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1. Microbial-ENzyme Decomposition (MEND) Model 

1.1.MEND model description 

 

 

Figure S1 Diagram of the MEND model. (a) New version of MEND model developed in this 

study; (b)  Old version of MEND with simplified N processes as described in Gao et al. [1] and 

Wang et al. [2]. 

(a) 

(b) 
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The MEND model (Fig. S1a) [3-5] allows for mechanistic representation of (i) density-based 

partitioning and physicochemical protection of soil organic matter (SOM) (Fig. S1b); (ii) distinct 

microbial and enzyme groups regulating SOM decomposition and inorganic nitrogen (N) 

transformations including N mineralization & immobilization, biological N fixation, nitrification, 

and sequential denitrification; (iii) microbial physiology such as growth & maintenance, dormancy 

& resuscitation, and mortality in response to changes in soil pH, temperature, and moisture;  (iv) 

plant-microbial competition for inorganic N (NH4
+ and NO3

–); (v) ammonium (NH4
+) sorption and 

nitrate (NO3
–) & nitrite (NO2

–)  leaching; and (vi) N gases (NO, N2O, and N2) exchange between 

soil and the atmosphere (Fig. S1a). Model state variables, governing equations, component fluxes 

and parameters are described in Supplementary Table S1–S5.  

1.1.1. Soil carbon (C) and nitrogen (N) pools 

The MEND model includes the following soil C-N pools (Table S1): 

Five SOM (with both C & N) pools: particulate organic matter (POM) decomposed by 

oxidative enzymes (POMO), POM decomposed by hydrolytic enzymes (POMH), mineral-

associated organic matter (MOM), dissolved organic matter (DOM), and active MOM (QOM) 

interacting with DOM via sorption and desorption.  

Seven inorganic N pools: adsorbed ammonium (NH4
+ Adsorb), non-adsorbed ammonium 

(NH4
+), nitrate (NO3

–), nitrite (NO2
–), nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2). 

Two microbial (with both C & N) functional groups: active and dormant microbes (MBA 

and MBD).  

Three enzyme functional groups for SOM decomposition: POMO-degrading enzymes 

(EPO), POMH-degrading enzymes (EPH), and MOM-degrading enzymes (EM). 
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Six enzymes as bioindicators controlling inorganic N transformations: nitrogenases 

(corresponding to functional genes of nifH), ammonia oxidases (amoA & nxrA/B), nitrate 

reductases (narG/napA), nitrite reductases (nirS/nirK), nitric oxide reductases (norB), and nitrous 

oxide reductases (nosZ) [6, 7]. 

The governing (C or N mass balance) equations for these C-N pools are summarized in Table 

S2, where Eq. 13 shows the overall soil C mass balance and Eqs. 23a–c indicate the mass balance 

of soil organic N, inorganic N, and total N, respectively.  

1.1.2. Flexible stoichiometry 

In contrast to traditional models that use fixed SOM C:N ratios [8, 9], we use flexible 

stoichiometry (i.e., time-variant C:N ratio) for SOM and microbial biomass pools to represent the 

adaption of microbes in response to the stoichiometric imbalance of available resources [10-14]. 

One exception is for the enzyme pools, where a fixed C:N ratio (=3) is used according to Schimel 

and Weinstraub [15]. Generally, the organic N flux will follow the organic C flux according to the 

C:N ratio in the upstream (source) pool (see Eq. 14 in Table S2). The C:N ratios in the SOM pools 

(including POMO, POMH, MOM, QOM, DOM) will be regulated by the litter input, C-N flux from 

upstream pool, and/or microbial turnover. The C:N ratio in the microbial biomass pool is self-

regulated by the DOM uptake, heterotrophic respiration (Rh), N mineralization and immobilization. 

Rh is mainly controlled by the intrinsic C use efficiency (Yg or intrinsic CUE) (see Eqs. 33–37 in 

Table S3). In addition to the availability of DON and inorganic N (NH4
+ and NO3

–), we define an 

intrinsic N use efficiency (YNg or intrinsic NUE, see Eq. 47 in Table S4) to modify N 

mineralization rate (Eq. 46 in Table S4) and immobilization rates (Eqs. 48–49). In Eq. 47, we first 

assume a conservative C:N range (i.e., between CNBA,min and CNBA,max) to represent the 

stoichiometric plasticity of microbial communities [10, 14, 16]. Intrinsic NUE (YNg in Eq. 47) will 
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increase with increasing microbial C:N ratio (CNBA), with YNg being 0 when CNBA ≤ CNBA,min (C-

limited) and YNg approaching 1 when CNBA ≥ CNBA,max (N-limited). This means that N 

mineralization rate will decrease, and N immobilization rate will increase when microorganisms 

become more N limited, resulting in higher YNg [13]. 

1.1.3. SOM decomposition 

The decomposition of POMO, POMH, and MOM pools is modeled by the Michaelis-Menten 

kinetics [17, 18]. The decomposition flux is determined by the concentration of a SOM pool and 

its corresponding enzymes (e.g., POMO and EPo), as well as two kinetic parameters, i.e., the 

specific enzyme activity and the half-saturation constant (Vd and K) (see Eqs. 24–26 in Table S3). 

1.1.4. DOM sorption and desorption 

The sorption and desorption between DOM and QOM are simultaneously considered as 

dynamic processes [5]. DOM adsorption is controlled by DOM concentration and mineral surface 

coverage, and desorption is presumed to only depend on surface coverage (Eqs. 27–28 in Table 

S3). Relative saturation of the QOM pool (i.e., Q/Qmax, ratio of actual adsorbed C content to the 

sorption capacity) is defined to represent the fraction of the mineral surface area occupied [5]. 

1.1.5. Microbial growth, maintenance, and mortality 

Microbial growth and maintenance are described by the Compromise model that combines the 

features of the Pirt model and the Herbert model [19]. The Compromise model explicitly expresses 

the dependence of microbial maintenance on both microbial biomass and substrate (DOM) 

availability (Eqs. 29, 33–34 in Table S3). We define a parameter (α = Vm /(Vg + Vm) ≤ 0.5) to 

constrain the relationship between the maximum specific growth and maintenance rate (Vg and Vm) 

(Eq. 29). The maintenance rate of dormant microbes is much lower than that of active microbes 
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by a factor of 𝛽 = 0.001–0.01   (Eq. 36) [3]. Microbial mortality rate (𝛾 ∙ 𝑉௠ in Eq. 32) is associated 

with the maintenance rate by a scaling factor (𝛾).  

1.1.6. Microbial dormancy and resuscitation 

When environmental conditions are unfavorable for growth, microbes may enter a state of low 

metabolic activity (i.e., dormancy) until conditions improve to allow replication [20, 21]. We 

simulate microbial dormancy and resuscitation as reversible dynamic processes (Eqs. 30–31 in 

Table S3), which are mainly determined by the availability of DOM and soil moisture.   

1.1.7. Competitive dynamic enzyme allocation and turnover 

We propose a competitive dynamic enzyme allocation scheme to deal with the synthesis of 

multiple enzymes (e.g., eight groups in this study). The enzyme allocation approach developed 

here is based on the synthetic results that enzyme activities are dependent on microbial biomass 

[22] and substrate availability [23]. The synthesis of SOM-degrading enzymes (EPO, EPH and EM) 

depends upon the active microbial biomass and the relative abundance of the C substrate that needs 

to be decomposed (Eq. 38) [3]. Given that the synthesis of SOM-degrading enzymes has been 

calculated in advance, the total synthesis rate of all inorganic-N enzymes is assumed to be 

proportional to the total synthesis rate of all SOM-degrading enzymes by a scaling factor, which 

is defined as the ratio of total soil inorganic N to total soil organic N (ሺ𝑁𝐻4 ൅𝑁𝑂3 ൅𝑁𝑂2ሻ ∑ 𝑆𝑂𝑁௜
ସ
௜ୀଵ⁄ ) 

(Eq. 40). A competitive allocation scheme is applied to the production of enzymes for each 

inorganic-N transformation process, where the competitive allocation coefficient is the saturation 

level of an inorganic N substrate (i.e., 𝑁௝ 𝐾𝑆𝑁௝⁄ , the ratio of the substrate concentration to the half-

saturation constant) compared to the overall saturation level of all inorganic N substrates 

(∑ ൫𝑁௝ 𝐾𝑆𝑁௝⁄ ൯଺
௝ୀଵ ) (Eq. 40). Enzyme turnover is proportional to the enzyme concentration by the 

turnover rate (Eqs. 39 and 41). The turnover of extracellular enzymes (EPO, EPH and EM) enters 
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the DOM pool, whereas the turnover of intracellular enzymes (nitrogenase, ammonia oxidases, 

and N-reductases) becomes microbial biomass, as these N-enzymes are located at cell membrane, 

cytoplasm, or periplasm [24-26]. 

1.1.8. Soil respiration 

MEND simulates soil respiration (Rs) as the sum of autotrophic (root) respiration (Ra) and 

heterotrophic (microbial) respiration (Rh), where Ra is calculated as a fraction (𝑓ோ௔ ∈ ሺ0.1,0.4ሻ) of 

gross primary production (GPP, g C m–2 d–1); and Rh is the sum of microbial growth respiration 

(𝑅௛,௚), maintenance respiration (𝑅௛,௚), and overflow respiration (𝑅௛,௚) (see Eqs. 10–12 in Table 

S2 and Eqs. 33–37 in Table S3. Microbes may release CO2 via overflow respiration to make the 

microbes meet their stoichiometry constraint (i.e., maximum allowed microbial C:N ratio)    [27, 

28]. 

1.1.9. Microbial N mineralization and plant-microbial competition for inorganic N 

Based on our definition of intrinsic NUE (YNg in Eq. 47), a fraction (YNg) of ingested DON is 

incorporated into microbial biomass and the rest is mineralized (Eq. 46). We adapted the 

Equilibrium Chemistry Approximation (ECA) kinetics [29] to model the plant-microbial 

competition for inorganic N (NH4
+ and NO3

–) (Eqs. 48–52). 

