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Supplementary Information Text 34 

A: Details for Mathematical Problems Associated with Several Previous Approaches 35 

A.1: Characteristics and key issues associated with several previous approaches 36 

 37 

The main purpose of direct relationship inference is to find the direct association matrix S, when 38 

the total association matrix G is given. Several methods have been proposed to solve this 39 

problem, including Network Deconvolution (1) (ND), Global Silencing (2) (GS), and SPIEC-40 

EASI (3). The general approach is to find a relationship between G and S first, and then develop 41 

an algorithm to solve S when G is given. In ND, the indirect influence corresponds to indirect 42 

paths of all lengths, i.e. 43 

 (A1) 

Then S = (G – I)G-1 is used to solve S from G. Then eigen-decomposition is applied to obtain G-44 

1. In GS, the association between i and j is split into two parts: association between i and one of 45 

j’s neighbors k and association between k and j, i.e. the off-diagonal terms of the matrix product 46 

SG. Using some approximations, S is given in terms of G as: 47 

 
(A2) 

In SPIEC-EASI, S is assumed to be G-1; then G-1 is solved using a minimization process with 48 

penalty terms, assuming that G-1 is sparse. Differences between Eqs. (A1) and (A2) and the 49 

equations presented in ND and GS are due to whether diagonal terms in G are included. 50 

 51 

Compared to traditional approaches, Network Deconvolution (ND) (1), Global Silencing 52 

(GS) (2) and SPIEC-EASI (3) have certain advantages. First, conceptually, while ND considers 53 

the indirect influences as flows of direct influences along the edges of the true network and 54 
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expresses them as a sum of an infinite power series of the direct correlation matrix, GS treats 55 

measured correlations as small perturbations and derives a formula that resembles Modular 56 

Response Analysis (MRA) (4, 5), and SPIEC-EASI uses either neighborhood selection or sparse 57 

inverse covariance selection to estimate the interaction network. ND, GS, and SPIEC-EASI are 58 

all capable of considering indirect paths of arbitrary lengths. In contrast, previous methods (6) 59 

study local patterns of dependencies to recognize potential indirect edges and can only consider 60 

indirect paths of limited length (usually 2). Theoretically, ND, GS, and SPIEC-EASI provide 61 

more general frameworks for estimating direct influences from observed total measurements, and 62 

hence it should be more applicable to network inferences in various applications. Below we 63 

introduce some basic concepts about direct and indirect relationships in an association and 64 

present the characteristics and key issues of these approaches. 65 

 66 

A major problem in constructing association networks is that the observable total association Gij 67 

between node pair i and j contains not only direct interactions between i and j, but also indirect 68 

interactions through other intermediate nodes (7). Connecting i and j with those intermediate 69 

nodes forms an indirect influence path. Each segment of the indirect path is a direct link. Indirect 70 

paths can be of any length larger than one. The length of a path is also referred to as its order. 71 

Two paths can overlap partly. Any indirect paths can be constructed from their direct links by 72 

attaching links sequentially and parallelly. Here sequential paths mean two nodes indirectly 73 

connected through an intermediate node (Fig. S12a). Parallel paths mean two nodes linked 74 

through two different paths, directly or indirectly (Fig. S12b). 75 

 76 

In summary, problems with these existing methods are: 77 
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 78 

a. Ill-conditioning. The total association matrix G is usually either singular or ill-79 

conditioned. Any solution involving G-1 is therefore highly unreliable. ND, GS, and 80 

SPIEC-EASI all used G-1 in their formulations.  81 

b. Self-looping. None of these methods can eliminate all spurious indirect paths containing 82 

self-loops in their formulation. This leads to overestimating the effects of indirect 83 

associations.  84 

c. Interaction strength overflow. Entries of the resulting direct association matrix S, which 85 

theoretically should always lie in the natural range [0,1] of association data, overflow 86 

outside [0,1] in practice. 87 

 88 

In the following, these problems are discussed further in detail. 89 

 90 

A.2: Ill-conditioning 91 

 92 

The association matrix G, whose (i,j)-th entry Gij represents the association strength between the 93 

i-th and the j-th node in the network, is either singular or ill-conditioned (8). Here singularity 94 

means that its inverse G-1, the matrix that makes GG-1 = G-1G = I does not exist. Ill-conditioning 95 

means that its inverse G-1 is highly unreliable. The singularity of a matrix can be detected by 96 

checking if its rank is smaller than its size, or if its eigenvalues contain zeros. 97 

 98 
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For example, we can prove that an association matrix obtained using Pearson’s correlation is 99 

singular when the number of samples m is smaller than the number of nodes in the network n, i.e. 100 

m < n. The Pearson’s correlation coefficients between i and j is given by 101 

 

(A3) 

where xi and xj are two vectors storing the abundance or activity information of the i-th and j-th 102 

nodes in the network, cov(xi, xj) is the covariance between xi and xj 103 

 
(A4) 

σxi and σxj are the standard deviation of xi and xj 104 

 
(A5) 

μxi and μxj are the mean 105 

 

(A6) 

and m is the number of samples (the length of xi and xj). If column vectors  are put 106 

together and named X , G can be rewritten as 107 

 (A7) 

For a network with n nodes reconstructed from m samples (m < n), the dimension of X  is m×n, 108 

and the dimension of G is n×n. Because G is a product of X T and X , the rank of G equals the 109 

rank of X  and is at most m. Thus, the rank of G is smaller than the dimension of G (m < n), 110 

rendering G singular. 111 

 112 
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For association measures other than Pearson’s correlation, the corresponding association matrix 113 

G is ill-conditioned. The conditioning number ncond of a matrix quantifies whether a matrix is ill-114 

conditioned. ncond is the ratio of the largest eigenvalue |σmax| and the smallest eigenvalue |σmin| of 115 

a matrix, that is, = |σmax|/|σmin|; ncond describes the reliability of G-1 and can be interpreted as the 116 

maximal ratio possible between the error in the inverse G-1 and the error in G (9). Fig. S1a 117 

showed that, for a fixed number of samples (m = 20), as the size of the network increases, the 118 

conditioning number of G increases significantly, from [4.6, 27.32] (n = 5) to [1.78×105, 119 

1.52×107] (n = 1,000), with an average increase of 2.70×105 from n = 5 to n = 1,000. Association 120 

measures include absolute value of Pearson correlation, absolute value of Spearman correlation, 121 

Kendall rank correlation, Bray-Curtis dissimilarity, distance correlation, and maximal 122 

information coefficients. 123 

 124 

The results presented above indicated that an association matrix G is either singular or ill-125 

conditioned, and its inverse G-1 is either non-existent or highly unreliable. The ill-conditioning of 126 

G is caused by the underdetermined nature of the network reconstruction problem, which is one 127 

of the obstacles that every network analysis method must consider (10, 11). Underdetermination 128 

means that the amount of information available is not enough to determine all the unknown 129 

variables (12), and it is usually because it is extremely difficult to survey enough replicate 130 

samples. For example, consider a network containing n nodes, and suppose m samples are 131 

collected about the abundance or activities of those nodes. The total number of pieces of 132 

available information is mn. In contrast, to reconstruct the complete pair-wise relationships 133 

between those n entities, the total number of unknown variables is at least n(n−1)/2 (when 134 

symmetry is assumed; in the case of asymmetry, the number is doubled). In practice, the number 135 
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of samples is far fewer than the number of entities in the network, that is, m << n. For example, 136 

in microbial community studies, the number of samples is usually in the magnitude of tens or 137 

hundreds, while the number of OTUs (operational taxonomic units) under consideration can vary 138 

from hundreds to thousands or even millions. Consequently, mn << n(n−1)/2 and the problem is 139 

severely underdetermined. 140 

 141 

The consequences of underdetermination can be illustrated using a linear algebra problem. Let A 142 

be a given m×n matrix, x be an unknown n×1 column vector, and b be a given m×1 column 143 

vector that represents available information. Consider the following linear system 144 

 
(A8) 

When m<n, there is not enough information available to uniquely determines all the unknown 145 

variables, and hence the system is underdetermined. More specifically, because m<n, we can 146 

always find x1 satisfying Ax1 = 0. Given one solution Ax0 = b to Eq. (A8), we can construct an 147 

infinite number of solutions by letting x = x0 + ax1, where a is an arbitrary real number. To 148 

choose the most plausible solution among those solutions, additional information must be used. 149 

For example, if we are interested in the solution with the least norm to Eq. (A8) when m<n, we 150 

can use the Moore–Penrose right pseudoinverse, which is a generalization of the inverse matrix: 151 

 
(A9) 

Additional information can be applied in the form of penalty terms in the optimization, also 152 

known as regularizations. 153 

 154 

To address the singularity or ill-conditioning problem of G, usually additional assumptions are 155 

made regarding the properties of G and these assumptions are used to obtain an empirical 156 
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approximation of G-1. In ND (1), eigen-decomposition is used to reach a pseudo-inverse of G. In 157 

GS (2), G is modified according to its confidence level using a bootstrap randomization before 158 

direct inversion. In SPIEC-EASI, an optimization approach is adopted, and a penalty term is 159 

introduced to ensure the sparsity of G-1  (3, 13). All these methods turn to generic numerical 160 

analysis techniques to invert the association matrix G, without utilizing the intrinsic network 161 

structure provided in G. 162 

 163 

A.3: Self-looping 164 

 165 

The second issue with existing methods is overestimating indirect influence due to spurious 166 

indirect paths containing self-loops (1). Self-loops are spurious paths that start and end at the 167 

same node. Allowing indirect paths to include self-loops will result an infinite number of indirect 168 

paths that contain one or more self-loops. For example, consider a simple network in Fig. S1b. A 169 

valid indirect path B-C-D (green dotted lines) connects node B and D through node C. However, 170 

indirect paths such as B-A-B-D (red dotted lines, containing a self-loop B-A-B) and B-C-D-B-D 171 

(purple dotted lines, containing self-loops B-C-D-B and D-B-D) are spurious and should be 172 

excluded in the calculation. If such paths are allowed, we can construct additional paths such as 173 

B-(A-B)n-D and B-(C-D-B)n-D, where the paths in the bracket are repeated n times. These paths 174 

are not useful and must be excluded in the calculation. 175 

 176 

ND proposed to eliminate spurious indirect paths by deleting the diagonal terms in S, S2, S3, etc., 177 

where S is the direct association matrix (1). This approach can only eliminate spurious indirect 178 

paths that have the same starting and ending nodes, i.e. paths like A-B-A. For spurious paths 179 
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containing self-loops in the middle of the path, this approach does not work. For example, 180 

consider the spurious indirect path B-A-B-D in Fig. S1b, a self-loop B-A-B occurs in the middle 181 

of the path, and the starting node B and the ending node D are distinct. The incorrect association 182 

strength SBASABSBD will still be present in S3. This will result in an overestimation of the indirect 183 

association strength between B and D. 184 

 185 

GS (2) follows a different approach and uses the matrix product SG to calculate the indirect 186 

associations. This approach also cannot eliminate all the spurious indirect paths. Consider the 187 

indirect influence between node B and D in Fig. S1b. The only valid indirect path is B-C-D. 188 

