact that the community of bacteria and fungi 
can underpin carbon metabolism via complementarity within and 
among soil niches means that spatial scale effects can generate a 
positive effect on carbon mineralization.

Soil organic carbon (SOC) is a nonrenewable resource that is 
currently being depleted at a faster rate than it is being formed 
(Lal, 2003). Any changes in either soil conditions or management 
practices will alter the geochemical or environmental chemical pro-
cesses that subsequently impact the cycling of carbon and nitrogen in 
agroecosystems, which finally leads to the production of greenhouse 
gases (i.e., CH4, N2O, and CO2) (Li et al., 2004; Sass et al., 2002). With 
increases in crop-specific yields (240% increase in global dry bio-
mass production) (Gray et al., 2014) facilitated by the development 
and adoption of improved cultivars and management accompanied 
by technological advances in the past 50 years, atmospheric CO2 has 
increased by as much as 50% in the Northern Hemisphere (Graven 
et  al., 2013; Keeling et  al.,  1996). Increasing evidence has pointed 
to the role of soil microorganisms, which are important engines of 
decomposition and participate in terrestrial carbon source–sink dy-
namics (Glassman et al., 2018; Jansson & Hofmockel, 2020; Nunan 
et al., 2020; Tang et al., 2018). In the present study, pH and DOC 
were two abiotic factors that were positively correlated with car-
bon mineralization. Both of them participate in the processes of 
carbon conversion mediated by microorganisms via a series of 
redox reactions to exchange or provide unbound electrons (Chow 
et  al., 2006; Cook & Allan,  1992; Lundquist et  al.,  1999), produce 
new oxidants (e.g., O2, NO3

−, Mn4+, Fe3+ and SO4
2−) (Li et al., 2004), 

and consequently discharge greenhouse gases. However, in large-
scale studies, we usually ignore the contribution of microorganisms 
to greenhouse gas emissions. This is because while these studies 
can test the underlying mechanisms at the local scale, they cannot 
also directly address theoretical predictions at a broader scale (Isbell 
et al., 2018; Thompson et al., 2018). Multiple scale measures can be 
used to predict the spatial patterns of turnover in microbial diversity 
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associated with functioning that are inherent to observational data, 
especially at large spatial scales (Gonzalez et al., 2020). Soil hetero-
geneity and spatial-scale effects have notable asynchronous effects 
on the microbial community composition and functional traits. They 
can also drive patterns of synchrony across large spatial scales based 
on niche complementarity. With larger datasets, including time se-
ries across a network of spatial locations in the future, we can in-
crease our confidence in uncontrolled variables that co-vary with 
diversity and carbon mineralization functioning, and characterize 
the scales of synchrony and cross-coherence regarding species fluc-
tuations at different levels.

Our study compared bacterial and fungal biogeographic patterns 
and carbon decomposition at four spatial scales, from the local scale 
to the continental scale. pH and DOC were two abiotic factors that 
were positively correlated with carbon mineralization. There is a 
trade-off in microbial traits that determines the proportion of micro-
bial organic carbon invested in biosynthesis. Bacteria had a greater 
capacity for dispersal over different spatial scales than fungi based 
on the DDR, which represents a reasonable explanation for the re-
lationship between microbial communities and soil organic matter 
metabolism. The bacterial community contributed more to carbon 
mineralization because the catabolic breadth of bacteria was more 
focused on labile carbon decomposition, while fungi were more 
involved in recalcitrant carbon degradation. Functional traits and 
microbial communities were influenced by spatial scaling effects 
and showed striking asynchrony. Niche complementarity can ho-
mogenize functional traits and promote the metabolism of carbon 
by microorganisms. With limited soil resources, the community is 
made up of several specialists, with each consuming a limited range 
of substrates. However, as the spatial scale increases, there is an 
escalating interaction among diverse generalist groups, leading to 
an accelerated carbon decomposition process. Overall, our study 
provides new insights for predicting the unique functional charac-
teristics of the most diverse and complex microorganisms in spatial 
community ecology.
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