1.1.10. Biological N fixation, nitrification, and denitrification 

The biological N fixation (BNF), nitrification, and denitrification processes are simulated via 

the Michaelis-Menten kinetics, with each reaction being mediated by the corresponding enzyme 

groups. The BNF rate is also modified by the soil NH4
+ availability (quantified by the saturation 

level of NH4
+), i.e., higher soil NH4

+ availability will inhibit N fixation (Eq. 45) [30]. The 

nitrification and denitrification chain reactions (NO3
– → NO2

– → NO → N2O → N2) are catalyzed 

by specific enzymes (Eqs. 42 and 44). In addition, nitrifier-denitrification flux  is modeled as a 
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fraction of the nitrification flux and contributes to N2O production [31, 32], where the fraction is 

controlled by oxygen availability (Eq. 43). 

1.1.11. Ammonium (NH4
+) sorption and nitrate (NO3

–) & nitrite (NO2
–) leaching 

We also consider the sorption of NH4
+ using the Langmuir isotherm model (Eq. 53) [33]. Only 

the un-adsorbed NH4
+ is available for microbial and plant uptake. The leaching of NO3

– and NO2
– 

is controlled by the concentration of NO3
– and NO2

– in soil solution as well as the amount of soil 

water percolation (Eq. 54) [34].  

1.1.12. N gases (NO, N2O, and N2) exchange between soil and the atmosphere 

N gases exchange between soil and the atmosphere is simulated by a diffusion process 

governed by the Fick’s law (Eq. 55), i.e., the flux is mainly determined by the difference in gas 

concentrations between soil and the atmosphere as well as the gas diffusivity in soil. Gas diffusivity 

is dynamically calculated by internal and external air-filled porosities in bimodal (aggregated) soil 

porous media [35-37]. 

1.2. Soil pH, temperature and moisture response functions  

Soil pH, temperature and moisture response functions are summarized in Table S6. A model 

parameter (e.g., reaction rate) in MEND may be modified by environmental conditions, such as 

soil water, temperature, and pH (Eq. 56 in Table S6): 

The pH response function, f(pH), follows an exponential-quadratic function (Fig. S2, Eq. 57 

in Table S6) [38]. 

The temperature sensitivity of true growth yield or intrinsic carbon use efficiency (Yg) is 

modeled by a linear function (Eq. 58 in Table S6) [39-44]. 

The Arrhenius equation (Eq. 59) or Q10 method (Eq. 60) is used to simulate the response of 

other parameters [5] to changes in temperature (Fig. S3). The relationship between Q10 and Ea (Eq. 
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61) is derived from Eqs. 59 and 60. The activation energy (Ea) for selected parameters is described 

in Wang et al., [5]. 

 

Figure S2 Soil pH response functions. POM and MOM are particulate and mineral-associated 
organic matter, respectively.  
 

 
Figure S3 Soil temperature response functions. POM and MOM are particulate and mineral-
associated organic matter, respectively; Tref denotes the reference temperature in the response 
function; Ea is the activation energy when the Arrhenius Equation is used; and Q10 is the 
corresponding Q10 value.  
 

We use different soil moisture response functions (SMRFs) [4] to describe the influences of 

soil moisture on the enzyme-mediated SOM decomposition processes, microbial mortality, 

microbial dormancy and resuscitation, nitrification and denitrification (Fig. S4). 
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Figure S4 Soil moisture response functions for (a) oxidative and hydrolytic decomposition, 
microbial dormancy & mortality and resuscitation; (b) nitrification and denitrification. 
 

(1) The SMRF for SOM decomposition by oxidative enzymes (Eq. 62 in Table S6) is adapted 

from Hansen et al. [45]. (Fig. S4a)  

(2) The SMRF for SOM decomposition by hydrolytic enzymes (Eq. 63 in Table S6) is based 

on Manzoni et al. [46] (Fig. S4a). The values of 𝜓௠௜௡ and b in Eq. 63 for soil or litter in different 

biomes were adapted from Manzoni et al. [46]. 

(3) The SMRFs for microbial mortality, dormancy & resuscitation are also shown (Eqs. 64 and 

65 in Table S6) in Fig. S4a. Soil water potential greatly affects the microbial dormancy and 

reactivation processes and various sigmoidal-type switching functions have been proposed to 

quantify these effects [4, 47]. The response functions (Eqs. 64 and 65 in Table S6) are used to 

modify the dormancy (𝑓஺ଶ஽ሺ𝜓ሻ) and the reactivation (𝑓஽ଶ஺ሺ𝜓ሻ), where 𝜓 is the SWP (MPa) and 

the exponent ω describes the steepness of the curve; 𝜓஺ଶ஽ and 𝜓஽ଶ஺ are critical SWPs depending 

on the osmolyte synthesis strategy; and 𝜏 is the ratio between 𝜙஽ଶ஺ and 𝜙஺ଶ஽ and is less than 1 to 

capture a lagged switch from dormant to active state upon rewetting [47]. We also use 𝑓஺ଶ஽ሺ𝜓ሻ to 

modify microbial mortality rate. 
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(4) The SMRFs for nitrification and denitrification (Eq. 66 in Table S6) are shown in Fig. S4b. 

The values for 𝑊𝐹𝑃௜, ሺ𝑖 ൌ 1,2,3,4ሻ and 𝑎ା, 𝑏ା,𝑎ି, 𝑏ି are adapted from Muller [48] and Wang & 

Chen [37].  

 

2. Model Initialization and Input Data 

2.1. Model initialization 

We initialize the C-N pool sizes (Table S1), at least for those SOM pools, by experimentally 

measured values. When data are not available, initial microbial and enzyme pool sizes may be 

estimated based on literature research. For example, MBC is usually 1–5% of SOC and may be 

further specified according to the biomes [49] or soil taxonomy [5]; enzyme concentrations are 

around 0.1–1% of MBC [3, 38].  

If the modeling study is not focused on a well-controlled experiment with specific initial 

conditions and measurements, for example, a theoretic analysis or scenario analysis of the soil C-

N cycle in response to environmental change, we may conduct a long-term (from 50 years to 

hundreds of years) model spin-up to reach a (dynamic) steady state [8, 50], which is used as initial 

conditions to continue model simulations under projected changes in environmental conditions. 

2.2. Model input data 

Model input data are used to drive model simulations and generally include: (i) litter input or 

GPP; (ii) soil pH, temperature and moisture; (iii) inorganic N (NH4
+ and NO3

–) input (e.g., dry/wet 

deposition and fertilization). Depending on the data availability, these input data may be provided 

as constant values or time-variant values at hourly, daily, monthly scale. All input data will be 

automatically interpolated or converted to hourly data for MEND model simulations. Soil texture 

and/or soil water retention curve parameters for the van Genuchten model [51, 52] are also needed 
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for modeling, where the soil water retention curve is used to convert volumetric water contents to 

soil water potentials [4, 53].  

2.3. BioCON data 

Soil CO2 flux (soil respiration) in each plot was measured from 11 to 36 times per year using 

a LI-COR 6400-09 soil respiration chamber (LI-COR, Lincoln, Nebraska, USA). There were 284 

time points of soil respiration fluxes for each treatment from 1998 to 2009. Plant C/N ratio 

(aboveground plant and root) and soil inorganic N pools and fluxes were measured in July–August 

of each year [1]. Soil NH4
+ and NO3

– in four removed soil cores were extracted with 1 M KCl and 

their concentrations were measured on an Alpkem autoanalyzer (OI Analytical, College Station, 

Texas, USA). Net N mineralization rates were calculated as the difference between the total 

inorganic N (NH4
+ and NO3

–) in the field-incubated PVC tubes and that in the soil cores removed 

roughly one month earlier. Net nitrification rates were estimated using only NO3
– data [54].  

 

3. Model Parameterization, Calibration and Validation 

3.1. Model parameterization procedure 

A rigorous model parameterization procedure is essential to avoid methodological problems in 

the subsequent model calibration and validation. We adopt the following procedure for model 

parameterization [55, 56]: (i) The parameter classes are determined based on site properties such 

as soil texture or types, plant functional types, and climatic zones, so that the parameter values in 

different classes could be assessable from available field data. (ii) The number of practically 

calibrated parameters should be kept as low as possible. This means to calibrate the most important 

and sensitive parameters and the other parameters should be fixed based on previous studies. (iii) 
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For the parameters subjected to calibration, physically, chemically, or biologically acceptable 

intervals for the parameter values are summarized in Table S5.  

3.2. Data for model calibration and validation 

Model calibration is to determine the appropriate values of selected parameters by achieving 

the best or acceptable goodness-of-fit between simulations and observations. Model validation is 

the process to demonstrate if a given model with the calibrated parameter values is capable of 

making good performance when a dataset independent of the calibration one is used [55, 56].  

Generally, any observations of the state variables (Table S1: concentrations of C and N, and 

C:N ratios) and fluxes (Table S3 and S4) can be used for model calibration and validation. 

Traditional calibration and validation based on comparing simulated with observed total soil 

respiration or heterotrophic respiration still remains the only attainable option in many practical 

cases. However, this method is poorly consistent with microbe-explicit modeling. In addition to 

soil respiration (Rs), heterotrophic respiration (Rh), soil organic carbon (SOC), concentrations of 

soil available ammonium (NH4
+) and nitrate (NO3

–), and the rates of N fixation, nitrification, net 

N mineralization, and plant N uptake, microbial data should also be included in model calibration 

and validation where there are data available. For example, microbial biomass C and N, and omics-

detected functional gene abundances. 

Omics-detected gene abundances (GAs) data may be used for model calibration and/or 

validation depending on whether there are time-series data available. If there are multiple-time 

observations of GAs for the same functional gene, we may use them for model calibration and 

validation by estimating the correlation between omics-derived GAs and simulated enzyme 

concentrations (ECs), enzyme activities (EAs), or equivalent first-order reaction rates (FRs). As 

the Michaelis-Menten kinetics was used in the MEND model, the FR (h−1) is defined as 
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VdE/(K+S), where S and E are the substrate concentration and the corresponding enzyme 

concentration (mg C cm−3 soil), respectively. The parameters Vd and K denote the specific enzyme 

activity (mg C mg−1 C h−1) and the half-saturation constant (mg C cm−3), respectively. The product 

of Vd and E represents the enzyme activity (mg C cm−3 h−1). When observed response ratios (RRs) 

of GAs between different treatments (e.g., elevated versus ambient CO2) are available, we may 

calibrate and/or validate the model by comparing omics-derived RRs of GAs and simulated RRs 

of ECs, EAs, or FRs. These enzymes (genes) mediate SOM decomposition and inorganic N 

transformations. In this study, we used the RRs for model evaluation. 