However, the corresponding entry in SG is SBAGAD + SBBGBD + SBCGCD + SBDGDD. SBBGBD = 189 

SBDGDD = 0, because SBB = GDD = 0; SBAGAD includes two spurious indirect paths B-A-B-D and B-190 

A-B-C-D, because GAD contains two indirect paths A-B-D and A-B-C-D; SBCGCD includes one 191 

valid indirect path B-C-D and one spurious indirect path B-C-B-D, because GCD contains one 192 

direct path C-D and one indirect path C-B-D. Therefore, SG includes one valid indirect path (B-193 

C-D) and three spurious indirect paths (B-A-B-D, B-A-B-C-D, and B-C-B-D). The common 194 

characteristic of these spurious paths is that the first and the third node in the path are identical. 195 

Therefore, GS also cannot eliminate the self-looping problem completely and eventually 196 

overestimates the indirect influence. 197 

 198 

A.4: Interaction strength overflow 199 

 200 

The third issue with the existing methods is associated with the rationale behind the formulation. 201 

ND postulates that all pair-wise indirect influences due to paths of length n (n > 1) can be 202 
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represented by the power Sn, where S is the direct association matrix. The total observed matrix 203 

G contains both direct and indirect effects, and can be computed by summing S and all its 204 

powers: 205 

 
(A10) 

which corresponds to all direct and indirect paths of all lengths. GS follows a different approach. 206 

Its derivation in the main text is based on treating the edge strength as small perturbations; 207 

however, the edge strength is later inconsistently calculated through correlation or other 208 

association measures. In its supplemental material, it was postulated that the indirect effects can 209 

be represented by the product SG, and the total observed matrix G is the sum of the direct matrix 210 

S and the indirect effects SG: 211 

 
(A11) 

Both Eqs. (A10) and (A11) implicitly assume that if there are two or more paths connecting two 212 

nodes, the total association strength is the sum of association strengths of the individual paths 213 

using ordinary addition +. This assumption of the combinatorial rule for association data is 214 

fundamentally flawed, because it is incompatible the nature of association data; It results in the 215 

association strength overflowing outside the natural range [0,1]. Consider a simple network in 216 

Fig. S1c and use the rule presented in ND and GS. The indirect association strength of B-C-D is 217 

0.6×0.7 = 0.42. The sum of the direct influence B-D and indirect influence B-C-D is 0.8+0.42 = 218 

1.22 > 1. ND suggests that linearly rescaling of the results back to [0,1] can resolve this issue. 219 

This simplistic approach conceals the real problem here: it is not correct to use + to add 220 

individual direct/indirect association strengths together to obtain the total association strength. In 221 

the current example, the issue is that GBD should be not equal to SBD + SBCSCD. We need more 222 

systematic treatment to solve this association strength overflow problem. 223 
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 224 

B: Detailed mathematical framework for iDIRECT 225 

In this section, we will address the problems with the existing methods outlined in Appendix A 226 

in a reverse order here. We will first describe iDIRECT on how to avoid interaction strength 227 

overflow (Appendix B.1), followed by a new strategy for eliminating self-looping (Appendix 228 

B.2). We will then introduce nonlinear solvers to minimize influences from underdetermination 229 

(Appendix B.3). 230 

 231 

B.1: Strategies to address interaction strength overflow - copula-based additions 232 

 233 

To address the problem of interaction strength overflow, we first introduce the concepts of 234 

sequential and parallel paths. A new operator  based on copulas is developed for parallel paths, 235 

replacing the ordinary addition + used in ND and GS. The proposed  is designed to give results 236 

that is consistent with common sense and guarantee to lie in the natural range [0,1] of association 237 

data. Then we describe an assembly strategy that uses sequential and parallel paths to calculate 238 

the strength of any indirect paths in a network. In this way, we solve the interaction strength 239 

overflow problem completely. 240 

 241 

An indirect path consists of more than one segments (Appendix A.1), and each segment is a 242 

direct link. For sequential paths, two nodes are connected via an intermediate node. Consider an 243 

example in Fig. S12a, an indirect path i-k-j contains two segments, i-k with association strength 244 

u, and k-j with association strength v. The association strength of the indirect path i-k-j is 245 

intuitively assumed to be uv, or uv as a generic notation, that is 246 
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 (B1) 

For parallel paths, two nodes are connected via two different paths. For example, consider the 247 

four nodes in Fig. S12b. There are two paths connecting nodes i and j: one is i-k1-j with 248 

association strength u, and the other is i-k2-j with association strength v. The total association 249 

strength between i and j is termed as uv. An intuitive choice of uv is u + v, which could result 250 

in association strength overflowing outside [0,1]. To avoid this, less intuitive but more desirable 251 

choices can be found, such as the one below, 252 

 
(B2) 

which are based on Archimedean copulas. The realization of uv in Eq. (B2) yields results that 253 

are guaranteed to lie within [0,1]. In the following subsections, we will discuss the following 254 

issues in detail: (i) sequential paths and the operator  (Appendix B.1.1), (ii) parallel paths and 255 

the operator  (Appendix B.1.2), and (iii) assembly strategies to use sequential and parallel 256 

paths (Appendix B.1.3). 257 

 258 

B.1.1: Sequential paths 259 

 260 

Sequential paths are one of the basic building blocks when studying indirect associations in 261 

networks. They occur when two nodes are indirectly linked via a third node. Consider a network 262 

of nodes i, j, and k (Fig. S12a). i-k and k-j are directly linked, with respective association 263 

strengths u and v. The association strength between i and j is determined by u and v, as well as 264 

the rule that relates them (a binary operation , in mathematical terms). Ordinary multiplication 265 

satisfies the requirements for uv, yet there exist other less intuitive choices. 266 
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 267 

The basic requirements for uv are listed below: 268 

 269 

1. Lower bound: u0 = 0v = 0, meaning if either of the two edges is not associated at all, 270 

the indirect association strength should be zero; 271 

2. Upper bound: u1 = u and 1v = v, meaning if either of the edges is fully associated, the 272 

indirect association strength should equal the strength of the remaining edge; 273 

3. Monotonicity: u1v ≤ u2v, for all u1 ≤ u2, and uv1 ≤ uv2, for all v1 ≤ v2, meaning that 274 

if either of the two associations is stronger, the resulting indirect association is also 275 

stronger, and vice versa. 276 

 277 

The ordinary multiplication, u×v = uv, satisfies the above three requirements and is the most 278 

intuitive choice. However, it is not the only choice. The minimum function, min{u,v} also 279 

satisfies those requirements. In fact, there are families of functions based on copulas (see Table 280 

S8) that satisfy those requirements. In short, a copula is a bivariate function that satisfies very 281 

similar conditions to the requirements for uv (see Appendix C for details). For example, 282 

consider the Clayton family, letting θ = 0 gives us uv = uv, and letting θ = +∞ yields uv = 283 

min{u,v} (Table S8). In general, for a given copula C(u,v), we can construct a valid binary 284 

operator  for sequential paths such that uv = C(u,v). 285 

 286 

The operator  can be used repeatedly to calculate the indirect association strength between 287 

nodes that are connected via multiple intermediate nodes. For instance, nodes i and j in Fig. S14 288 

are connected through i-k-l-j. Let the association strength of direct links i-k, k-l, and l-j be u, v, 289 
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and w, respectively. The indirect association strength between i and j is obtained by repeatedly 290 

applying the rule for sequential paths, that is, uvw. 291 

 292 

Besides the three basic requirements discussed above, uv should be commutative and 293 

associative. Commutativity requires uv = vu. Take the example in Fig. S12a. uv means the 294 

association strength from i to j via k. vu means the association strength from j to i via k. 295 

Therefore, commutativity means the association strength from i to j equals the association 296 

strength from j to i, that is uv = vu. Associativity requires (uv)w = u(vw). Take the 297 

example in Fig. S14. (uv)w means we first calculate the association from i to l via k.  Then 298 

we use it to calculate the association strength from i to j via l. u(vw) means we first calculate 299 

the association from k to j via l; then we use it to calculate the association strength from i to j via 300 

k. Therefore, associativity means these two approaches are equivalent, and the result is just the 301 

association strength between i and j via k and l. Operators satisfying commutativity and 302 

associativity are closely related to Archimedean copulas, which are discussed in detail in 303 

Appendix C.2. The intuitive realization uv = uv satisfies both commutativity and associativity. 304 

 305 

B.1.2: Parallel paths 306 

 307 

Parallel paths are the other basic building blocks in indirect association calculation. They occur 308 

when two nodes are linked via two different paths. It can be extended to situations when more 309 

than two paths connect the two nodes of interest. The combined association strength is 310 

determined by the association strength of those paths and the rule that relates them. In the 311 
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following discussion, several plausible choices are proposed, and one of them is chosen as the 312 

default choice in iDIRECT. 313 

 314 

Consider a network of node i, j, k1, and k2, in Fig. S12b. Node i and node j are indirectly linked 315 

via intermediate nodes k1 and k2. Let the association strengths of direct links i-k1, k1-j, i- k2, and 316 

k2-j be u1, u2, v1, and v2, respectively. Let u = u1u2 be the association strength due to path i-k1-j 317 

and v = v1v2 be the indirect association due to path i-k2-j. We are interested in the combined 318 

association strengths due to i-k1-j and i-k2-j, and the result is denoted as a binary operation uv. 319 

The binary operation uv operates on the strengths of indirect paths that connects the same node 320 

pairs, u and v, and returns the total strength. Node k1 and node k2 in Fig. S12b are introduced 321 

merely to distinguish one path from the other. In practice, these paths can contain more than one 322 

intermediate node or none. In the former case, when the path has multiple intermediate nodes, 323 

the indirect association strength of the path is computed following the approach outlined in 324 

Appendix B.1.1; in the latter case, when the two nodes are directly linked, we just use its direct 325 

association strength. 326 

 327 

The basic requirements for uv are listed below: 328 

 329 

1. Lower bound: u0 = u and 0v = v, meaning if either of the two paths is disconnected 330 

(equals zero), the total association strength should equal the strength of the remaining 331 

path; 332 

2. Upper bound: u1 = 1v = 1, meaning if either of the path is fully associated, the total 333 

association strength is one. This requirement has not been considered before. Ordinary 334 
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addition does not satisfy this requirement. By satisfying it, iDIRECT differs significantly 335 

from all previous methods; 336 

3. Monotonicity: u1v ≤ u2v, for all u1 ≤ u2 and uv1 ≤ uv2, for all v1 ≤ v2, meaning that 337 

if either of the two associations is stronger, the resulting total association is also stronger, 338 

and vice versa. 339 

 340 

There are numerous functions that satisfy those basic requirements. In fact, given an arbitrary 341 

copula C(u,v) (see Appendix C.1 for detail), we can construct a valid operator  such that uv = 342 

