nature geoscience

Article

https://doi.org/10.1038/s41561-023-01345-6

Relative increases in CH_4 and CO_2 emissions from wetlands under global warming dependent on soil carbon substrates

In the format provided by the authors and unedited

Supplementary Information

Supplementary Figures

Supplementary Fig. 1. Exponential relationship between wetland CO_2 and CH_4 emission rates and seasonal temperature in the global database. The temperature on the x-axis indicates the soil temperature when measuring the carbon emission rate. The regression lines represent the fitted emissiontemperature exponential and linear relationships. n represents the number of samples.

Supplementary Fig. 2. Exponential relationship between wetland CO₂ and CH₄ emission rates and temperature in the incubation experiment. The regression curves represent the fitted emission-temperature exponential relationships. Their significant exponential relationship indicates that the data in our incubation experiment fit the Boltzmann-Arrhenius function well. * represents a significant fit at the level of p < 0.05. n represents the number of samples.

Supplementary Fig. 3. Apparent activation energy of wetland CH₄ emissions (*E_M*) of 13 regions in the incubation experiment. CH₄ emissions were measured by anaerobic incubation of soil at 10, 15, 20, 25, and 30 °C (n = 3). The temperature dependence of the CH₄ emissions was characterized using the linear mixed effects model after fitting the Boltzmann-Arrhenius function to the data of the CH₄ emission and the standardized temperature (Methods).

Supplementary Fig. 4. Apparent activation energy of wetland CO₂ emissions (*E_c*) of 13 regions in the incubation experiment. CO₂ emissions were measured by anaerobic incubation of soil at 10, 15, 20, 25, and 30 °C (n = 3). The temperature dependence of the CO₂ emissions was characterized using the linear mixed effects model after fitting the Boltzmann-Arrhenius function to the data of the CO₂ emission and the standardized temperature (Methods).

Supplementary Fig. 5. Apparent activation energy (E_a) of soil organic matter (SOM) decomposition in 13 regions in the incubation experiment. The value of E_a is characterized by the temperature dependence of the CO₂ emissions by the decomposition of SOM under aerobic conditions. CO₂ emissions were measured by aerobic incubation of soil at 8, 15, 20, 25 and 35 °C (n = 3). The temperature dependence of the CO₂ emissions was characterized using the linear mixed effects model after fitting the Boltzmann-Arrhenius function to the data of the CO₂ emission and the standardized temperature (Methods).

Supplementary Fig. 6. Relative abundance of functional groups (a), ratio of alkyl carbon to alkoxy carbon (b), and the degree of aromaticity (c) of soil organic matter (SOM) from 13 regions in the incubation experiment. The relative abundance of SOM functional groups was determined by the peak area of ¹³C cross-polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. After baseline correction, we quantified seven chemical shift regions of the spectrum: 0-45 ppm, 45-60 ppm, 60-95 ppm, 95-110 ppm, 110-145 ppm, 145-160 ppm and 160-220 ppm, assigned to alkyl C, N-alkyl + methoxyl C, O-alkyl C, Di-O-alkyl C, aromatic C, phenolic C, and amide + carbonyl C, respectively. Three columns in the same area indicate replication. HL = Hailun; CC = Changchun; SY = Shenyang; YY = Yuanyang; FQ = Fengqiu; LA = Lin'an; QZ = Quzhou; ZX = Zixi; JO = Jian'ou; CT = Changting; HY = Hengyang; QX = Qingxin; HK = Haikou. **b**, The centre line and error bars are the mean values and standard error, respectively (n = 3). Ratio of alkyl carbon to alkoxy carbon = alkyl C/(O-alkyl C+ N-alkyl + methoxyl C+ Di-O-alkyl C). **c**, The centre line and error bars are the mean values and standard error, respectively (n = 3). The degree of aromaticity = aromatic C + phenolic C/[1- (amide + carbonyl C)].

Supplementary Fig. 7. The linear relationship between the abundance of the *mcrA* gene and soil C:N (a) and the apparent activation energy (E_M) of CH₄ emissions (b). The *mcrA* gene is a key gene in the methanogenic metabolic pathway. The higher abundance of the *mcrA* gene indicates a stronger potential for methane production.

Supplementary Fig. 8. Prediction performance of the random forest (RF) model, extreme gradient boosting (XGBoost) model, light gradient boosting machine (Light GBM) model, gradient boosting decision trees (CatBoost) model, convolutional neural networks (CNN) model, and deep neural networks (DNN) model. The red line represents the 1:1 line. MAE represents the mean absolute error, MSE is the mean-square error, and R² represents the coefficient of determination. The optimal model is characterized by the maximum R² and the minimum MAE and MSE.

Formula	AIC				
	CH ₄ emissions	CO ₂ emissions	CH ₄ :CO ₂		
$R \sim T$	11350.52	8083.31	10014.68		
$R \sim T + (1 site)$	10881.23	7412.69	9872.52		
$R \sim T + (0+T site)$	11225.67	7571.00	9977.75		
$R \sim T + (1+T site)$	10748.48	6831.14	9814.35		

Supplementary Table 1. Comparison among linear mixed effect models with different random

effects.