3.3. Multi-objective parameter sensitivity analysis 

Sensitivity analysis is used to identify important model parameters for model-data integration. 

We developed a Multi-Objective Parameter Sensitivity Analysis (MOPSA) method based on the 

Wilcoxon Rank Sum Test [57]. The MOPSA can be used to identify the relative importance of 

each model parameter for each objective or response variable (e.g., a C or N pool or flux). The 

sensitivity is characterized by the difference in the probability distribution between two (i.e., 

acceptable and unacceptable) parameter samples that are separated by a threshold of the objective 

functional values in terms of a specific response variable. The difference is statistically quantified 

by the Wilcox estimator from the non-parametric Wilcoxon Rank Sum Test, which is more 

applicable to statistical analysis of difference in parameters that are often not normally distributed 

[57]. This Wilcox estimator is then used as the sensitivity index to quantify the magnitude of 

parameter sensitivity, i.e., higher sensitivity index means higher sensitivity. Detailed description 

of the MOPSA procedure is presented in Supplementary Section 3.3.  

The Wilcox-based Multi-Objective Parameter Sensitivity Analysis (MOPSA) approach 

consists of the following steps:  
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(i) Generating parameter samples. Select the parameters to be evaluated and generate 

parameter sets in terms of their ranges using the sample generator in the MOEA Framework [58].   

(ii)  Running MEND model to calculate objective function values. Run MEND with these 

parameter sets and compute the objective function values in terms of response variables (e.g., C or 

N pools or fluxes). The objective function is defined as the mean squared error (MSE) between 

simulated and reference time-series data. The simulated data are the simulated pool sizes or fluxes 

using a generated parameter set. the reference data refer to model-simulated pool sizes or fluxes 

using the medians of parameters.  

(iii) Identifying acceptable and unacceptable parameter sets. For each response variable, 

identify whether a parameter set is acceptable or unacceptable by comparing the MSE to a given 

criterion, e.g., the 50% divisions of the sorted MSE. The MSE less than the criterion is classified 

as acceptable, otherwise it is classified as unacceptable.   

(iv)  Normalizing the parameter values by their value ranges. For the ith parameter, let 𝑋௜ ൌ

ሼ𝑥௜,௝ , 𝑗 ൌ 1,2,⋯ ,2𝑛ሽ be the parameter values. Define 𝑥௜,୫୧୬ ൌ min ሼ𝑋௜ሽ and 𝑥௜,୫ୟ୶ ൌ max ሼ𝑋௜ሽ, 

and the normalized Xi, denoted by 𝑍௜ ൌ ൛𝑧௜,௝ , 𝑗 ൌ 1,2,⋯ ,2𝑛ൟ is defined as 𝑧௜,௝ ൌ
௫೔,ೕି௫೔,ౣ౟౤

௫೔,ౣ౗౮ ି௫೔,ౣ౟౤
∈

ሾ0,1ሿ. Let 𝑍௜
஺ ൌ ൛𝑧௜,௝

஺ , 𝑗 ൌ 1,2,⋯ ,𝑛ൟ and 𝑍௜
௎ ൌ ൛𝑧௜,௝

௎ , 𝑗 ൌ 1,2,⋯ ,𝑛ൟ be the subsets of acceptable 

and unacceptable 𝑍௜  (i.e., normalized Xi), respectively. The normalization of parameter values 

makes the sensitivity index comparable between different parameters. 

(v) Conducting the Wilcox test to determine parameter sensitivity. Implement the Wilcox test 

of the two parameter samples, i.e.,  𝑍௜
஺ and 𝑍௜

௎.  The Wilcox estimator for the difference between 

acceptable and unacceptable parameters is used as the sensitivity index to quantify the magnitude 

of parameter sensitivity, i.e., higher sensitivity index means higher sensitivity. The p-value from 

the Wilcox test is used to evaluate if the parameter sensitivity is statistically significant (p-value < 
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0.05) or not (p-value ≥ 0.05). Note that the Wilcox estimator refers to the median of the difference 

between acceptable and unacceptable parameter samples [57]. 

3.4. Multi-objective Functions for model calibration and validation 

We calibrate selected model parameters (Table S5) by achieving high goodness-of-fits of 

model simulations against experimental observations. We implement multi-objective calibration 

of the model [3, 4, 59]. Each objective evaluates the goodness-of-fit of a specific observed variable 

mentioned above. The parameter optimization is to minimize the overall objective function (J) that 

is computed as the weighted average of multiple single-objectives [56].  

𝐽 ൌ ∑ 𝑤௜ ∙ 𝐽௜
௠
௜ୀଵ                                                          (67a) 

∑ 𝑤௜
௠
௜ୀଵ ൌ 1 and 𝑤௜ ∈ ሾ0,1ሿ                                    (67b) 

where m denotes the number of objectives and wi is the weighting factor for the ith (i = 1,2,…, m) 

objective function (Ji).  

The individual objective function Ji may be calculated as (1− R2), |PBIAS|, MARE, MAREt, or 

(1−r):  

𝑅ଶ ൌ 1 െ
∑ ሾ௒ೞ೔೘ሺ௜ሻି௒೚್ೞሺ௜ሻሿమ
೙
೔సభ

∑ ሾ௒೚್ೞሺ௜ሻି௒ത೚್ೞሿమ
೙
೔సభ

                                         (68) 

|𝑃𝐵𝐼𝐴𝑆| ൌ ቚ
௒തೞ೔೘ି௒ത೚್ೞ

௒ത೚್ೞ
ቚ                    (69) 

𝑀𝐴𝑅𝐸 ൌ
ଵ

௡
෍ ቚ

௒ೞ೔೘ሺ௜ሻି௒೚್ೞሺ௜ሻ

௒೚್ೞሺ௜ሻ
ቚ

௡

௜ୀଵ
                                   (70)   

𝑀𝐴𝑅𝐸𝑡 ൌ ൜
0, 𝑀𝐴𝑅𝐸 ൑ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑀𝐴𝑅𝐸, 𝑀𝐴𝑅𝐸 ൐ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒                     (71) 

𝑟 ൌ
∑ ሾ௒೚್ೞሺ௜ሻି௒ത೚್ೞሿ
೙
೔సభ ∙ሾ௒ೞ೔೘ሺ௜ሻି௒തೞ೔೘ሿ

ට∑ ሾ௒೚್ೞሺ௜ሻି௒ത೚್ೞሿ
೙
೔సభ

మ
∙ට∑ ሾ௒ೞ೔೘ሺ௜ሻି௒തೞ೔೘ሿ

೙
೔సభ

మ
                     (72) 

where R2 denotes the coefficient of determination; |PBIAS| is the percent bias between simulated 

and observed mean values; MARE is the Mean Absolute Relative Error (MARE) and represents 
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the averaged deviations of simulations (Ysim) from their observations (Yobs); MAREt is a variant of 

MARE and MAREt achieves the best (=0) when MARE is within a defined tolerance value; r is the 

Pearson correlation coefficient; n is the number of data; Yobs and Ysim are observed and simulated 

values, respectively; and 𝑌ത௢௕௦ and 𝑌ത௦௜௠ are the mean value for Yobs and Ysim, respectively. 

Different objective functions are used to quantify the goodness-of-fit for different variables, 

depending on the measurement method and frequency of variables. R2 quantifies the proportion of 

the variance in the response variables that is predictable from the independent variables [4]. A 

higher R2 (R2 ≤ 1) indicates better model performance. R2 is used to evaluate the variables (e.g., 

total soil respiration or heterotrophic respiration) that are frequently measured, and the absolute 

values can be directly compared between observations and simulations. MARE or |PBIAS| is used 

to evaluate the variables (e.g., microbial biomass C and concentrations of inorganic N) with only 

a few measurements and the absolute values can be directly compared. Lower MARE or |PBIAS| 

values (≥ 0) are preferred [4, 60]. MAREt should be used when the simulated value may not be 

necessarily to strictly match the observed or measured value. For example, the measured 

nitrification rates are more like potential rates or rough estimates. It is more appropriate to use 

MAREt to evaluate the model simulated actual nitrification rates when compared with these 

measurements. Another example includes the comparison between simulated and observed N 

fixation or plant N uptake rates. The observations collected from literature just represent empirical 

or reference N fixation [61] or plant N uptake rates [62, 63]. In this case, we also recommended to 

use MAREt as we expected the simulated N fixation or plant N uptake rates would fall into the 

observed value ranges. When the absolute values between simulations and observations cannot be 

directly compared, the correlation coefficient (r) between original or transformed (e.g., logarithmic 

transformed) observations and simulations will be used. For example, the gene abundances from 
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omics analysis cannot be directly compared to the enzyme concentrations or activities in the 

MEND model. However, we may assume correlation could be found between the measured and 

modeled values with a certain transformation or normalization. Noting that the coefficient of 

determination (R2) is simply the square of the correlation coefficient (r) in case of a linear 

regression with an intercept. In other cases, e.g., a linear regression without including an intercept 

or a nonlinear fitting, R2 may not be equivalent to r2. 

3.5. Model parameter calibration (optimization) algorithm 

We use the modified Shuffled Complex Evolution (SCE) algorithm [59, 64, 65] to calibrate 

selected model parameters by minimize the overall objective function (J) as shown in Eq. 67a. 

SCE is a stochastic optimization method that includes competitive evolution of a ‘complex’ of 

points spanning the parameter space and the shuffling of complexes [59]. SCE has been widely 

used in calibration of hydrological, environmental, and ecosystem models and proved to be 

efficient and robust [3, 60, 66-68]. 