1–C(1–u,1–v). Here, we focus on three realizations that have simple explicit mathematical 343 

expressions. The first realization is 344 

 (B3) 

The second realization is the maximum function: 345 

 (B4) 

The third realization is slightly more complicated than the previous two: 346 

 
(B5) 

The realizations listed in Eqs. (B3-B5) satisfy commutativity and associativity, making the 347 

operations independent of the order that they are performed. As a side note, the independent 348 

copula Π(u,v) = uv corresponds to uv = u + v – uv in Eq. (B3); the upper Fréchet-Hoeffding 349 

bound W(u,v) corresponds to uv = max{u,v} in Eq. (B4). 350 

 351 

To compare the three different realizations of  and the ordinary addition +, Table S9 lists 352 

results of uv (u, v = 0.1, 0.5, 0.9) when different realizations of  are used. Apparently, (u+v–353 
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2uv)/(1–uv) acts like u+v–uv when both u and v are small and like max{u,v} when either u or v is 354 

large. We see that the three realizations of  in Eqs. (B3-B5) always produce results within the 355 

natural range [0,1] of association data; for ordinary addition u+v, the results can exceed 1. 356 

 357 

A comparison of the contour plots of the different realizations of uv is shown in Fig. S15, 358 

which also includes that of uv = uv. We noticed that u+v–uv and (u+v–2uv)/(1–uv) yield results 359 

close to u+v when u and v are small, as the contour lines almost have a constant slope of −1 near 360 

u = v = 0 (red triangular box). This is intuitive: multiple paths with similarly weak associations 361 

result in a slightly stronger association. When one of the arguments, say u, is close to 1, and the 362 

other is small, max{u,v} and (u+v–2uv)/(1–uv) yield result close to u, as indicated by the almost 363 

vertical contour lines near u = 1 (blue rectangular box). This is also desirable: a strong path 364 

should dictate the total association strength when other weaker paths exist. Finally, it is 365 

noteworthy that uv and u+v–uv are mirrored by the straight line u+v = 1. This is because uv and 366 

u+v–uv are both constructed from the same copula C(u,v) = uv (see Appendix C.2 for more 367 

details). 368 

 369 

Therefore, in this paper, we use uv = (u+v–2uv)/(1–uv) because it has both desired qualities as 370 

discussed above: (i) multiple paths with similarly weak associations result in only a slightly 371 

stronger association; (ii) a strong path dictates the total association strength, even if there exist 372 

other weaker paths; and (iii) it is both commutative and associative, meaning the results do not 373 

depend on the operand order (commutative, uv = vu) or the operation order (associative, 374 

(uv)w = u(vw)). 375 

 376 
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B.1.3: Assembly strategies 377 

 378 

The introduction of sequential and parallel paths enables us to compute the indirect association 379 

strength between two arbitrary nodes in a general network. To do so, the network needs to be 380 

decomposed into sequential paths and parallel paths. There are two available assembly strategies: 381 

the all-path sum (APS) and the two-step sum (TSP). These two strategies do not necessarily yield 382 

the same results, and their equivalence is closely related to the validity of the distributive law of 383 

the chosen binary operators  and . 384 

 385 

Consider an illustrative network of 4 nodes, A, B, C, and D in Fig. S16a. A-B, B-C, C-D, and B-D 386 

are directly linked, and their respective association strengths are u, v, and w (blue solid lines). 387 

We are interested in the indirect association between node A and C (red dashed line). Two 388 

distinctive paths connecting A and C can be identified: A-B-C (green dotted lines) and A-B-D-C 389 

(purple dotted lines). 390 

 391 

There are two strategies to calculate the association strength between A and C: 392 

 393 

1. All-path sum (APS): the association strength of each path is calculated, and then the sum 394 

is computed, that is, (uv)(uw). The scenario is visualized in Fig. S16b, where the 395 

path A-B-C is highlighted in green dotted lines, and the path A-B-D-C is highlighted in 396 

purple dotted lines; 397 

2. Two-step product (TSP): the paths are divided into two parts: part 1 is A-B (shared by 398 

both) and part 2 is B-C and B-D-C (different for each path). Then the product of the two 399 
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parts is computed, that is, u(vw). The scenario is visualized in Fig. S16c, where part 1 400 

is highlighted in green dotted lines, and part 2 is highlighted in purple dotted lines. 401 

 402 

Ideally these two strategies should be equivalent, which requires  to be distributive over . The 403 

only operator  that satisfies this condition, however, is uv = max{u,v}. The following is a 404 

concise proof. Let u, v, and w be three arbitrary numbers, and  be distributive over . Per 405 

distributivity, 406 

 (B6) 

Without loss of generality, let v be 1, and Eq. (B6) becomes 407 

 (B7) 

where v1 = 1 (upper bound property of ) has been used. Now let x = u1 and y = uv, then x 408 

 y (1  v and monotonicity of ). Eq. (B7) becomes 409 

 (B8) 

In other words, the operator  returns the larger of the two inputs, which is the definition of the 410 

maximum function. Therefore, the maximum function uv = max{u,v} is the only one that 411 

satisfies the distributive law. 412 

 413 

Any choice for  other than the maximum function will result in a violation of the distributive 414 

law of  over . However, the maximum function does not have an inverse operator. This 415 

means that given a function value w = max{u,v} and one of the argument u, it is not always 416 

possible to recover the other argument v: v can be any value in [0,u] if u = w. In contrast, if we 417 

choose uv = (u+v–2uv)/(1–uv), an inverse operator ○‒ can be defined as: 418 
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(B9) 

And (uv)○‒v = (u○‒v)v = u. Having an inverse operator ○‒ makes the development of the 419 

nonlinear solvers detailed in Appendix B.3 possible and is a highly desirable feature. Discussion 420 

in Appendix B.1.3.1 describes the extent of the impact of violating the distributive law and 421 

shows that the TSP strategy can minimize this impact. Therefore, we will use the TSP strategy in 422 

developing iDIRECT.   423 

 424 

B.1.3.1: Comparison of the two assembly strategies 425 

 426 

To compare the two assembly strategies, we measure the deviation of the chosen binary 427 

operators  and  from satisfying the distributive law by the difference 428 

 (B10) 

Table S10 compares values of Δ using three different combinations of u, v, and w. Consider the 429 

difference Δ when uv = uv and uv = (u+v–2uv)/(1–uv). The minimal difference ∆min = 0, and 430 

the maximal difference ∆max = , which occurs at u = , v = 1, w = 1. The difference 431 

∆ is always positive, meaning the APS strategy always gives results larger than those from the 432 

TSP strategy.  433 

 434 

A closer investigation into the difference between these two strategies is provided in Fig. S16d. 435 

Consider the same 4-node network in Fig. S16a, and consider the indirect association strength 436 

GAC between node A and C. Let the association strength be u = 0.5 for link A-B, and v = w = 1 for 437 

link B-C and B-C-D, respectively. Thus, node B, C, and D are assumed to have perfect 438 

223− 12 −
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association, and we would expect GAC = GAB = u. However, the APS strategy gives GAC = uu 439 

(green box), while the TSP strategy gives GAC = u (purple box). Unless  is the maximal 440 

function, uu > u. Therefore, the TSP strategy is preferred because it can capture what is 441 

intuitively expected, that is, GAC = u. 442 

 443 

B.2: Strategies to address the self-looping problem - transitivity matrix 444 

 445 

To address the self-looping problem, iDIRECT introduces a transitivity matrix; its (i,k,j)-th 446 

component, Ti,kj, represents the association strength between node k and j, excluding paths 447 

passing node i. To demonstrate how the transitivity matrix eliminates all spurious self-looping 448 

paths, consider the indirect association between two nodes i and j through one of i’s neighbors k 449 

(Fig. S12c). Using the TSP strategy, its indirect association strength is SikTi,kj, where Sik is the 450 

direct association strength between i and k and the first step in TSP. Here, we use Ti,kj to 451 

represent the association strength between k and j for the second step in TSP instead of Gkj, 452 

because Gkj includes the influences of indirect paths passing i, while Ti,kj explicitly excludes 453 

those paths in its definition. Consequently, SikGkj the includes influences of spurious self-looping 454 

paths such as i-k-...-i-…-j, where self-loops in the form of i-k- ... -i occurs; in contrast, SikTi,kj 455 

eliminates the influences of those spurious paths completely. In the following subsections, we 456 

will discuss (i) calculation of the transitivity matrix (Appendix B.2.1) and (ii) a relationship 457 

between direct association S (collection of all direct association strengths Sij) and total 458 

association G (collection of all total association strength Gij) (Appendix B.2.2). 459 

 460 

B.2.1: Calculation of the transitivity matrix  461 
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 462 

To calculate the transitivity matrix Ti,kj, one can directly express Ti,kj from the direct association 463 

matrix S per its definition ‒ association of indirect paths connecting node k and j without passing 464 

node i. However, this approach requires listing all the paths connecting all node pairs at all 465 

lengths. Its computational complexity is well beyond the capacity of current computers. Instead, 466 

we use an indirect approach. Consider three nodes i, j, and k in Fig. S12d. The green dashed lines 467 

represent Ti,kj, Tj,ki, and Tk,ij, that is, associations between two nodes excluding paths passing the 468 

remaining third node. The total association Gkj between k and j consists of indirect paths between 469 

k and j not passing i, whose association strength is Ti,kj (using the definition of Ti,kj), and indirect 470 

paths between k and j passing i, whose association strength is Tj,kiTk.ij (dividing the paths into two 471 

steps, k-i and i-j, and using the TSP strategy). The sum of these two terms (using the binary 472 

operator  for parallel paths) is the total association Gkj: 473 

 (B11) 

In the same spirit, we can obtain two other equations about Gki and Gij. Combining these three 474 

equations enables us to use the following three nonlinear equations to solve for the three 475 

unknown variables Ti,kj, Tj,ki, and Tk,ij 476 

 

(B12) 

where the symmetry of the transitivity matrix is used, that is, Ti,kj = Ti,jk, Tj,ki = Tj,ki, and Tk,ij = Tk,ji. 477 