AIC, information-theoretic Akaike information criterion. R is the standardized greenhouse gas. T is the fixed effect, and site is the random effect. (1|site), (0+T|site), and (1+T|site) are the random effects of site on intercept only, on slope only, and on both intercept and slope, respectively. Bold text indicates the model with the minimal AIC.

9

Soil C:N interval	n/site	<i>p</i> for LME model	E _{M:C}	Soil C:N interval	n/site	<i>p</i> for LME model	E _{M:C}
≤1	43/4	0.006	NS	>1	2979/155	0.193	NS
≤ 2	103/5	0.006	NS	> 2	2919/154	0.22	NS
≤ 3	103/5	0.006	NS	> 3	2919/154	0.220	NS
≤ 4	103/5	0.006	NS	>4	2919/154	0.220	NS
≤5	103/5	0.215	NS	> 5	2919/154	0.220	NS
≤6	175/13	0.285	NS	> 6	2847/146	0.231	NS
≤7	203/17	0.125	NS	> 7	2819/142	0.200	NS
≤ 8	251/21	0.006	0.278	> 8	2771/138	0.290	NS
≤ 9	444/27	< 0.001	0.265	> 9	2578/132	0.721	NS
≤10	956/48	< 0.001	0.215	> 10	2066/113	0.240	NS
≤11	1203/65	< 0.001	0.198	> 11	1819/97	0.218	NS
≤12	1514/80	< 0.001	0.190	> 12	1508/82	0.023	-0.128
≤13	1866/88	< 0.001	0.184	> 13	1156/73	0.007	-0.172
≤14	1994/95	< 0.001	0.177	>14	1028/65	0.005	-0.204
≤15	2044/99	< 0.001	0.158	> 15	978/61	0.002	-0.229
≤16	2159/106	0.005	0.112	>16	863/54	0.003	-0.248
≤17	2318/121	0.004	0.113	> 17	704/39	0.019	-0.219
≤ 18	2328/121	0.003	0.117	> 18	694/39	0.017	-0.222
≤ 1 9	2355/124	0.004	0.118	> 19	667/36	0.026	-0.217
≤ 20	2469/129	0.004	0.115	> 20	553/32	0.005	-0.228
≤21	2476/130	0.034	0.083	> 21	546/31	0.006	-0.229
≤22	2598/137	0.031	0.086	> 22	424/24	0.055	NS
≤23	2648/140	0.053	NS	> 23	374/21	0.013	-0.139
≤ 24	2693/143	0.054	NS	> 24	329/17	0.115	NS
≤25	2705/144	0.055	NS	> 25	317/16	0.136	NS
≤26	2723/145	0.063	NS	> 26	299/14	0.119	NS
≤27	2773/147	0.063	NS	> 27	249/12	0.062	NS
≤28	2773/147	0.075	NS	> 28	249/12	0.062	NS
≤ 2 9	2818/148	0.068	NS	> 29	204/11	0.205	NS
≤ 30	2850/150	0.006	NS	> 30	172/9	0.038	-0.200

and CH₄ emission ratio ($E_{M:C}$) with a step length of 1 in the global database.

LME model, linear mixed-effects model; NA, not applicable; NS, not significant. $E_{M:C}$ were separately characterized using LME models after fitting Boltzmann-Arrhenius functions to the emissions data. The slopes of the fitted function in the LME models are the $E_{M:C}$ values.

Supplementary Table 3. The collinearity of soil, climate, and hydrologic independent variables to

Indonon dont vonichlo	Variance inflation	n voluo in I M	Variance partition
independent variable	factor	factor <i>p</i> value in LM	
SOC	79.46	/	/
TN	110.27	0.89	2.84
ТР	2.10	0.08	4.22
Soil C:N	2.70	< 0.01	75.99
Soil C:P	63.98	0.51	26.67
Soil N:P	97.66	/	2.2%
Soil pH	1.61	0.40	-2.11
Soil clay content	6.49	0.25	-0.37
Soil silt content	9.82	0.58	-4.12
Soil sand content	18.36	/	/
Water table depth	1.22	0.21	2.11
Mean annual air temperature	5.57	0.46	-2.20
Mean annual precipitation	7.96	0.52	-3.30
Mean annual evaporation	7.14	0.82	2.93
Aridity index	4.53	0.52	-2.66

explain the site-level $E_{M:C}$ and their relative explained variance.

Supplementary Table 4. Explaining the Akaike information criterion (AIC) ranking of all

possible	linear	regression	models	for	Ем:с а	t the	site	level	Ι.

Model	AIC
$E_{M:C} \sim \text{soil C:N}$	299.19
$E_{M:C} \sim \text{soil C:N} + \text{WTD}$	299.76
$E_{M:C} \sim 1$	314.67
$E_{M:C} \sim \text{WTD}$	315.12