 

3.6. Uncertainty quantification  

The uncertainties in parameters and model predictions are evaluated by the Uncertainty 

Quantification by Critical Objective Function Index (UQ-COFI) method [3], which is much 

simpler than the commonly used method based on Bayesian inference and Markov Chain Monte 

Carlo (MCMC) [37]. The UQ-COFI method is based on a global stochastic optimization technique 

(e.g., SCE in this study). It also accounts for model complexity (represented by the number of 

model parameters) and observational data availability (represented by the number of observations). 

The confidence region of parametric space were determined by selecting those parameter sets 
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resulting in objective function values (J) less than the COFI value (Jcr) from the feasible parameter 

space [3].  The COFI (Jcr) is defined as [3, 69]: 

 𝐽௖௥ ൌ 𝐽௢௣௧ ∙ 𝜂 ൌ 𝐽௢௣௧ ∙ ቀ1 ൅
௣

௡ି௣
∙ 𝐹ఈ,௣,௡ି௣ቁ                                                         (73) 

where Jcr is the COFI that defines the parameter uncertainty region, Jopt is the optimum (minimum) 

objective function value that is calculated by Eq. 2, n is the number of measured data points, p is 

the number of parameters, and Fα,p,n−p is the value of the F-distribution for α, p, and n−p. It is 

evident that more observed data points (i.e., larger n) and less undetermined parameters (i.e., 

smaller p) would reduce parametric uncertainty (i.e., lower Jcr). 

The procedure of UQ-COFI includes: (i) implementing the SCE algorithm with multiple 

different random seeds to search ‘relatively optimal’ parameter sets that minimizing the objective 

function (J in Eq. 67a); (ii) collecting the optimal parameter set generated in each loop of the SCE 

searching process to form a feasible parameter space; (iii) determining the critical objective 

function index (COFI) (Jcr) (see Eq. 8 in main text) based on Jopt (minimum J value), n (number 

of measurements) and p (number of model parameters); (iv) constructing the parametric surface 

of the confidence space by selecting those parameter sets resulting in J ≤ Jcr from the feasible 

parameter space; (v) quantifying the uncertainty in parameters by the statistics of these selected 

parameter sets; (vi) conducting model simulations using these selected parameter sets; and (vii) 

quantifying the uncertainty in model predictions (e.g., soil C pool sizes and respiration) using the 

model simulation outputs. 
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4. Supplementary Tables 

Table S1. Soil carbon (C) and nitrogen (N) pools (state variables) in the MEND model 

ID Soil C and/or N pool Pool Name Variable name 

1 Particulate organic matter (POM) 
decomposed by oxidative enzymes 

POMO C pool: PO;  

N pool: PON 

2 POM decomposed by hydrolytic enzymes POMH PH; PHN 

3 Mineral-associated organic matter MOM M; MN 

4 Dissolved organic matter DOM D; DN 

5 Active MOM interacting with DOM QOM Q; QN 

6 Active microbial biomass  MBA BA; BAN 

7 Dormant microbial biomass  MBD BD; BDN 

8 Oxidative enzymes decomposing POMO EPO EPO; EPON 

9 Hydrolytic enzymes decomposing POMH EPH EPH; EPHN 

10 Enzymes decomposing MOM EM EM; EMN 

11 Ammonium oxidase ENH4 ENH4; ENH4N 

12 Nitrate reductase ENO3 ENO3; ENO3N 

13 Nitrite reductase ENO2 ENO2; ENO2N 

14 Nitric oxide reductase ENO ENO; ENON 

15 Nitrous oxide reductase EN2O EN2O; EN2ON 

16 Nitrogenase EN2 EN2; EN2N 

17 Adsorbed ammonium NH4
+ Adsorb NH4ads 

18 Ammonium NH4
+ NH4 

19 Nitrate NO3
– NO3 

20 Nitrite NO2
– NO2 

21 Nitric oxide NO NO 

22 Nitrous oxide N2O N2O 

23 Dinitrogen N2 N2 
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Table S2. Governing equation for each soil C or N pool (Table S1) in the MEND model  

Governing Equation Eq# 

Soil Carbon (state variable, e.g., PH, denotes the C content in POMH pool): 
𝑑𝑃𝑂 𝑑𝑡⁄ ൌ 𝐼௉ை ൅ ሺ1 െ 𝑔஽ሻ ∙ 𝑔௉ை ∙ 𝐹ଽ 𝐹ଵ; 𝐼௉ை ൅ 𝐼௉ு ൅ 𝐼஽ ൌ 𝐼௚௥௢௦௦ ∙ 𝑓𝐼𝑁𝑃; 𝐼௚௥௢௦௦ is gross litter input (1) 
𝑑𝑃𝐻 𝑑𝑡⁄ ൌ 𝐼௉ு ൅ ሺ1 െ 𝑔஽ሻ ∙ ሺ1 െ 𝑔௉ைሻ ∙ 𝐹ଽ 𝐹ଶ (2) 
𝑑𝑀 𝑑𝑡⁄ ൌ ሺ1 െ 𝑓஽ሻ ∙ ሺ𝐹ଵ ൅ 𝐹ଶሻ 𝐹ଷ (3) 
𝑑𝑄 𝑑𝑡⁄ ൌ 𝐹ସ െ 𝐹ହ (4) 
𝑑𝐷 𝑑𝑡⁄ ൌ 𝐼஽ ൅ 𝑓஽ ∙ ሺ𝐹ଵ ൅ 𝐹ଶሻ ൅  𝐹ଷ ൅ 𝑔஽ ∙ 𝐹ଽ ൅ 𝐹ଵ଺ െ 𝐹଺ െ ሺ𝐹ସ െ 𝐹ହሻ (5) 
𝑑𝐵𝐴 𝑑𝑡⁄ ൌ 𝐹଺ െ ሺ𝐹଻ െ 𝐹 ሻ െ 𝐹ଽ െ ሺ𝐹ଵ଴ ൅ 𝐹ଵଵ ൅ 𝐹ଵଶሻ െ ሺ𝐹ଵହ ൅ 𝐹ଵ଻ሻ ൅ 𝐹ଵ଼ (6) 
𝑑𝐵𝐷 𝑑𝑡⁄ ൌ ሺ𝐹଻ െ 𝐹 ሻെሺ𝐹ଵଷ ൅ 𝐹ଵସሻ (7) 
𝑑𝐸𝐷௜ 𝑑𝑡⁄ ൌ 𝐹ଵହ,ா஽೔ െ 𝐹ଵ଺,ா஽೔; 𝐸𝐷௜ (𝑖 ൌ 1,2,3) denotes EPO, EPH, EM, respectively (8) 
𝑑𝐸𝑁௝ 𝑑𝑡⁄ ൌ 𝐹ଵ଻,ாேೕ െ 𝐹ଵ଼,ாேೕ; 𝐸𝑁௝ (𝑗 ൌ 1,2,⋯ ,6) denotes ENH4, ENO3, ENO2, ENO, EN2O, EN2, respectively (9) 

𝑅௛ ൌ ሺ𝐹ଵ଴ ൅ 𝐹ଵଵ ൅ 𝐹ଵଶሻ ൅ ሺ𝐹ଵଷ ൅ 𝐹ଵସሻ; heterotrophic (microbial) respiration  
𝑅௔ ൌ 𝑓𝑅௔ ∙ 𝐺𝑃𝑃; autotrophic (root) respiration 
𝑅௦ ൌ 𝑅௔ ൅ 𝑅௛; total soil respiration 

(10) 
(11) 
(12) 

𝑑
𝑑𝑡
ቆ𝑃𝑂 ൅ 𝑃𝐻 ൅𝑀 ൅ 𝑄 ൅ 𝐷 ൅ 𝐵𝐴 ൅ 𝐵𝐷 ൅෍ 𝐸𝐷௜

ଷ

௜ୀଵ
൅෍ 𝐸𝑁௜

଺

௝ୀଵ
ቇ ൌ ሺ𝐼௉ை ൅ 𝐼௉ு ൅ 𝐼஽ሻ െ 𝑅௛ 

(13) 

Soil Nitrogen (state variable, e.g., PHN, denotes the N content in POMH pool): 
 For soil organic matter pools, the N flux: 𝐹𝑁௞ ൌ 𝐹௞ 𝐶𝑁௦௢௨௥௖௘⁄ , where Fk (k = 1–9) is the C flux, and 

CNsource is the C:N ratio of the (upstream) source pool. 
 For enzymes pools EDi (𝑖 ൌ 1,2,3) and ENj (𝑗 ൌ 1,2,⋯ ,6), the N flux 𝐹𝑁௞ ൌ 𝐹௞ 𝐶𝑁ாே௓⁄ , k = 15–18. 