We can iterate over all possible combinations of i, j, and k to obtain all entries of the transitivity 478 

matrix. Specifically, for each node i, we need to iterate j and k over all i’s neighbors. The total 479 

number of entries to calculation is nd̄(d̄−1)/2, where n is the number of nodes, and d̄ is the 480 

average connectivity. 481 
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 482 

B.2.2: Relationship between direct and total associations 483 

 484 

Combining the results above, the total association strength Gij between any two nodes i and j in 485 

the network consists of the direct association strength Sij between i and j and the indirect 486 

association strength. The indirect association strength includes many parallel paths, each of 487 

which starts from i, ends at j, and passes one of i’s neighbors k2, k3, …, kd (intermediate nodes, 488 

Fig. S12c). Using the operator  for parallel paths, the total association 489 

 (B13) 

The intermediate nodes k2, k3, …, kd are directly linked to the starting node i, with association 490 

strengths Sij, Sik2, Sik3, …, Sikd, respectively. They are indirectly linked to the ending node j, with 491 

association strengths Ti,k2j, Ti,k3j, …, Ti,kdj, respectively. k1 is reserved so that k1=j. We can iterate j 492 

over k2, k3, …, kd to get other sets of equations and express them in a matrix form:  493 

 

(B14) 

where Gi and Si are collections of Gik and Sik with i being fixed; Ti is a collection of Ti,kj with i 494 

being fixed. Then we can iterate i over all nodes in the network. The total number of equations to 495 

solve is nd̄, where n is the number of nodes, and d̄ is the average connectivity. Eq. (B14) is the 496 

new relationship between total and direct association strengths G and S that we discovered, 497 

which forms the foundation of our formulation. Eq. (B14) superficially resembles GS 498 

formulation, but there are two important modifications: (i) replacing the normal addition “+” 499 

with a new copula-based operator , which guarantees the result to lie in the natural range [0,1] 500 
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of association data; and (ii) replacing the total association strength Gkj with a transitivity matrix 501 

Ti,kj, completely eliminating the influence of spurious indirect paths containing self-loops. 502 

 503 

B.3: Strategies to minimize the underdetermination problem - nonlinear solvers 504 

B.3.1: Division into subsystems 505 

 506 

We divided the whole system into smaller subsystems to minimize the impact of 507 

underdetermination. Therefore, we do not need to invert the total association matrix G and avoid 508 

the entailing ill-conditioning problem. Specially, we developed a nonlinear solver, the T-solver 509 

(Appendix B.3.2), to solve transitivity matrix Ti when G is given using Eq. (B12), and another 510 

nonlinear solver, the S-solver (Appendix B.3.3) to solve direct association S when G and Ti are 511 

given by Eq. (B14). Below we use a network containing n entities and constructed from m 512 

samples as an example to illustrate the way the whole system is divided into subsystems and the 513 

effectiveness of our approach to minimize the underdetermination problem.  514 

 515 

We apply the T-solver first, using G as inputs and obtaining Ti. We consider subsystems 516 

containing a node i and its neighbors j and k. Assuming the network has an average degree d̄, the 517 

total number of entries in Ti in those subsystems is nd̄(d̄−1)/2, noticing that Ti,jk is symmetric 518 

with respect to j and k. If the network follows a power-law distribution of connectivity, d̄(d̄−1)/2 519 

is usually small and nd̄(d̄−1)/2 < nm. Thus, this system is not underdetermined. For each 520 

subsystem, we solve for three variables Ti,kj, Tj,ki, and Tk,ij and it is also not underdetermined. 521 

Then we apply the S-solver, using G and Ti as inputs and obtaining S. We consider subsystems 522 

containing a node i and all its neighbors. The total number of Sij in those subsystems is nd̄. When 523 
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d̄ < m and nd̄ < nm, this system is also not underdetermined. For a subsystem containing node i 524 

and its d neighbors, the total number of unknown variables d is smaller than the total available 525 

information md, and it is not underdetermined, too.  526 

 527 

Below are some of the numbers of the networks under warming and control from the soil 528 

microbial community study to justify the validity of our approaches to minimize the 529 

underdetermination problem. Note that (i) nm < n(n−1)/2 for both networks, indicating that the 530 

problem is underdetermined, and the association matrix is ill-conditioned, (ii) nm > nd̄(d̄−1)/2 531 

and nm > nd̄ for both networks, suggesting that iDIRECT successfully minimized the 532 

underdetermination problem.  533 

 n m d̄ nm n(n−1)/2 nd̄(d̄−1)/2 nd̄ 

Warming network 559 120 6.12 67,080 155,961 12,186 3,421 

Control network 317 120 3.72 38,040 50,086 2,786 1,179 

 534 

B.3.2: The T-solver 535 

 536 

The T-solver is used to solve for the transitivity matrix among three nodes i, j, and k, that is, Ti,kj, 537 

Tj,ki, and Tk,ij . Entries in the transitivity matrix can be solved using Eq. (B12), when the total 538 

association matrix is given. For simplicity, let T1 = Ti,kj, T2 = Tj,ki, T3 = Tk,ij, G1 = Gkj, G2 = Gki, and 539 

G3 = Gij. Eq. (B12) becomes 540 

 

(B15) 
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In practice, the binary operator is implemented using the associated generator function (see 541 

Appendix C.2 for detail) for efficiency. The above equation is transformed into: 542 

 

(B16) 

where ψ(t) is the generator function associated with . Eq. (B16) can be solved using standard 543 

Newton’s method. For convenience, let T be the vector with components T1, T2, and T3. The 544 

residue vector R and the Jacobian matrix J are given by 545 

 

(B17) 

T in the brackets highlights that R and J depend on T. Then the update formula for T is  546 

 
(B18) 

The superscripts (i) means variables at the current iteration. The initial values for T1, T2, and T3 547 

are T1 = G1, T2 = G2, and T3 = G3. The algorithm converges very fast. The residue norm |R(i)| and 548 

the relative increment |ΔT(i)|/|T(i)| become <10-10 after 3 iterations in most cases, where |●| 549 

denotes the norm of a vector. 550 

 551 

B.3.3: The S-solver 552 

 553 

The S-solver is used to solve for the direct association strength between node i and all its 554 

neighbors k1, k2, …, and kd in the network, that is, Sik1, Sik2, …, and Sikd. For convenience, they 555 
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are referred to as S1, S2, …, and Sd in this subsection. The same abbreviation applies to the total 556 

association strength and the transitivity matrix. For example, G1 means Gik1 now, and T12 means 557 

Ti,k1k2 now. Eq. (B14) becomes:  558 

 

(B19) 

which is equivalent to the following set of equations, 559 

 

(B20) 

ψ(t) is the generator function associated with the binary operator . There are d unknowns (from 560 

S1 to Sd) and d equations in Eq. (B20). Standard Newton’s method can be used to solve the 561 

nonlinear system above. For convenience, let S be the vector with components S1, S2, …, and Sd. 562 

The residue vector R and the Jacobian matrix J are given by 563 

 

(B21) 

S in the brackets highlights that R and J depend on S. Then the update formula for S is 564 

 
(B22) 



 

 

 

 

29 

The superscripts (i) means variables at the current iteration. The initial values for S1, S2, …, and 565 

Sd are S1 = G1, S2 = G2, …, and Sd = Gd. The advantages of using Eq. (B20) instead of Eq. (B19) 566 

are twofold. First, introducing the generator functions ψ(t) associated with the binary operator  567 

enhances computational efficiency significantly (see Appendix C.3 for details). Second, using 568 

Eq. (B20) makes computation of the Jacobian matrix very easy, as seen in Eq. (B21). These 569 

improvements make iDIRECT fast enough to solve complex networks.  570 

 571 

C: Connection to copulas 572 

 573 

Copulas in probability theory (14) are bivariate functions satisfying several requirements. They 574 

are closely related to the two binary operators  and  for sequential paths and parallel paths 575 

introduced in iDIRECT (Appendix B.1). For a given copula C(u,v), the function C(u,v) can be 576 

used as a realization for uv, and 1–C(1–u,1–v) can be used as a realization for uv. Using 577 

copulas, probability-based interpretations of the corresponding binary operators  and  are 578 

attained (Appendix C.1). In addition, if the copula C(u,v) is Archimedean (15), corresponding 579 

realizations of  or  are both commutative and associative (Appendix C.2). Furthermore, the 580 

generator function for each Archimedean copula can be used to enhance the computational 581 

efficiency of iDIRECT (Appendix C.3). These subjects are discussed in detail in the following 582 

subsections. 583 

 584 

C.1: Introduction to copulas 585 

 586 
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A copula C(u,v) (14) is a bivariate function defined on [0,1]×[0,1], taking values in [0,1], and 587 

satisfying the following conditions: 588 

 589 

1. Lower bound: C(u,0) = C(0,v) = 0; 590 

2. Upper bound: C(u,1) = u and C(1,v) = v; 591 

3. 2-increasing: C(u1,v1)–C(u1,v2)–C(u2,v1)+C(u2,v2) ≥ 0, for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤v1 ≤ 592 

v2 ≤ 1. 593 

 594 

The 2-increasing property of a copula guarantees the monotonicity with respect to both 595 

arguments. 596 

 597 

Informally, a copula can be interpreted as a joint distribution function with uniform marginal 598 

distributions. According to Sklar's theorem (14), if X and Y are two random variables with joint 599 

distribution function FXY(x,y) and marginal distribution functions FX(x) and FY(y), then the 600 

following function is a copula: 601 

 
(C1) 

The lower bound and upper bound properties of a copula guarantee that the corresponding 602 

cumulative distribution function takes values between 0 and 1; the 2-increasing property 603 

guarantees that the corresponding joint distribution density function fXY(x,y) is always positive. 604 

 605 

All copulas C(u,v) are bounded by the following two copulas 606 

 (C2) 
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such that M(u,v) ≤ C(u,v) ≤ W(u,v). The functions M(u,v) and W(u,v) are called the lower and 607 

upper Fréchet-Hoeffding bounds (14). Another important copula is the independent copula 608 

Π(u,v) = uv, which is associated with two independent random variables, hence the name. For 609 

any given copula C(u,v), we can construct a valid operator  for sequential paths (Appendix 610 

B.1.1) such that uv = C(u,v) and a valid operator  for parallel paths (Appendix B.1.2) such 611 

that uv = 1–C(1–u,1–v). Table S7 lists several commonly used copulas C(u,v) and their 612 

corresponding binary operations uv and uv. 613 

 614 

Probability-based interpretations of  and  can be proposed using copulas. As an example, 615 

consider the sequential paths i-k and k-j in Fig. S12a. Suppose the links are switched on and off 616 

randomly, and the association strength of a link is the probability of the link being switched 617 

“on”. Let X be the event that link i-k is “on”, Y be the event that link k-j is “on”, and u and v be 618 

the probabilities of event X and Y. Therefore, the indirect association strength between i and j, 619 

uv, is the probability that both i-k and k-j are “on”. If X and Y are independent, uv = uv; if X 620 

and Y are not entirely independent, uv varies between the lower Fréchet-Hoeffding bound 621 

M(u,v) = max{u+v–1,0} and the upper Fréchet-Hoeffding bound W(u,v) = min{u,v}. Similar 622 

interpretations can be made for parallel paths. Consider two nodes i and j connected via two 623 

intermediate nodes k1 and k2 and two different paths i-k1-j and i-k2-j (see Fig. S12b). Let X be the 624 

event that path i-k1-j is “on”, Y be the event that path i-k2-j is “on”, and u and v be the 625 

probabilities of event X and Y. The total association strength between i and j, uv, is the 626 

probability that either path i-k1-j or i-k2-j is “on”. If X and Y are independent, uv = u+v–uv; if X 627 

and Y are not entirely independent, uv varies between 1–M(1–u,1–v) = max{u,v} and 1–W(1–628 

u,1–v) = min{u+v,1}. 629 
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 630 

C.2: Archimedean copulas 631 

 632 

A special class of copulas, the Archimedean copulas (15), are commutative and associative. An 633 

Archimedean copula allows the following representation 634 

 (C3) 

where : [0,1]↦[0,∞) is the generator function and -1 is its inverse. The generator function is a 635 

continuous, strictly non-decreasing, and convex function with (1) = 0. The commutativity and 636 

associativity of Archimedean copulas are automatically satisfied by construction. Table S8 lists 637 

some of the most important families of Archimedean copulas and their generator functions, as 638 

well as the range of the parameter. Due to the important role they play in the implementation of 639 

the binary operator  for parallel paths, two derived functions θ(1–t) and 1–θ
-1(t) are listed in 640 

the table, too. When θ = 0 for the Ali-Mikhail-Haq (16), Clayton (17), and Frank families, or θ = 641 

1 for the Gumbel and Joe families, the corresponding copula C(u,v) = uv is the independent 642 

copula Π(u,v), and the corresponding generator function is (t) = –ln t. 643 

 644 

The Clayton family is of special interest because C-1(u,v) is the lower Fréchet- Hoeffding bound 645 

M(u,v) = max{u+v–1,0}, C0(u,v) is the independent copula Π(u,v) = uv, C1(u,v) corresponds to 646 

our preferred choice of (u+v–2uv)/(1–uv) for parallel paths in Eq. (B2), and the limiting case 647 

C∞(u,v) is the upper Fréchet-Hoeffding bound W(u,v) = min{u,v}. 648 

 649 

C.3: Computational efficiency enhancement 650 

 651 
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In practice, the binary operator  is realized as multiplication ×, and the implementation is 652 

straightforward. However, for the binary operator , the implementation is more difficult. Direct 653 

implementation of formulas as presented in Table S7 is not computationally efficient, especially 654 

when we want to add multiple terms together. 655 

 656 

For example, to compute the sum u1u2…un, if we use uv = (u+v–2uv)/(1–uv) directly, the 657 

total number of arithmetic operations is 7×(n–1) = 7n–7, where 7 is the number of arithmetic 658 

operations for each application of , and n–1 is the number of times the binary operation  is 659 

performed. Alternatively, if we rewrite the binary operator  in terms of the generator function ψ 660 

of the corresponding C(u,v), that is 661 

 (C4) 

The sum u1u2…un can be expressed in terms of ψ as 662 

 (C5) 

In other words, u1u2…un is calculated in three steps: (i) use ψ(1–t) to transform each term 663 

u1, u2, …, un; (ii) add the transformed terms together; (iii) use 1–ψ-1(t) to obtain the result. For 664 

uv = (u+v–2uv)/(1–uv), the corresponding functions are: ψ(1–t) = t/(1–t) and 1–ψ-1(t) = t/(1+t). 665 

The total number of operations using Eq. (C5) is 2×n+(n–1)+2 = 3n+1, where 2 is the number of 666 

arithmetic operations for each use of ψ(1–t), n–1 is the number of additions performed, 2 is the 667 

number of arithmetic operations for the use of 1–ψ-1(t). This approach leads to a 133% efficiency 668 

increase over directly applying uv = (u+v–2uv)/(1–uv) when n is large. 669 

 670 

 671 

  672 
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 673 

 674 

 675 

Fig. S1. Key issues associated with several previous approaches. (a) Ill-conditioning of the 676 

association matrix. The conditioning number of a matrix is the ratio between the largest and 677 

smallest eigenvalues of the matrix. Various network sizes (n = 5, 10, 20, ..., 500, 1,000) and 678 

different association measures [Pearson correlation (blue), Spearman’s correlation (red), Kendall 679 

rank correlation (green), Bray-Curtis dissimilarity (brown), and Maximal Information 680 

Coefficients (MIC, purple)] were considered. The number of samples were fixed (m = 20). (b) 681 
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Self-looping. A valid indirect path B-C-D (dotted green lines), spurious path B-A-B-D (dotted 682 

red lines), which contains a self-loop B-A-B, and spurious path B-C-D-B-D (dotted purple lines), 683 

which contains self-loops B-C-D-B and D-B-D. Blue solid lines mean direct links. Self-loops are 684 

highlighted with grey areas. (c) Interaction strength overflow. Direct addition of association 685 

strength of direct path B-D (0.8) and indirect path B-C-D (0.6×0.7=0.42) results in total 686 

association strength being 0.8+0.42=1.22, which is outside the natural range [0,1] of association 687 

data. 688 

 689 

  690 
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 691 

Fig. S2. Improvement of community network score when only a subset of submissions were 692 

included. The y-axis represents the Precision-Recall score. The first group of boxes depict the 693 

performance distribution of individual submissions (n = 1). The thick bar in the middle represents 694 

the mean, the top and bottom of the box represents the 75% and 25% quantile, and the two short 695 

bars represent the maximum and the minimum. Subsequent groups of boxes show the performance 696 

when n > 1 randomly sampled submissions (n = 3, 5, 7, 9) are integrated. The last group of bars 697 

shows the performance when all submissions are integrated. The original, iDIRECT-, ND-, and 698 

GS-processed scores are represented by different colors.  699 

 700 

 701 

 702 

 703 
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 704 

Fig. S3. Significance of the difference between the scores of the in silico network from the 705 

DREAM5 network inference challenge. The x-axis represents different methods to construct the 706 

network, and the y-axis represents the corresponding scores. Scores from the original network 707 

(purple bars), iDIRECT-processed network (red bars), ND-processed network (blue bars), and GS-708 

processed network (green bars) are represented by different colors. Most of the pairs of scores are 709 

significantly different (***, p < 0.001), except the five pairs that are highlighted by thicker lines 710 

(NS means p ≥ 0.05 and * means 0.01 ≤ p < 0.05). The significance level is calculated based on 711 

Student’s t-tests and standard deviations of network scores obtained by randomly switching 712 

weights for the first 3,000 edges of each submission. Note that the numbers for Spearman 713 

(2.26×10-5 for original, 2.90×10-3 for iDIRECT, 1.25×10-3 for ND, and 2.10×10-3 for GS) are too 714 

small to show. 715 

  716 
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 717 

 718 

Fig. S4. Assessment of the consistency of the top 500 links identified by iDIRECT with 719 

biological evidence. The supporting evidences of the top 500 links in iDIRECT solution with the 720 

highest direct association strengths were searched via online databases or available literature. 721 

Links with supporting evidence that are most likely true (listed in RegulonDB, found in online 722 

databases or literature, or having a binding motif in the promoter region) are separated from links 723 

that are unlikely true or lack enough information to decide (involving genes in the same operon, 724 

or involving an anti-sigma factor, or no information in the literature). 725 

 726 

  727 
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 728 

 729 

Fig. S5. Consensus sequences in the manually identified binding motifs. Binding motifs of 730 

three key regulatory factors identified by iDIRECT are examined. (a). FecI binding motif; (b). 731 

FliA binding motif; (c). RpoS binding motif. The consensus sequences of the binding motifs 732 

were identified using the MEME Suite from http://meme-suite.org/index.html.  733 

 734 

  735 

http://meme-suite.org/index.html
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 736 

 737 

Fig. S6. Degree distribution for microbial molecular ecological networks under warming 738 

and control. (a) iDIRECT-processed networks. (b) Original networks. The node degree k is 739 

plotted against the probability P(k) in a log-log scale. Circular dots were data points, and solid 740 

lines represented different regression models (red: power-law, blue: exponential law, and green: 741 

truncated power-law). The regression models with the best fitting were highlighted with thicker 742 

lines. 743 

 744 

  745 
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 746 

 747 

Fig. S7. Module-level higher-order organizations of iDIRECT-processed networks. (a,b) 748 

The clustering dendrograms under warming (a), or control (b) show the relationships among 749 

eigengenes from different modules. Module pairs between warming and control identified by 750 

Fisher’s exact test (Table S6) were highlighted with same colors. (c, d) The heat maps under 751 

warming (c) and control (d) display the correlations between eigengenes of different modules. 752 

 753 

  754 
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 755 

  756 

Fig. S8. Comparison of OTU topological roles under warming and control. (a) iDIRECT-757 

processed networks; (b) Original networks. The among-module connectivity (Pi) was plotted 758 

against the within-module connectivity (Zi). The nodes are categorized into: peripheral (Pi < 0.6, 759 

Zi < 2.5), module hub (Pi < 0.6, Zi ≥ 2.5), connector (Pi ≥ 0.6, Zi < 2.5) and network hub (Pi ≥ 760 

0.6, Zi ≥ 2.5). Each symbol represents an OTU under control (blue triangular dot) or warming 761 

(red circular dot). Locations of the network hub in iDIRECT-processed network, OTU #15, were 762 

highlighted. There are 21 module hubs, with 16 for warming network, 8 for control network, and 763 

3 shared by both. There are 5 connectors for the warming network. After the application of 764 

iDIRECT, a new network hub, 7 new module hubs, and 5 new connectors appear, while 4 old 765 

module hub and 1 old connector disappear. 766 

 767 

  768 
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 769 

Fig. S9. Comparison of correlations between keystone OTUs abundance and soil, plant and 770 

ecosystem functioning variables. The keystone OTUs were either obtained from the original or 771 

iDIRECT-processed networks under warming or control. The keystone OTUs are defined as 772 

either module hub (Pi < 0.6, Zi ≥ 2.5), or connector (Pi ≥ 0.6, Zi < 2.5) or network hub (Pi ≥ 0.6, 773 