(14a) 
 
(14b) 

𝑑𝐵𝐴𝑁
𝑑𝑡

ൌ
𝐹଺
𝐶𝑁஽

െ ൬
𝐹଻

𝐶𝑁஻஺
െ

𝐹
𝐶𝑁஻஽

൰ െ
𝐹ଽ

𝐶𝑁஻஺
െ
𝐹ଵହ ൅ 𝐹ଵ଻
𝐶𝑁ாே௓

൅
𝐹ଵ଼

𝐶𝑁ாே௓
െ 𝐹𝑁௠௡,஻஺ ൅ ൫𝐹𝑁௜௠,ேுସ→஻஺ ൅ 𝐹𝑁௜௠,ேைଷ→஻஺൯ 

(15) 

𝑑𝐵𝐷𝑁 𝑑𝑡⁄ ൌ ሺ𝐹଻/𝐶𝑁஻஺ െ 𝐹 /𝐶𝑁஻஽ሻ െ 𝐹𝑁௠௡,஻஽ (16) 

𝑑𝑁𝐻4 𝑑𝑡⁄ ൌ 𝐼ேுସ ൅ 𝐹𝑁௙௜௫ ൅ ൫𝐹𝑁௠௡,஻஺ ൅ 𝐹𝑁௠௡,஻஽൯ െ ൫𝐹𝑁௜௠,ேுସ→஻஺ ൅ 𝐹𝑁௜௠,ேுସ→௏ீ൯ െ 𝐹𝑁௡௜௧ (17) 

𝑑𝑁𝑂3 𝑑𝑡⁄ ൌ 𝐼ேைଷ ൅ 𝐹𝑁௡௜௧ െ 𝐹𝑁௡௜௧ିௗ௘௡௜௧ െ 𝐹𝑁ௗ௘௡௜௧మ െ ൫𝐹𝑁௜௠,ேைଷ→஻஺ ൅ 𝐹𝑁௜௠,ேைଷ→௏ீ൯ െ 𝐹𝑁௟௘௔௖௛,ேைଷ (18) 

𝑑𝑁𝑂2 𝑑𝑡⁄ ൌ 𝐹𝑁ௗ௘௡௜௧మ െ 𝐹𝑁ௗ௘௡௜௧య െ 𝐹𝑁௟௘௔௖௛,ேைଶ (19) 

𝑑𝑁𝑂 𝑑𝑡⁄ ൌ 𝐹𝑁ௗ௘௡௜௧య െ 𝐹𝑁ௗ௘௡௜௧ర െ 𝐹𝑁௘௠௜௧ర (20) 
𝑑𝑁2𝑂 𝑑𝑡⁄ ൌ 𝐹𝑁௡௜௧ିௗ௘௡௜௧ ൅ 𝐹𝑁ௗ௘௡௜௧ర െ 𝐹𝑁ௗ௘௡௜௧ఱ െ 𝐹𝑁௘௠௜௧ఱ  (21) 
𝑑𝑁2 𝑑𝑡⁄ ൌ 𝐹𝑁ௗ௘௡௜௧ఱ െ 𝐹𝑁௙௜௫ െ 𝐹𝑁௘௠௜௧ల (22) 
𝑑
𝑑𝑡
ቆ𝑃𝑂𝑁 ൅ 𝑃𝐻𝑁 ൅𝑀𝑁 ൅ 𝑄𝑁 ൅ 𝐷𝑁 ൅ 𝐵𝐴𝑁 ൅ 𝐵𝐷𝑁 ൅෍ 𝐸𝐷𝑁௜

ଷ

௜ୀଵ
൅෍ 𝐸𝑁𝑁௜

଺

௝ୀଵ
 ቇ

ൌ ሺ𝐼𝑁௉ை ൅ 𝐼𝑁௉ு ൅ 𝐼𝑁஽ሻ ൅ ൫𝐹𝑁௜௠,ேுସ→஻஺ ൅ 𝐹𝑁௜௠,ேைଷ→஻஺൯ െ ൫𝐹𝑁௠௡,஻஺ ൅ 𝐹𝑁௠௡,஻஽൯ 

(23a) 

𝑑
𝑑𝑡
ቆ𝑁𝐻4𝑎𝑑𝑠 ൅෍ 𝑁௝

଺

௝ୀଵ
ቇ

ൌ ሺ𝐼ேுସ ൅ 𝐼ேைଷሻ ൅ ൫𝐹𝑁௠௡,஻஺ ൅ 𝐹𝑁௠௡,஻஽൯ െ ൫𝐹𝑁௜௠,ேுସ→஻஺ ൅ 𝐹𝑁௜௠,ேைଷ→஻஺൯

െ ൫𝐹𝑁௜௠,ேுସ→௏ீ ൅ 𝐹𝑁௜௠,ேைଷ→௏ீ൯ െ ൫𝐹𝑁௟௘௔௖௛,ேைଷ ൅ 𝐹𝑁௟௘௔௖௛,ேைଶ൯ െ෍ 𝑁𝐹௘௠௜௧ೕ
଺

௝ୀସ
 

(23b) 

𝑑
𝑑𝑡
ቆ𝑃𝑂𝑁 ൅ 𝑃𝐻𝑁 ൅𝑀𝑁 ൅ 𝑄𝑁 ൅ 𝐷𝑁 ൅ 𝐵𝐴𝑁 ൅ 𝐵𝐷𝑁 ൅෍ 𝐸𝐷𝑁௜

ଷ

௜ୀଵ
൅෍ 𝐸𝑁𝑁௜

଺

௝ୀଵ
൅෍ 𝑁௝

଺

௝ୀଵ
൅ 𝑁𝐻4𝑎𝑑𝑠ቇ

ൌ ሺ𝐼𝑁௉ை ൅ 𝐼𝑁௉ு ൅ 𝐼𝑁஽ሻ ൅ ሺ𝐼ேுସ ൅ 𝐼ேைଷሻ െ ൫𝐹𝑁௜௠,ேுସ→௏ீ ൅ 𝐹𝑁௜௠,ேைଷ→௏ீ൯

െ ൫𝐹𝑁௟௘௔௖௛,ேைଷ ൅ 𝐹𝑁௟௘௔௖௛,ேைଶ൯ െ෍ 𝑁𝐹௘௠௜௧ೕ

଺

௝ୀସ

(23c) 

Note: Eqs. 13, 23a, 23b and 23c express the overall mass balance of soil organic C (SOC), soil organic N 
(SON), inorganic N and total N, respectively. The transformation fluxes (F or FN) are described in Table 
S3 and Table S4. 
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Table S3 Component fluxes in the MEND model (SOM decomposition, microbial and enzyme 

fluxes) 

Flux description Equation Eq# 
Particulate organic matter (POM) pool 
(oxidative) (PO) decomposition (F1) 

𝐹ଵ ൌ 𝑉𝑑௉ை ∙ 𝐸𝑃𝑂 ∙ 𝑃𝑂 ሺ𝐾௉ை ൅ 𝑃𝑂ሻ⁄  (24) 

POM pool (hydrolytic) (PH) decomposition 𝐹ଶ ൌ 𝑉𝑑௉ு ∙ 𝐸𝑃𝐻 ∙ 𝑃𝐻 ሺ𝐾௉ு ൅ 𝑃𝐻ሻ⁄  (25) 
Mineral-associated organic matter (M) 
decomposition 

𝐹ଷ ൌ 𝑉𝑑ெ ∙ 𝐸𝑀 ∙ 𝑀 ሺ𝐾ெ ൅𝑀ሻ⁄  (26) 

Adsorption (F4) and desorption (F5) between 
dissolved organic matter (D) and adsorbed 
DOM (Q) 

𝐹ସ ൌ 𝑘௔ௗ௦ ∙ ሺ1 െ 𝑄/𝑄௠௔௫ሻ ∙ 𝐷 
𝐹ହ ൌ 𝑘ௗ௘௦ ∙ ሺ𝑄/𝑄௠௔௫ሻ 
𝐾௔ௗ௦ ൌ 𝐾ௗ௘௦ ∙ 𝐾௕௔ 

(27) 
(28) 

DOM (D) uptake by microbes 𝐹଺ ൌ
1
𝑌௚
൫𝑉௚ ൅ 𝑉௠൯ ∙

𝐵𝐴 ∙ 𝐷
𝐾஽ ൅ 𝐷

 (29) 

Dormancy (F7) and resuscitation (F8) between 
active (BA) and dormant (BD) microbes  

𝐹଻ ൌ ሾ1 െ 𝐷/ሺ𝐾஽ ൅ 𝐷ሻሿ ∙ 𝑉௠ ∙ 𝐵𝐴 
𝐹 ൌ ሾ𝐷/ሺ𝐾஽ ൅ 𝐷ሻሿ ∙ 𝑉௠ ∙ 𝐵𝐷         

(30) 
(31) 

MBA (BA) mortality  𝐹ଽ ൌ 𝛾 ∙ 𝑉௠ ∙ 𝐵𝐴 (32) 
MBA (BA) growth respiration (F10) and 
maintenance respiration (F11) 

𝐹ଵ଴ ൌ ቆ
1
𝑌௚
െ 1ቇ ∙

𝑉௚ ∙ 𝐵𝐴 ∙ 𝐷
𝐾஽ ൅ 𝐷

 

𝐹ଵଵ ൌ ቆ
1
𝑌௚
െ 1ቇ ∙

𝑉௠ ∙ 𝐵𝐴 ∙ 𝐷
𝐾஽ ൅ 𝐷

 

(33) 
 
 

(34) 

MBA (BA) overflow respiration (F12) 𝐹ଵଶ ൌ 𝑚𝑎𝑥൛0,𝐵𝐴 െ 𝐵𝐴𝑁 ∙ 𝐶𝑁஻஺,௠௔௫ൟ (35) 
MBD (BD) maintenance respiration (F13) 𝐹ଵଷ ൌ 𝛽 ∙ 𝑉௠ ∙ 𝐵𝐷    (36) 
MBD (BD) overflow respiration (F14) 𝐹ଵସ ൌ 𝑚𝑎𝑥൛0,𝐵𝐷 െ 𝐵𝐷𝑁 ∙ 𝐶𝑁஻஺,௠௔௫ൟ (37) 
Synthesis of enzymes for decomposition of 
PO (F15,EPO, EPO = ED1), PH (F15,EPH, EPH = 
ED2), and M (F15,EM, EM = ED3) 

𝐹ଵହ,ா௉ை ൌ 𝑃𝑂/ሺ𝑃𝑂 ൅ 𝑃𝐻ሻ ∙ 𝑝ா௉ ∙ 𝑉௠ ∙ 𝐵𝐴 
𝐹ଵହ,ா௉ு ൌ 𝑃𝐻/ሺ𝑃𝑂 ൅ 𝑃𝐻ሻ ∙ 𝑝ா௉ ∙ 𝑉௠ ∙ 𝐵𝐴 
𝐹ଵହ,ாெ ൌ 𝑓𝑝ாெ ∙ 𝑝ா௉ ∙ 𝑉௠ ∙ 𝐵𝐴 

𝐹ଵହ ൌ෍ 𝐹ଵହ,ா஽ೕ

ଷ

௜ୀଵ
ൌ 𝐹ଵହ,ா௉ை ൅ 𝐹ଵହ,ா௉ு ൅ 𝐹ଵହ,ாெ 

(38) 

Turnover of enzymes (EPO = ED1, EPH = 
ED2, EM = ED3) 

𝐹ଵ଺,ா஽೔ ൌ 𝑟ா ∙ 𝐸𝐷௜  

𝐹ଵ଺ ൌ෍ 𝐹ଵ଺,ா஽ೕ

ଷ

௜ୀଵ
 

(39) 