Zi ≥ 2.5), with Pi being the among-module connectivity and Zi being the within-module 774 

connectivity. The metadata include total nitrogen (TN), total organic carbon (TOC), ecosystem 775 

respiration (ER), gross primary productivity (GPP), net ecosystem exchange (NEE, difference 776 

between GPP and ER), autotrophic respiration (Ra), heterotrophic respiration (Rh), total soil 777 

respiration (Rt), etc. Only significantly correlated pairs (p < 0.01) are shown. iDIRECT-778 
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processed networks show more significant correlations (42.2% in warming and 29.4% in control) 779 

than original networks (33.8% in warming and 27.1% in control). 780 

  781 
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 782 

 783 

Fig. S10. Comparison of correlations between OTU significance and network properties 784 

under warming. The networks are constructed with or without iDIRECT-processing. The x-axis 785 

represents nodal network properties, the y-axis represents environmental traits, and the colors 786 

represent the Pearson correlation coefficients r between OTU significance and network 787 

properties. The OTU significance is calculated and defined as the square of Pearson correlation 788 

coefficient (r2) of OTU abundance profile with environmental traits. The nodal network 789 

properties considered include node degree, average neighboring node degree, the among-module 790 

connectivity (Pi), and the within-module connectivity (Zi). Only significantly correlated pairs (p 791 

< 0.01) are shown. More significant correlations are observed between iDIRECT-processed 792 

network properties and OTU significance (left panel, 52.9% of all possible pairs) than those 793 

between original network properties and OTU significance (right panel, 48.5% of all possible 794 

pairs).  795 

 796 

  797 
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 798 

 799 

Fig. S11. Robustness analysis of original and iDIRECT-processed networks. (a) iDIRECT-800 

processed networks. (b) Original networks. Network robustness to species deletion under control 801 

(blue) or warming (red) was represented by simulated microbial species extinction triggered by 802 

random species removal or targeted species removal. Warming, red; Control, blue. Error bars 803 

represented standard deviation of 100 repetitions of each simulation. Empty dots meant 804 

significant difference between warming and control with p < 0.05. 805 
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  807 
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 808 

 809 

Fig. S12. Sequential paths, parallel paths, and strategies to eliminate self-looping. (a) 810 

Sequential paths: Node i and node j are indirectly linked through an intermediate node k. The 811 

indirect association strength between i and j is uv, where u and v are association strength of 812 

each path, respectively. (b) Parallel paths: Node i and j are indirectly linked via two distinctive 813 

paths passing node k1 or node k2. The combined strength of these two paths is uv, where u and 814 

v are association strength of each path. (c) Indirect association between two nodes through 815 

intermediate nodes. The starting node is i, the ending node is j, and the intermediate nodes ki are 816 

neighbors of i. The indirect association between i and j via one of the intermediate node k is the 817 

product of the direct association Sik between i and k and the association Ti,kj between ki and j 818 

except those passing i. Spurious paths due to self-looping are removed because they are excluded 819 

in the definition of Ti,kj. (d) Calculation of the transitivity matrix. The total association Gkj 820 

between k and j is the sum of Ti,kj (associations between node k and j without passing node i) and 821 

Tj,kiTk,ij (associations between k and j passing node i). 822 

  823 
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 824 

Fig. S13. Area Under Precision-Recall curves (AUPR) for different network types (band-like: 825 

left panel, clustered: middle panel, scale-free: right panel). The x-axis represents the sample size 826 

used in the study, and the y-axis represents the performance as measured by AUPR. Different 827 

methods (GS, iDIRECT, ND and PC) are represented as bars with different colors. The error bar 828 

represents 95% confidence level from 10 runs each.  829 

 830 

  831 
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 832 

 833 

Fig. S14. Nodes connected via multiple intermediate nodes. Node i and j are indirectly 834 

connected via intermediate nodes k and l. The indirect association strength between i and j is 835 

uvw, where u, v, and w are the association strengths of direct links i-k, k-l, and l-j, 836 

respectively. 837 

 838 

  839 
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 840 

 841 

Fig. S15. Contour plot of copula-based functions. (a, b, c). Different choices of the binary 842 

operation uv for parallel paths. Color bar for the contour plot was shown on the right. The red 843 

triangular boxes highlighted the areas where the contour lines had almost a constant slope of −1; 844 

the blue rectangular boxes highlighted the areas where the contour lines were almost vertical. (d) 845 

Ordinary multiplication uv = uv for sequential paths. 846 

 847 

  848 
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 849 

 850 

 851 

Fig. S16. Two assembly strategies to calculate total association strength. (a) A network of 852 

four nodes with two paths A-B-C and A-B-D-C connecting A and C. Blue solid lines: direct links, 853 

red dashed lines: indirect link between A and C, dotted lines: indirect paths (green and purple). 854 

(b) The All-Path Sum (APS) strategy. The total association strength between A and C is the sum 855 
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of Path 1 and Path 2: (uv)(uw). (c) The Two-Step Product (TSP) strategy. The total 856 

association strength between A and C is the product of part 1 and part 2: u(vw). (d) 857 

Comparison of APS and TSP strategies for Case 3 in Table S10. Association strength is u = 0.5 858 

for link A-B, and v = w =1 for link B-C and B-C-D, respectively. The APS strategy yields uu, 859 

while the TSP strategy yields u. 860 

 861 

 862 

 863 

 864 
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 865 

Table S1. Experimental and computational evidence for the edges of the four modules in the iDIRECT network. For each pair 866 

of transcriptional factor (TF) and the regulated gene, we listed the evidence code and evidence strength assignment from RegulonDB, 867 

or nucleotide sequences and location of the binding motif that was identified. 868 

 869 

Gene 

name 

Gene 

name 
Annotation Evidences 

RegulonDB 

strength 
Binding motif nucleotide sequence 

Loc. of the 

binding 

motif 

fliA module           

fliA cheA 

Fused chemotactic sensory 

histidine kinase in two-

component regulatory system 

with cheb and chey: sensory 

histidine kinase/signal sensing 

protein 

['HIPP', 

'GEA'a] 
Weak 

  

 

fliA cheB 
Chemotaxis-specific 

methylesterase 

['HIPP', 'TIM', 

'GEA'a] 
Strong 

 

 

fliA cheR 
Chemotaxis regulator, protein-

glutamate methyltransferase 

['HIPP', 'TIM',  

'GEA'a] 
Strong 

 

 

fliA cheW 
Purine-binding chemotaxis 

protein  

['HIPP',  

'GEA'a] 
Weak 

 

 

fliA cheY 

Chemotaxis regulator 

transmitting signal to flagellar 

motor component  

['HIPP', 'TIM',  

'GEA'a] 
Strong 

 

 

fliA cheZ 
Chemotaxis regulator, protein 

phosphatase for chey  

['HIPP', 'TIM',  

'GEA'a] 
Strong 

 

 

fliA flgK 
Flagellar hook-associated 

protein K 

['HIPP', 

'GEA'a,b] 
Weak 

 

 

fliA flgL 
Flagellar hook-associated 

protein L 

['HIPP', 

'GEA'a,b] 
Weak 
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fliA flgN 
Export chaperone for flgk and 

flgl 

['HIPP',  

'GEA'a] 
Weak 

 

 

fliA fliC Flagellin 
['FP', 'HIPP',  

'GEA'a] 
Strong 

 

 

fliA fliD Flagellar capping protein 
['FP', 'HIPP',  

'GEA'a] 
Strong 

 

 

fliA fliE 
Flagellar hook-basal body 

protein flie 
['HIPP'] Weak 

 

 

fliA fliF Flagellar M-ring protein ['HIPP'] Weak  
 

fliA fliG Flagellar motor switch protein G ['HIPP'] Weak  
 

fliA fliH 
Flagellar biosynthesis; export of 

flagellar proteins? 
['HIPP'] Weak 

 

 

fliA fliI 
Flagellum-specific ATP 

synthase 
['HIPP'] Weak 

 

 

fliA fliJ Flagellar biosynthesis chaperone ['HIPP'] Weak  
 

fliA fliK 
Flagellar hook-length control 

protein 
['HIPP'] Weak 

 

 

fliA fliL 
Flagellar basal body-associated 

protein flil 
['HIPP', 'TIM'] Strong 

 

 

fliA fliM Flagellar motor switch protein M ['HIPP', 'TIM'] Strong  
 

fliA fliN Flagellar motor switch protein ['HIPP', 'TIM'] Strong  
 

fliA fliO Flagellar biosynthesis ['HIPP', 'TIM'] Strong  
 

fliA fliP Flagellar biosynthesis protein P ['HIPP', 'TIM'] Strong  
 

fliA fliS Flagellar protein flis 
['FP', 'HIPP',  

'GEA'a] 
Strong 

 

 

fliA fliT Predicted chaperone 
['FP', 'HIPP',  

'GEA'a] 
Strong 

 

 

fliA fliZ Hypothetical protein ['HIPP', 'TIM'] Strong  
 

fliA flxA Qin prophage; predicted protein ['AIPP', 'HIPP'] Weak  
 

fliA motA Flagellar motor protein mota 
['HIPP', 

'GEA'a] 
Weak 
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fliA motB Flagellar motor protein motb 
['HIPP', 

'GEA'a] 
Weak 

 

 

fliA tap Methyl-accepting protein IV 
['HIPP', 'TIM',  

'GEA'a] 
Strong 

 

 

fliA tar 
Methyl-accepting chemotaxis 

protein II 

['HIPP', 'TIM',  

'GEA'a] 
Strong 

 

 

fliA tsr 
Methyl-accepting chemotaxis 

protein I, serine sensor receptor 
['HIPP', 'TIM'] Strong 

 

 

fliA ycgR 
Protein involved in flagellar 

function 
['AIPP', 'HIPP'] Weak 

 

 

fliA yjcZ Hypothetical protein ['HIPP'] Weak  
 

fliA flgA 
Flagellar basal body P-ring 

biosynthesis protein A 
[gSELEX]c  

AAAATGGGTCGCTATTTATGCCGTTGAT 
-80 

fliA flgB 
Flagellar basal-body rod protein 

B 
  TACAACGTGAATTGTACCTGTCCGCAAT -136 

fliA flgC 
Flagellar basal-body rod protein 

C 
  TCGCGAACGCACCCAGTTTGCCGATAAC -113 

fliA flgD 
Flagellar basal body rod 

modification protein D 
  CAAAGGGCTACGTAAAAATGCCGAACGT -158 

fliA flgE Flagellar hook protein E   TAACGGTGGTACACAACTGGTTGCCCAG -164 

fliA flgF 

Flagellar component of cell-

proximal portion of basal-body 

rod 

  TAAAGAACTGGTCAATATGATCGTTGCC -126 

fliA flgG 
Flagellar component of cell-

distal portion of basal-body rod 
  

TAAGGCGTTTACGCCGCATCCGGCAAGA 
-70 

fliA flgH 
Flagellar L-ring protein 

precursor H 
  TAAAGCGGTGTCCACCACCGATCAGATG -105 

fliA flgI 
Homolog of Salmonella P-ring 

of flagella basal body 
  

CAATGGCTACATTAACGAAGCGCAAAAT 
-85 

fliA flgJ 
Flagellar biosynthesis 

protein flgj 
  CAAAGCGTACGTTCCAGCGCCAGCCTCA -141 

fliA flhB Flagellar biosynthesis protein B   TAAATCCCGCCTGTTTTGCCCCTTACTC -93 

fliA yecR Hypothetical protein   TAAAATAGTGCTTTCTCTTACTCTTCTG -37 
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fliA yhjH Hypothetical protein  

['GEA', 

'CHIP' ]a,c 

[TA]a 

 TAAAGTTCTGCCCTTACGCGCCGATAAT# -76 

fliA yjdA 

Conserved protein with 

nucleoside triphosphate 

hydrolase domain   

['HIPP']* 

['GEA', 

'CHIP' ]a,c 

[TA]a 

 TAAATAAAATAACAAAATTTGCTTTAAG -41 

fliA ymdA Hypothetical protein     GAAAGTATGGATAACACAACCCTCAAGG -57 

fecI module           

fecI bfd 
Bacterioferritin-associated 

ferredoxin 
  TGAAATAAGAACTATTTTCATTTATTT -53 

fecI cirA 
Ferric iron-catecholate outer 

membrane transporter 
  ACAAATCAGAGGCTGTTCCGGCTTTCT -146 

fecI efeO 
Ferrous iron transport system 

protein (ycdo) 
  GGAAATCGCCTTCGATATGAGTGCGGT -251 

fecI entA 
2,3-dihydroxybenzoate-2,3-

dehydrogenase 
  AAGAATTACTGCCAGCACCTATCCCCG -248 

fecI entB Isochorismatase   TTAAATTACCGGATCGCGTGGAGTGTG -124 

fecI entC Isochorismate synthase   GAAAATATAAATGATAATCATTATTAA -55 

fecI entE 

2,3-dihydroxybenzoate-AMP 

ligase component 

of enterobactin synthase 

multienzyme complex 

  GAAAATCAGGTGCGTCTGTTTGCCGGA -130 

fecI entF 

Enterobactin synthase 

multienzyme complex 

component, ATP-dependent  

  GGCAATTCAGTCTGTGGCCGCAACAAT -152 

fecI exbB 
Membrane spanning protein in 

tonb-exbb-exbd complex  
  GCAAATAGTAATGAGAACGACTATCAA -89 

fecI exbD 
Membrane spanning protein in 

tonb-exbb-exbd complex 
  TCAAATGGGCCGCGGTAACGGCTATCT -371 

fecI fepA 
Iron-enterobactin outer 

membrane transporter 
  AGAAATATATTGATAATATTATTGATA -202 
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fecI fepB 
Iron-enterobactin transporter 

subunit 
  GAAAATGAGAAGCATTATTGATGGATT -231 

fecI fhuA 
Ferrichrome outer membrane 

transporter 
  TAAAATAACATCCCATCTAAGATATTA -180 

fecI fhuF 
Ferric iron reductase involved in 

ferric hydroximate transport 
  ATAAATCCCTTGCTATCGGGTAAACCT -74 

fecI fiu 
Predicted iron outer membrane 

transporter 
  GAAAATCGCTCCAAGTGATAATGCTTA -146 

fecI nrdE 
Ribonucleotide-diphosphate 

reductase alpha subunit 
  GGAAATGCGGCGTGCCGTGGCTGTACC -89 

fecI nrdF 
Ribonucleotide-diphosphate 

reductase beta subunit 
  TGAAATTGAAGGCTGCGTCTCCTGTGC -44 

fecI nrdH Glutaredoxin-like protein   AAAAATCCCCCTACCCCGTCACGCTCA -173 

fecI tonB 
Membrane spanning protein 

in tonb-exbb-exbd complex 
  AAAAATGACATTTTCACTGATCCTGAT -108 

fecI ybaN 
Conserved inner membrane 

protein 
  GAAAATGATAATTGTTATGCTAAAGTA -56 

fecI ybdB 
Proofreading thioesterase in 

enterobactin biosynthesis 
  GAAAATCGCCCGTCCACAAGAGATCGC -121 

fecI ybdZ Hypothetical protein    AAGAATCCATTTTCTGGCGTCAGGTTG -119 

fecI ydiE Hypothetical protein   GATAATAAGAATCATTGTTATATCAAT -42 

fecI yncE Hypothetical protein   GAAAATAATGATTACCATTCCCATTTA -107 

fecI yqjH 
Ribonucleotide-diphosphate 

reductase beta subunit 
    ACAAATCGCTTGCATTTATCATGATTA -92 

rpoS module    
 

 

rpoS nlpD 
Predicted outer membrane 

lipoprotein 
    

TTGCCGCAGGTCAGCGTATCGTGAACATC 
-105 

rpoS yncL Hypothetical protein   TTGCGGATTTTCTTAACCCGTACTATACA -59 

rpoS yphA 
Predicted inner membrane 

protein 
  

CTGTAACCAGGATAATTAGCGAATATCTC 
-103 

rpoS bfr 
Bacterioferritin, iron storage and 

detoxification protein 
  

TTGACTTACTCGTAAGCCGTTCTACTCTT 
-61 
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rpoS ygaU Hypothetical protein   TTGACACTGCTTGGGTATATCCCCGGTT -147 

rpoS gst Glutathionine S-transferase   GTCACTGGAAGTCTATGGTCGCGTATTCT -254 

rpoS yodC Hypothetical protein   TGGCGATGATATTACCGACTGTTTTAAAT -189 

rpoS ivy 
Inhibitor of vertebrate C-

lysozyme 
  

TTGATAACAAATGCTGATATTGGAAATAT -79 

rpoS yahK 
Predicted oxidoreductase, Zn-

dependent and NAD(P)-binding 
  

TTGGCTATATTCAATGGACGCGTTTTGCC -84 

rpoS yahO Hypothetical protein   TCACGAACAGTCCTACGGTCAGGTAAACG -232 

rpoS yeaQ 
Conserved inner membrane 

protein 
  

TTGTGCTATGCTTTTTATCAGCGACTAAC -62 

rpoS yncB 
Predicted oxidoreductase, Zn-

dependent and NAD(P)-binding 
[gSELEX]c  

TTGCAGAGGGGATGTGACGGCTGCAAACA -91 

rpoS ydiZ Hypothetical protein   TTGAAGAGATGGTTCGTTTTGGCGTAGCT -217 

rpoS yehE Hypothetical protein   TTGATCATACAGGCAATGCTTCATTATCA -120 

rpoS yoaC Hypothetical protein   TTGATATTAGATGCAAATTAAGGTCATAT -71 

rpoS hdhA 
7-alpha-hydroxysteroid 

dehydrogenase 
  

TTGCAGCGAAATAATCCTCTCTTTATCTG -126 

rpoS ytjA Hypothetical protein   TTGTCGGGAGGCGCGATGTGCACCACACT -101 

rpoS ygaM Hypothetical protein     TTCACAACGCTTTCAGAAAAGTCCATAAA -90 

bolA module    
 

 

bolA dsrB Hypothetical protein     CCGCCAGC, CCGCCAGT, CTGCCAGA 
-236, -

131, -55 

bolA yoaC Hypothetical protein   CGACCAGA, GTGCCATA -354, -93 

bolA yqaE 

Pmp3 family protein, a predicted 

membrane protein of unknown 

function 

  ATACCAGC -130 

bolA cysQ 

PAPS (adenosine 3'-phosphate 

5'-phosphosulfate) 3'(2'),5'-

bisphosphate nucleotidase  

  TGGCCAGG -221 

bolA ymgE PF04226 family protein ymge   TTGCCAGT, CGCCCAGC -337, -89 
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bolA yncL 

Uncharacterized protein, 

contains a predicted 

transmembrane segment 

  CAGCCAGA, TCACCAGT -184, -124 

bolA ydhL Conserved protein    ACGCCAAA, TCGCCAGG -273, -149 

bolA ecnB 
Bacteriolytic entericidin B 

membrane lipoprotein 
  TTGCCAGC, CTGCCAGC -206, -122 

bolA sfsA 

Sugar fermentation stimulation 

protein A, putative DNA-

binding transcriptional regulator 

of maltose metabolism 

  ACGCCAGC, CCGCCAGG -155, -129 

bolA csrA Carbon storage regulator   TAGCCAGT, ATGCCATG -276, -117 

bolA yccX Predicted acylphosphatase     CAGCCAGT, ACGCCATT -374, -365 

[HIPP] Human inference of promoter position; [TIM] Transcription initiation mapping; [GEA] Gene expression analysis; [FP] Foot-870 

printing; gSELEX: gSELEX-Seq; CHIP: ChIP-PCR 871 

Bold font and grey highlight: new evidence found in literature; bold font, italicized, and underlined: perfect binding core sequence; bold font: 872 

imperfect dining core sequence (Dressaire C et al 2015);   873 

a: Zhao K et al 2007; b: Fitzgerald DM et al 2014; c: Shimada T et al 2017; *: gene name as crfC on RegulonDB; #: same prediction 874 

as literature b 875 

 876 

 877 
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 878 

Table S2. Topological properties of iDIRECT-processed and original networks under 879 

warming. The standard deviations of topological properties from the random networks are used 880 

for the Student t test of their statistical significance between iDIRECT-processed and original 881 

networks.  882 

 883 

  Warming  

  iDIRECT Original p 

Empirical 

Total nodes 432 489 --- 
Total links 1139 1572 --- 
Average connectivity 5.273 6.429 --- 
Connectance 0.01223 0.01318 --- 
R2 of power law 0.886 0.913 --- 
Average vulnerability 0.003272 0.002754 7.9×10-143 
Average clustering 

coefficient (avgCC) 
0.265 0.321 2.9×10-133 

Average path 

distance (GD) 
6.268 5.809 7.4×10-174 

Module # 33 24 1.9×10-73 
Relative modularity 0.9219 0.8092 7.8×10-237 

Random 

networks 

Average clustering 

coefficient (avgCC) 
0.049±0.006a 0.071±0.006 6.7×10-63 

Average path 

distance (GD) 
3.483±0.032 3.284±0.027 6.4×10-107 

Modularity 0.397±0.005 0.338±0.005 1.4×10-157 
 884 
a mean value of topological properties followed by standard deviations from 100 simulations.  885 