Synthesis of enzymes for nitrification, 
denitrification, and N fixation; 
𝐸𝑁௝ (𝑗 ൌ 1 െ 6): ENH4, ENO3, ENO2, ENO, 
EN2O, EN2; 
𝑁௝ (𝑗 ൌ 1 െ 6): NH4, NO3, NO2, NO, N2O, N2; 
𝑆𝑂𝑁௜ (𝑖 ൌ 1 െ 5): PON, PHN, MN, QN, DN 

𝐹ଵ଻

ൌ෍ 𝐹ଵ଻,ாேೕ

଺

௝ୀଵ
ൌ 𝐹ଵହ

∙ ሺ𝑁𝐻4 ൅ 𝑁𝑂3 ൅ 𝑁𝑂2ሻ ෍ 𝑆𝑂𝑁௜
ସ

௜ୀଵ
ൗ  

𝐹ଵ଻,ாேೕ ൌ
𝑁௝ 𝐾𝑆𝑁௝⁄

∑ ൫𝑁௝ 𝐾𝑆𝑁௝⁄ ൯଺
௝ୀଵ

∙ 𝐹ଵ଻ 

 

(40) 

Turnover of enzymes for nitrification, 
denitrification, and N fixation 

𝐹ଵ଼ ൌ ∑ 𝐹ଵ଼,ாேೕ
଺
௝ୀଵ ; 𝐹ଵ଼,ாேೕ ൌ 𝑟ா ∙ 𝐸𝑁௝  (41) 

Note: Model parameters are described in Table S5. 
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Table S4 Component fluxes in the MEND model (nitrification, denitrification, N fixation, N 

mineralization and immobilization, NH4
+ sorption, NO3

– and NO2
– leaching, and N gases 

emission) 

Flux description Equation Eq# 
Nitrification 𝐹𝑁௡௜௧ ൌ

𝑉𝑁௡௜௧ ∙ 𝐸𝑁𝐻4 ∙ 𝑁𝐻4
𝐾𝑆𝑁ଵ ൅ 𝑁𝐻4

 (42) 

Nitrifier 
Denitrification 

𝐹𝑁௡௜௧ିௗ௘௡௜௧ ൌ 𝐹𝑁௡௜௧ ∙ ሾ1 െ 𝑓ሺ𝑂ଶሻሿ 

𝑓ሺ𝑂ଶሻ ൌ
ሺଵିௐி௉ሻర/య

଴.ହర/యାሺଵିௐி௉ሻర/య; WFP is water-filled porosity 

(43a) 
(43b) 

Denitrification of 
NO3, NO2, NO, 
N2O: 𝑗 ൌ 2,3,4,5  

𝐹𝑁ௗ௘௡௜௧ೕ ൌ
𝑉𝑁௝ ∙ 𝐸𝑁௝ ⋅ 𝑁௝
𝐾𝑆𝑁௝ ൅ 𝑁௝

 
(44) 

N fixation 𝐹𝑁௙௜௫ ൌ
𝑉𝑁௙௜௫ ∙ 𝐸𝑁2 ∙ 𝑁2
𝐾𝑆𝑁଺ ൅ 𝑁2

∙ ൬1 െ
𝑁𝐻4

𝐾𝑆𝑁ଵ ൅ 𝑁𝐻4
൰ 

(45) 

N mineralization 𝐹𝑁௠௡,஻஺ ൌ ሺ1 െ 𝑌𝑁௚ሻ ∙ 𝐹𝑁଺ 

𝑌𝑁௚ ൌ ቆ
𝐶𝑁஻஺ െ 𝐶𝑁஻஺,௠௜௡

𝐶𝑁஻஺,௠௔௫ െ 𝐶𝑁஻஺,௠௜௡
ቇ
ఠ

 

(46) 
 

(47) 

N immobilization 
by microbes 

𝐹𝑁௜௠,ேுସ→஻஺ ൌ ൣሺ𝑉𝑁௜௠,ேுସ ∙ 𝑌𝑁௚ሻ ∙ 𝐵𝐴 ∙ 𝑁𝐻4൧/ሺ𝐾𝑆𝑁஻஺ଵ ∙ 𝜂ሻ 
𝐹𝑁௜௠,ேைଷ→஻஺ ൌ ൣ൫𝑉𝑁௜௠,ேைଷ ∙ 𝑌𝑁௚൯ ∙ 𝐵𝐴 ∙ 𝑁𝑂3൧/ሺ𝐾𝑆𝑁஻஺ଶ ∙ 𝜂ሻ 

𝜂 ൌ 1 ൅
𝐵𝐴

𝐾𝑆𝑁஻஺ଵ
൅

𝑁𝐻4
𝐾𝑆𝑁஻஺ଵ

൅
𝑁𝑂3

𝐾𝑆𝑁஻஺ଶ
൅

𝑁𝐻4
𝐾𝑆𝑁௏ீଵ

൅
𝑁𝑂3

𝐾𝑆𝑁௏ீଶ
 

(48) 
(49) 
(50) 

N uptake by 
plants 

𝐹𝑁௜௠,ேுସ→௏ீ ൌ ൣ൫𝑉𝑁௏ீ,ேுସ ∙ 𝑟𝐺𝑃𝑃൯ ∙ 𝑁𝐻4൧/ሺ𝐾𝑆𝑁௏ீଵ ∙ 𝜂ሻ 
𝐹𝑁௜௠,ேைଷ→௏ீ ൌ ൣ൫𝑉𝑁௏ீ,ேைଷ ∙ 𝑟𝐺𝑃𝑃൯ ∙ 𝑁𝑂3൧/ሺ𝐾𝑆𝑁௏ீଶ ∙ 𝜂ሻ 
Coefficient rGPP =f(GPP), e.g., 𝑟𝐺𝑃𝑃 ൌ exp ሾ𝜔௏ீ ∙ ൫𝐺𝑃𝑃/𝐺𝑃𝑃௥௘௙ െ 1൯ሿ 

(51) 
(52) 

NH4
+ sorption 𝑁𝐻4 ൌ ൤𝐴 ൅ ට𝐴ଶ ൅ 4𝐾௕௔,ேுସ ∙ 𝑁𝐻4𝑡𝑜𝑡൨ ሺ2 ∙ 𝐾௕௔,ேுସሻൗ  

𝑁𝐻4𝑎𝑑𝑠 ൌ 𝑁𝐻4𝑡𝑜𝑡 െ 𝑁𝐻4 
where 𝐴 ൌ 𝐾௕௔,ேுସ ∙ ሺ𝑁𝐻4𝑡𝑜𝑡 െ 𝑁𝐻4௠௔௫ሻ െ 1 
derived from: 𝑁𝐻4𝑎𝑑𝑠 ൅ 𝑁𝐻4 ൌ 𝑁𝐻4𝑡𝑜𝑡 
𝑁𝐻4𝑎𝑑𝑠 ൌ 𝑁𝐻4௠௔௫ ∙ ൫𝐾௕௔,ேுସ ∙ 𝑁𝐻4൯/ሺ1 ൅ 𝐾௕௔,ேுସ ∙ 𝑁𝐻4ሻ 

(53a) 
 
(53b) 
(53c) 
(53d) 
(53e) 

NO3
– and NO2

– 

leaching 
𝐹𝑁௟௘௔௖௛,ேைଷ ൌ 𝑁𝑂3 ∙ 𝑓𝑁௟௘௔௖௛ 
𝐹𝑁௟௘௔௖௛,ேைଶ ൌ 𝑁𝑂2 ∙ 𝑓𝑁௟௘௔௖௛ 
where: 𝑓𝑁௟௘௔௖௛ ൌ 𝑟௟௘௔௖௛ ∙ 𝑓𝑁ௗ௜௦௦௢௟௩௘ௗ ∙ ൫𝜃௣௘௥௖ 𝜃⁄ ൯ 
𝑓𝑁ௗ௜௦௦௢௟௩௘ௗ ൌ ሺ𝜃 𝜃௦௔௧⁄ ሻଷ 
𝜃௣௘௥௖ ൌ 𝜃௘௫௖௘௦௦ ∙ ൣ1 െ exp൫െΔ𝑡 𝑇𝑇௣௘௥௖⁄ ൯൧ 
𝜃௘௫௖௘௦௦ ൌ max ሺ0,𝜃 െ 𝜃ி஼ሻ 
𝑇𝑇௣௘௥௖ ൌ ሺ𝜃௦௔௧ െ 𝜃ி஼ሻ ∙ 𝐷𝑒𝑝𝑡ℎ 𝐾௦௔௧⁄  
𝑟௟௘௔௖௛ ∈ ሺ0,1ሻ: scaling factor; 
𝜃: volumetric soil water content (SWC); 𝜃௦௔௧ and 𝜃ி஼: SWC at saturation and field 
capacity; Depth: soil depth (cm); 𝜃௘௫௖௘௦௦: excess SWC available for percolation; 
𝜃௣௘௥௖: SWC percolation; 𝐾௦௔௧: saturated hydraulic conductivity (cm h–1); Δ𝑡: given 
time-period (= 1h); 𝑇𝑇௣௘௥௖: travel time for percolation (h) 

(54a) 
(54b) 
(54c) 
(54d) 
(54e) 
(54f) 
(54g) 

NO, N2O, N2 gas 
emission: j = 4,5,6 

𝐹𝑁௘௠௜௧ೕ ൌ ൣ𝐷𝑠௝ ∙ ൫𝑁௝ െ 𝑁𝑎𝑖𝑟௝൯ ሺ0.5 ∙ 𝐷𝑒𝑝𝑡ℎሻ⁄ ൧ 𝐷𝑒𝑝𝑡ℎ⁄  

where: 𝐷𝑠௝: gas diffusivity in soil (cm2 h–1);  
𝑁௝ and 𝑁𝑎𝑖𝑟௝ gas concentration in soil and air (mg N cm–3) 

(55) 

Note: Model parameters are described in Table S5. 
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Table S5 MEND model parameters  

ID Parameter Description Range Units Eq# 
1 LF0 Initial fraction of PO, LF0 = PO/(PO+PH) (0.1, 1.0) —  
2 r0 Initial active fraction of microbes, r0 = BA/(BA+BD) (0.01, 1) —  
3 fRa Scaling factor for autotrophic respiration (Ra) (0.1, 0.4) — 11 
4 fINP Scaling factor for litter input rate (0.1, 0.9) — 1 
5 Vd Maximum specific decomposition rate VdPO = VdPH = 

VdM = Vd 
(0.1, 100) mg C mg−1 C h−1 24–26 

6 KPO Half-saturation constant (HSC) for PO decomposition (40,100) mg C cm−3 soil 24 
7 fKM KM = KPO×fKM, KPH = KPO/fKM 

KPH and KM are HSC for PH and M, respectively 
(2, 20) — 25–26 

8 Qmax Maximum sorption capacity (0.5, 5.0) mg C cm−3 soil 27 
9 Kba Binding affinity for DOM, sorption rate kads =  kdes× Kba (1, 16) (mg C cm−3 soil) −1 27 
10 kdes Desorption rate for DOM (1e-4, 0.01) mg C cm−3 soil h−1 28 

11* rE Enzyme turnover rate  (1e-4, 0.01) mg C mg−1 C  h−1 39, 41 
12* pEP [Vm×pEP] is the production rate of EP (EPO + EPH), Vm 

is the specific maintenance rate for BA 
(1e-3, 0.1) — 38 

13* fpEM fpEM  = pEM/pEP , [Vmt×pEM] is the production rate of EM (0.1, 5.0) — 38 
14 fD Fraction of decomposed PO and PH allocated to D (0.05, 1) — 3 
15 𝑔஽ Fraction of dead BA allocated to D (0.01, 1) — 1 
16 𝑔௉ை ሺ1 െ 𝑔஽ሻ ∙ 𝑔௉ை is the fraction of dead BA entering PO (0.05, 0.2) — 2 

17* Vg Maximum specific uptake rate of D for growth (1e-3, 0.1) mg C mg−1 C h−1 29 
18* α = Vm /( Vg + Vm), Vm is max specific maintenance rate (0.01, 0.5) — 29 
19* KD HSC for microbial uptake of D (1e-4, 0.5) mg C cm−3 soil 29 
20* Yg(Tref) Intrinsic C use efficiency at reference temperature (Tref) (0.2, 0.4) — 29 
21* kYg Slope for Yg dependence of temperature (1e-3, 0.016) 1/°C 29 
22 Q10 Q10 for temperature response function (1.2, 2.5) —  

23* γ Max microbial mortality rate = Vm× γ (0.01, 20) — 32 
24 β Ratio of dormant maintenance rate to Vm (5e-4, 0.05) — 36 
25 ψA2D Soil water potential (SWP) threshold for microbial 

dormancy; both ψA2D & ψD2A < 0  
(–0.6, –0.2) MPa  

26 τ ψD2A = ψA2D × τ, ψD2A is the SWP threshold for microbial 
resuscitation 

(0.1, 0.9) —  

27 ω Exponential in SWP function for microbial dormancy or 
resuscitation  

(1, 6) —  

28* 𝑉𝑁௜௠,஻஺ Max specific microbial N immobilization rate  

𝑉𝑁௜௠,ேுସ ൌ 𝑉𝑁௜௠,஻஺ ∙ 𝑁𝐻4/ሺ𝑁𝐻4 ൅𝑁𝑂3ሻ 
𝑉𝑁௜௠,ேைଷ ൌ 𝑉𝑁௜௠,஻஺ ∙ 𝑁𝑂3/ሺ𝑁𝐻4 ൅ 𝑁𝑂3ሻ 

(1e-4, 0.1) mg N mg−1 C h−1 48, 49 

29 𝐾𝑆𝑁஻஺ଵ HSC for microbial immobilization of NH4
+  (1e-4, 0.01) mg N cm−3 soil 48–50 

30 𝐾𝑆𝑁஻஺ଶ HSC for microbial immobilization of NO3
– (1e-4, 0.01) mg N cm−3 soil 48–50 

31* 𝑉𝑁௡௜௧ Max specific nitrification rate (VN1) (0.1, 1000) mg N mg−1 C h−1 42 
32* 𝑉𝑁ௗ௘௡௜௧ Max specific denitrification rate, VNj = 𝑉𝑁ௗ௘௡௜௧, j=2–5 (1e-4, 1.0) mg N mg−1 C h−1 44 
33* VNfix Max specific N fixation rate (VN6) (1e-4, 0.1) mg N mg−1 C h−1 45 
34 KSN1 HSC for nitrification (1e-3, 1.0) mg N cm−3 soil 42 
35 KSN2 HSC for denitrification of NO3

– and NO2
– (KSN3) (1e-4, 0.1) mg N cm−3 soil 44 

36 KSN4 HSC for denitrification of NO and N2O (KSN5) (1e-4, 0.1) mg N cm−3 soil 44 
37 KSN6 HSC for N fixation (1e-4, 0.1) mg N cm−3 soil 45 

38* 𝑉𝑁௏ீ Max plant N uptake rate; 𝑉𝑁௏ீ,ேுସ ൌ 𝑉𝑁௏ீ,ேைଷ ൌ 𝑉𝑁௏ீ  (1e-6, 1e-3) mg N cm−3 h−1 51, 52 
39 KSNVG1 HSC for plant uptake of NH4

+ (1e-4, 0.01) mg N cm−3 soil 51 
40 KSNVG2 HSC for plant uptake of NO3

– (1e-4, 0.01) mg N cm−3 soil 52 
41 ωVG Exponential for calculating rGPP as a function of GPP (0.01, 1) — 52 

42* NH4max Maximum sorption capacity for NH4
+ (1e-5, 0.01) mg N cm−3 soil 53 

43 Kba,NH4 Binding affinity for NH4
+ (1, 1e4) (mg N cm−3 soil) −1 53 

44 rleach Scaling factor for NO3
– and NO2

– leaching (0.01, 1) — 54 

Notes: ‘*’ in the column ‘ID’ denotes the parameters calibrated in this study. The column ‘Eq#’ lists the major 
equation # where each parameter is used. 
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Table S6 MEND model: response functions of soil pH, temperature, and moisture 

Function 
description 

Response function Variables and Parameters Eq# 

Reaction rate 𝑣 ൌ 𝑣଴ ∙ 𝑓ሺ𝜓ሻ ∙ 𝑓ሺ𝑇ሻ ∙ 𝑓ሺ𝑝𝐻ሻ 
𝑓ሺ𝜓ሻ: soil moisture response function (SMRF) 
𝑓ሺ𝑇ሻ: soil temperature response function; 
𝑓ሺ𝑝𝐻ሻ: pH response function 

𝑣଴: baseline reaction rate; 
𝜓: soil water potential, SWP (MPa); 
T: soil temperature; 
pH: soil pH 

56 

Soil pH 
response 
function 

𝑓ሺ𝑝𝐻ሻ ൌ 𝑒𝑥𝑝 ቈെ൬
𝑝𝐻 െ 𝑝𝐻௢௣௧

𝑝𝐻௦௘௡
൰
ଶ

቉ 
pHopt: optimum pH that gives the 
maximum reaction rate; 
pHsen: sensitivity of the reaction rate to 
deviation from pHopt 

57 

Temperature 
sensitivity of 
intrinsic carbon 
use efficiency 
(𝑌௚) 

𝑌௚ሺ𝑇ሻ ൌ 𝑌௚൫𝑇௥௘௙൯ െ 𝑘௒௚ ∙ ሺ𝑇 െ 𝑇௥௘௙ሻ 𝑌௚൫𝑇௥௘௙൯: 𝑌௚ at reference temperature, 
𝑇௥௘௙ (°C); 
െ𝑘௒௚: the slope, –0.016   –kYg  –
0.001 °C −1 
 

58 

Temperature 
response: 
Arrhenius 
equation or Q10 
method 

𝑓ሺ𝑇ሻ ൌ 𝑒𝑥𝑝 ቈെ
𝐸𝑎
𝑅
ቆ

1
𝑇
െ

1
𝑇௥௘௙

ቇ቉ 

𝑓ሺ𝑇ሻ ൌ 𝑄ଵ଴
்ି்ೝ೐೑
ଵ଴  

𝑄ଵ଴ ൌ 𝑒𝑥𝑝 ቈ
𝐸𝑎

𝑅 ⋅ 𝑇௥௘௙
⋅

10
𝑇
቉ 

T: temperature (K); 
Tref: reference temperature (K); 
Ea: activation energy (kJ mol−1); 
R = 8.314 J mol−1 K−1, the universal 
gas constant; 
Q10: the factor by which the reaction 
rate is multiplied when temperature 
increases over Tref by 10 K 

 
59 
 
60 
 
61 

SMRF for SOM 
decomposition 
by oxidative 
enzymes 

𝑓௢௫௜ሺ𝜓ሻ

ൌ

⎩
⎪
⎨

⎪
⎧

0, 𝜓 ൑ െ10ଶ.ହ

0.625 െ 0.25 ൈ logଵ଴ሺെ𝜓ሻ , െ10ଶ.ହ ൏ 𝜓 ൑ െ10ଵ.ହ

                                                  1, െ10ଵ.ହ ൏ 𝜓 ൑ െ10ିଶ.ହ

ሾ2.5 ൅ 0.4 ൈ logଵ଴ሺെ𝜓ሻሿ/1.5, െ10ିଶ.ହ ൏ 𝜓 ൑ െ10ିସ

                           0.6, 𝜓 ൐ െ10ିସ

 

𝜓: soil water potential (MPa) 
Hansen et al. [45] 

62 

SMRF for SOM 
decomposition 
by hydrolytic 
enzymes 

𝑓௛௬ௗሺ𝜓ሻ

ൌ

⎩
⎪
⎨

⎪
⎧ 0, 𝜓 ൑ 𝜓௠௜௡

1 െ ൤
ln ሺ𝜓/𝜓ி஼ሻ

ln ሺ𝜓௠௜௡/𝜓ி஼ሻ
൨
௕

, 𝜓௠௜௡ ൏ 𝜓 ൑ 𝜓ி஼  

                    1, 𝜓 ൐ 𝜓ி஼   

 