 886 

 887 

  888 
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 889 

Table S3. Topological properties of iDIRECT-processed and original networks under 890 

control. The standard deviations of topological properties from the random networks are used 891 

for the Student t test of their statistical significance between iDIRECT-processed and original 892 

networks. 893 

 894 

  Control   

  iDIRECT Original p 

Empirical 

Total nodes 250 284 --- 

Total links 399 504 --- 

Average 

connectivity 
3.192 3.549 --- 

Connectance 0.01282 0.01254 --- 

R2 of power law 0.937 0.926 --- 

Average 

vulnerability 
0.004334 0.004163 5.4×10-10 

Average clustering 

coefficient (avgCC) 
0.263 0.298 4.9×10-87 

Average path 

distance (GD) 
5.145 4.935 1.2×10-57 

Module # 29 23 2.1×10-46 

Relative modularity 0.3565 0.1993 3.2×10-195 

Random 

networks 

Average clustering 

coefficient (avgCC) 
0.024±0.007a 0.028±0.007 1.7×10-5 

Average path 

distance (GD) 
4.172±0.070 3.921±0.055 4.6×10-69 

Modularity 0.574±0.008 0.529±0.006 7.7×10-103 

 895 
a mean value of topological properties followed by standard deviations from 100 simulations.  896 

 897 

 898 



 

 

 

 

62 

 899 

Table S4. Taxonomic information for keystone taxa under warming and control, before and after applying iDIRECT. The last four 900 

columns indicated whether the OTU appears in one of the original/iDIRECT-processed networks under warming/control or not. 901 

Among the newly identified keystone species, OTU_15 belongs to the genus Sphingomonas, which is metabolically versatile and can 902 

utilize a wide range of naturally occurring compounds (18); OTU_38 belongs to the genus Nitrospira and is capable of aerobic 903 

hydrogen oxidation (19) and nitrite oxidation (20); OTU_134 belongs to the genus Pedomicrobium and has the ability to adhere 904 

strongly to surfaces and form biofilm (21); OTU_443 belongs to the genus Gemmatimonadetes and is very common in soil with an 905 

adaptation to low soil moisture (22). 906 

 907 

        iDIRECT Original 

ID Domain Phylum Class Order Family Genus Role Warming  Control  Warming  Control  

OTU_15 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Net Hub Yes    

OTU_14 Bacteria Acidobacteria Acidobacteria_Gp1 Unclassified Unclassified Gp1 Mod Hub Yes Yes Yes  

OTU_21 Bacteria Acidobacteria Acidobacteria_Gp1 Unclassified Unclassified Gp1 Mod Hub  Yes  Yes 

OTU_35 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Mod Hub  Yes  Yes 

OTU_102 Bacteria Acidobacteria Acidobacteria_Gp1 Unclassified Unclassified Gp1 Mod Hub  Yes Yes Yes 

OTU_117 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Devosia Mod Hub  Yes  Yes 

OTU_131 Bacteria Actinobacteria Actinobacteria Solirubrobacterales Solirubrobacteraceae Solirubrobacter Mod Hub Yes Yes Yes  

OTU_141 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Mod Hub Yes Yes Yes Yes 

OTU_176 Bacteria Verrucomicrobia Subdivision3 Unclassified Unclassified Subdivision3 Mod Hub  Yes   

OTU_4 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingosinicella Mod Hub Yes    

OTU_31 Bacteria Acidobacteria Acidobacteria_Gp6 Unclassified Unclassified Gp6 Mod Hub Yes  Yes  

OTU_38 Bacteria Nitrospira Nitrospira Nitrospirales Nitrospiraceae Nitrospira Mod Hub Yes    

OTU_53 Bacteria Unclassified Unclassified Unclassified Unclassified Unclassified Mod Hub Yes  Yes  

OTU_81 Bacteria Actinobacteria Actinobacteria Solirubrobacterales Solirubrobacteraceae Solirubrobacter Mod Hub Yes  Yes  

OTU_115 Bacteria Proteobacteria Deltaproteobacteria Unclassified Unclassified Unclassified Mod Hub Yes  Yes  

OTU_134 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Pedomicrobium Mod Hub Yes    

OTU_443 Bacteria Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatimonas Mod Hub Yes    

OTU_761 Bacteria Proteobacteria Deltaproteobacteria Unclassified Unclassified Unclassified Mod Hub Yes    

OTU_799 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Unclassified Mod Hub Yes  Yes  

OTU_892 Bacteria Proteobacteria Alphaproteobacteria Rhodospirillales Rhodospirillaceae Skermanella Mod Hub Yes  Yes  

OTU_940 Bacteria Acidobacteria Acidobacteria_Gp1 Unclassified Unclassified Gp1 Mod Hub Yes    

OTU_1513 Bacteria Unclassified Unclassified Unclassified Unclassified Unclassified Mod Hub Yes  Yes  

OTU_60 Bacteria Actinobacteria Actinobacteria Actinomycetales Unclassified Unclassified Mod Hub   Yes  
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OTU_112 Bacteria Actinobacteria Actinobacteria Actinomycetales Micromonosporaceae Micromonospora Mod Hub   Yes  

OTU_121 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae Microvirga Mod Hub   Yes  

OTU_3634 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Xanthobacteraceae Pseudolabrys Mod Hub   Yes  

OTU_7456 Bacteria Acidobacteria Acidobacteria_Gp6 Unclassified Unclassified Gp6 Mod Hub     

OTU_119 Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae 2 Oxalophagus Connector Yes    

OTU_132 Bacteria Acidobacteria Acidobacteria_Gp3 Unclassified Unclassified Gp3 Connector Yes    

OTU_1382 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Unclassified Unclassified Connector Yes    

OTU_21522 Bacteria Actinobacteria Actinobacteria Solirubrobacterales Solirubrobacteraceae Solirubrobacter Connector Yes    

OTU_22728 Bacteria Proteobacteria Betaproteobacteria Unclassified Unclassified Unclassified Connector Yes    

OTU_11276 Bacteria Acidobacteria Acidobacteria_Gp2 Unclassified Unclassified Gp2 Connector   Yes  

 908 
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 910 

Table S5. Topological properties of the iDIRECT-processed networks under warming and 911 

control. The standard deviations of topological properties from the random networks are used 912 

for the Student t test of their statistical significance between iDIRECT-processed networks. 913 

 914 

  iDIRECT  

  Warming Control p 

Empirical 

Total nodes 432 250 --- 

Total links 1139 399 --- 

Average 

connectivity 
5.273 3.192 --- 

Connectance 0.01223 0.01282 --- 

R2 of power law 0.886 0.937 --- 

Average 

vulnerability 
0.003272 0.004334 1.7×10-75 

Average clustering 

coefficient (avgCC) 
0.265 0.263 0.03383 

Average path 

distance (GD) 
6.268 5.145 1.2×10-153 

Module # 33 29 2.7×10-29 

Relative modularity 0.9219 0.3565 2.6×10-40 

Random 

networks 

Average clustering 

coefficient (avgCC) 
0.049±0.006a 0.024±0.007 9.4×10-68 

Average path 

distance (GD) 
3.483±0.032 4.172±0.070 1.6×10-124 

Modularity 0.397±0.005 0.574±0.008 2.2×10-200 

 915 
a mean value of topological properties followed by standard deviations from 100 simulations.  916 

 917 

  918 
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 919 

Table S6. Module preservation between warming and control networks. All module pairs 920 

with p-value < 0.01 from the Fisher’s exact test are listed in an ascending order per p-value. 921 

 922 

 Warming Control Shared 

node # 

Fisher’s exact 

test p-value  Module Size Module Size 

Pair 1 W4 20 C4 22 19 1.50×10-30 

Pair 2 W1 53 C1 60 29 7.51×10-17 

Pair 3 W2 16 C2 32 12 5.34×10-13 

Pair 4 W8 8 C1 60 7 1.49×10-6 

Pair 5 W5 93 C5 13 9 4.99×10-5 

Pair 6 W3 89 C3 46 18 1.30×10-4 

Pair 7 W3 89 C6 6 5 0.00070 

Pair 8 W5 93 C7 6 5 0.00086 

Pair 9 W9 7 C3 46 4 0.00151 

 923 

  924 
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 925 

Table S7. Commonly used copulas and their corresponding binary operators  and . 926 

C(u,v) is an Archimedean copula under consideration, (t) is the corresponding generator 927 

function, and  and  are resulting binary operators for sequential and parallel paths, 928 

respectively. 929 

 930 

C(u,v) (t) uv uv Notes 

    Independent copula 

    
Lower Fréchet- 

Hoeffding bound 

 ---   
upper Fréchet- 

Hoeffding bound  

    
Eqs. (C2) 

 931 

 932 
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 933 

Table S8. Important families of bivariate Archimedean copulas. The table shows the copulas Cθ(u,v) and their generator functions 934 

θ(t), both are parametrized by θ, as well as the range of parameter θ. For convenience, derived functions θ(1–t) and 1–θ
-1(t) are 935 

also included in the table, which are essential in the implementation of the binary operator . 936 

 937 

Family name Bivariate copula Cθ(u,v) Range of θ Generator θ(t) θ(1–t) 1–θ
-1(t) 

Ali-

Mikhail-

Haq      

Clayton 
     

Frank 

     

Gumbel 
     

Joe 
 

  
  

 938 

 939 
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 940 

Table S9. Comparison of the different realizations of  for parallel paths. All possible 941 

combinations of 0.1, 0.5, and 0.9 were used as the inputs. The red bold numbers show that the 942 

ordinary addition u + v violates the natural range [0,1] of association data. 943 

 944 

     
0.10.1 0.1900 0.1000 0.1818 0.2000 

0.10.5 0.5500 0.5000 0.5263 0.6000 

0.10.9 0.9100 0.9000 0.9011 1.0000 

0.50.5 0.7500 0.5000 0.6667 1.0000 

0.50.9 0.9500 0.9000 0.9091 1.4000 

0.90.9 0.9900 0.9000 0.9474 1.8000 

 945 

  946 
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 947 

Table S10. Comparison of two assembly strategies. uv = uv for sequential paths, uv = 948 

(u+v–2uv)/(1–uv) for parallel paths, and three different combinations of u, v, and w are used. 949 

(uv)(uw) is from the APS strategy, u(vw) is from the TSP strategy, and Δ is the 950 

difference. Red bold number shows that Δ is non-zero when u = 0.5 and v = w = 1. See Fig. S16d 951 

for visualization of Case 3. 952 

 953 

 u v w (uv)(uw) u(vw) Δ 

Case 1 0.0 0.5 0.5 0.0000 0.0000 0.0000 

Case 2 1.0 0.5 0.5 0.6667 0.6667 0.0000 

Case 3 0.5 1.0 1.0 0.6667 0.5000 0.1667 

 954 

 955 

  956 
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