𝜓: soil water potential (MPa); 
𝜓ி஼= −0.033 MPa: SWP at field 
capacity;  
𝜓௠௜௡: microbial stress threshold SWP; 
b: a shape parameter 
Manzoni et al. [46] 

63 

SMRF for 
microbial 
dormancy & 
resuscitation 

𝑓஺ଶ஽ሺ𝜓ሻ ൌ
1

1 ൅ ሾ𝜓஺ଶ஽ 𝜓⁄ ሿఠ
 

𝑓஽ଶ஺ሺ𝜓ሻ ൌ
1

1 ൅ ሺ𝜓 𝜓஽ଶ஺⁄ ሻఠ
ൌ

1
1 ൅ ሾ𝜓 ሺ𝜓஺ଶ஽ ൈ 𝜏ሻ⁄ ሿఠ

 

𝜓: soil water potential (MPa); 
𝜓஺ଶ஽ (MPa): critical SWP for 
microbial dormancy;  
𝜓஽ଶ஺ (MPa): critical SWP for 
microbial resuscitation;  
𝜏 ൌ 𝜓஽ଶ஺/𝜓஺ଶ஽; 
ω: exponent to describe the steepness 
of the curve 

64 
 
 
65 

SMRF for 
nitrification & 
denitrification 𝑓ሺ𝑊𝐹𝑃ሻ ൌ

⎩
⎪
⎨

⎪
⎧

0 𝑊𝐹𝑃 ൑ 𝑊𝐹𝑃ଵ
𝑎ା ൅ 𝑏ା ⋅ 𝑊𝐹𝑃 𝑊𝐹𝑃ଵ ൏ 𝑊𝐹𝑃 ൑ 𝑊𝐹𝑃ଶ

1 𝑊𝐹𝑃ଶ ൏ 𝑊𝐹𝑃 ൑ 𝑊𝐹𝑃ଷ
𝑎ି ൅ 𝑏ି ⋅ 𝑊𝐹𝑃 𝑊𝐹𝑃ଷ ൏ 𝑊𝐹𝑃 ൑ 𝑊𝐹𝑃ସ

0 𝑊𝐹𝑃 ൐ 𝑊𝐹𝑃ସ

 

𝑊𝐹𝑃 ൌ 𝜃/𝜙: water-filled pore space; 
𝜃: volumetric water content; 
𝜙 soil porosity;  
𝑎ା  and 𝑏ା  are intercept and slope of 
linear regression for increasing activity 
(i.e., 𝑏ା ൐ 0);  
𝑎ି  and 𝑏ି  are intercept and slope of 
linear regression for decreasing activity 
(i.e., 𝑏ି ൏ 0);  
𝑊𝐹𝑃௜ , ሺ𝑖 ൌ 1,2,3,4ሻ and 𝑎ା, 𝑏ା,𝑎ି, 𝑏ି 
are adapted from Muller [48].  
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5. Supplementary Results 

5.1. MEND parameter sensitivity 

Based on the MOPSA approach, we summarized the sensitivity of 13 major C and N variables 

to 36 model parameters in MEND-new (Supplementary Fig. S5). The sensitivity indices ranged 

from 0 to 0.29, where a greater value means a higher sensitivity. We used the cutoff value of 0.05 

for sensitivity indices to distinguish important from unimportant parameters, as 0.05 denoted small 

difference when all parameter values were normalized to the range between 0 and 1.  

Our MOPSA results show that most of the sensitivity indices were below 0.05 (gray and white 

colors), though most differences were statistically significant (gray colors with p-value < 0.05). 

Soil organic matter pools (SOM, POM, MOM, and DOM) and microbial pools (MB, MBA, and 

MBD) were more sensitive to microbial physiological parameters (e.g., specific growth rate (Vg), 

maintenance rate (controlled by 𝛼), intrinsic C use efficiency (Yg), and the temperature sensitivity 

of Yg (kYg)) than those parameters regulating inorganic N transformations (i.e., from microbial N 

immobilization rate (VNimMB) to binding affinity for NH4
+ adsorption (KbaNH4)). Enzymes 

(ENZSOM for SOM decomposition and ENZNmin for inorganic N transformations) were majorly 

regulated by enzyme production and turnover (pEP, fpEM, fpENZN, and rE) as well as microbial 

maintenance (controlled by 𝛼). The parameters governing biological N fixation (e.g., VNfix) and 

plant N uptake (e.g., VNplant) were more influential on the inorganic N pools (NH4
+, NO3

–, and 

N2O), so were the parameters related to enzyme production and turnover (pEP and rE), and 

microbial growth and maintenance (Vg and 𝛼).  The cutoff threshold of 0.05 to separate important 

from unimportant parameters in this study is also frequently accepted in the Sobol sensitivity 

analysis to identify important parameters [58]. Moving the cutoff value would affect the number 

of important parameters (Fig. S5).   
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The sensitivity analysis results shown in Fig. S5 provided favorable guidance on the MEND 

model calibration: (i) we could use a two-step procedure to calibrate model parameters, with the 

first step focusing on SOM and microbial physiological parameters (i.e., from specific enzyme 

activity (Vd) to dormant microbial maintenance coefficient (𝛽)) and the second step on inorganic 

N parameters (i.e., from VNimMB to KbaNH4); (ii) in each calibration step, we could select the most 

important (i.e., sensitive) parameters to calibrate against relevant observations, with the other less 

important or well-documented parameters being fixed.  

 

Figure S5. MEND parameter sensitivity analysis. Variables and parameters were described in 

Supplementary Table S1 and S5, respectively. ENZSOM denotes the total concentrations of three 

functional enzyme groups for soil organic matter decomposition. ENZNmin represents the total 

concentrations of six enzyme groups for inorganic N transformations. The sensitivity index is 

defined as the median of the difference between acceptable and unacceptable parameter samples 

identified by the Multi-Objective Parameter Sensitivity Analysis (MOPSA) method. A higher 

sensitivity index means the variable is more sensitive to that parameter. Sensitivity indices are 

statistically significant (p-value < 0.05) except for those grids in white color (p-value ≥ 0.05) 

according to the Wilcoxon Rank Sum Test. 
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5.2. Quantification of uncertainties in parameters and response variables 

Using the UQ-COFI method, we derived the posteriori distributions of 14 calibrated 

parameters (Supplementary Fig. S6) from the a priori uniform distributions within their respective 

parameter range (Supplementary Table S5). None of the 14 parameters conformed to a normal or 

log-normal distribution (p-value < 0.001) by the Anderson-Darling normality test [70], consistent 

with the observation that ecological data may not be normally distributed [70]. Averagely, the 95% 

confidence intervals of the posteriori parameters shrank to around 43% of the original a priori 

ranges.  

The uncertainties in response variables were also evaluated by running the model with these 

posteriori parameter sets. For example, the 95% confidence intervals of simulated Rs due to 

parameter uncertainty expanded from 4% to 297% (averagely 50%) of the observed standard 

deviations, and the ratios of simulated to observed standard deviations ranged from 1% to 87% 

with an average of 13% (Fig. 3a). Note that parameter uncertainty was solely considered in these 

model simulations. It implies that the uncertainty in measured data (e.g., Rs in this study) could be 

another important source for uncertainty analysis in model-data integration studies [71]. 
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Figure S6. Posteriori distribution of parameters derived from the Uncertainty 
Quantification by the Critical Objective Function Index (UQ-COFI) method. See parameter 
description in Supplementary Table S5. “width*density” means the product of bin width and 
density. Vertical dashed lines denote the mean values.   
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5.3. MEND calibration and validation of inorganic N flux rates 

Our model-data fusion results indicated that eCO2 increased the biological N fixation rates 

(averagely +12% and +7% for aN and eN, respectively, see Fig. 4a) and N2O efflux rates (+19% 

and +7% for aN and eN, respectively), as well as the NH4
+ to NO3

– ratio (+39% under aN and +9% 

under eN, Fig. 3c & 3d), which corroborated the previous meta-analysis [72]. However, the 

positive eCO2 effects on the biological N fixation rates (Fig. 4a) or N2O efflux rates were much 

lower under eN than those under aN, which meant elevated N supply could potentially alleviate N 

limitation in this study. Contrary to the results of Liang et al. [72], our modeling results did not 

show significant decreases in NO3
– leaching in response to eCO2 under either aN or eN, despite 

that there was a slight increase (+7%, p-value > 0.05) under aN and no change (+0.1%, p-value > 

0.05) under eN. The insignificant main effects of eCO2 on NO3
– leaching had been experimentally 

observed at the same study site [73]. However, our modeling did not represent the impacts of plant 

species richness (1 or 16 species) on NO3
– leaching as reported by Dijkstra et al. [73], suggesting 

that there could be large uncertainty in the estimates of NO3
– leaching due to complicated effects 

of water fluxes, eCO2, eN, and plant species.  

 
Figure S7. Comparison between simulated actual rate and observed reference rate. (a) Net 
N mineralization rate; (b) Nitrification rate. Error bars are standard deviations (n = 10). Different 
letters (a, b and c) above the simulated rates denote significant difference (p-value < 0.05) by the 
Wilcoxon signed rank test.  
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5.4. Elevated CO2 effect on microbial C:N ratios 

 

Figure S8. Comparison of elevated CO2 effect on microbial C:N ratios simulated by two 

models (MEND-old and MEND-new). (a) MEND-old modeled microbial C:N ratios under 

ambient CO2 concentration (aC) and elevated CO2 concentration (eC); (b) MEND-new modeled 

microbial C:N ratios under aC and eC. MEND-old and MEND-new denote the old version of 

MEND model as described in Gao et al. (2020) and the new MEND model in this study, 

respectively. The difference between paired data was tested by the Wilcoxon signed rank test. “*”, 

“**”, and “***” denote significant difference with p-value < 0.05, p-value < 0.01, and p-value < 

0.001, respectively. “NS.” means not significant. 

 
 
 
 
 
 

(a) (b) 
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