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Abstract

Disentangling the assembly mechanisms controlling community composition, structure, distribution, functions, and dynamics is a
central issue in ecology. Although various approaches have been proposed to examine community assembly mechanisms, quanti-
tative characterization is challenging, particularly in microbial ecology. Here, we present a novel approach for quantitatively delineating
community assembly mechanisms by combining the consumer–resource model with a neutral model in stochastic differential
equations. Using time‐series data from anaerobic bioreactors that target microbial 16S rRNA genes, we tested the applicability of three
ecological models: the consumer–resource model, the neutral model, and the combined model. Our results revealed that model
performances varied substantially as a function of population abundance and/or process conditions. The combined model performed
best for abundant taxa in the treatment bioreactors where process conditions were manipulated. In contrast, the neutral model showed
the best performance for rare taxa. Our analysis further indicated that immigration rates decreased with taxa abundance and com-
petitions between taxa were strongly correlated with phylogeny, but within a certain phylogenetic distance only. The determinism
underlying taxa and community dynamics were quantitatively assessed, showing greater determinism in the treatment bioreactors that
aligned with the subsequent abnormal system functioning. Given its mechanistic basis, the framework developed here is expected to
be potentially applicable beyond microbial ecology.

Keywords: community assembly mechanisms; consumer–resource model; neutral model; species dynamics

Impact statement
One fundamental goal in microbial ecology is to predict how microbial diversity is changed across space and time. Although
spatial patterns of microbial communities have been recently intensively examined, our understanding of microbial temporal
dynamics is rudimentary, primarily due to the lack of appropriate experimental data and theoretical framework. By recon-
ciling niche and neutral perspectives, this study developed a novel process model‐based framework to effectively encap-
sulate microbial species temporal dynamics, which is powerful for quantitatively assessing the assembly mechanisms
underlying microbial community dynamics. This study represents a significant advance in explaining microbial temporal
dynamics toward predictive microbial community ecology.

INTRODUCTION
Microorganisms are the most diverse group of life on Earth
and play critical roles in global biogeochemical cycling of
carbon, nitrogen, phosphorus, sulfur, and various other ele-
ments. It is well known that microbial diversity is extremely

high across various habitats1–3. One of the fundamental
goals in microbial ecology is to determine how such ex-
tremely high microbial biodiversity is generated and main-
tained across space and time4. Two types of ecological
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processes (deterministic vs. stochastic) are influential for
explaining the processes of assembling individual taxa into a
local community. Niche‐based theory assumes that de-
terministic processes, such as differences in taxonomic and
functional traits, interspecies interactions (e.g., competition,
predation, and mutualisms), and abiotic filtering (e.g., tem-
perature, pH), are responsible for local community compo-
sitions5,6. In contrast, neutral theory proposes that all species
are ecologically equivalent; thus, immigration and ecological
drift of stochastic birth and death shape the diversity and
composition of local communities regardless of species
traits7. Although both deterministic and stochastic processes
are believed to play key roles in shaping community diversity,
their relative importance is still hotly debated6–11, particularly
in microbial ecology4,12–14. It is thus critical to quantify the
degree to which deterministic or stochastic processes im-
pact community assembly, in order to effectively influence or
manipulate microbial communities for designed functions4,14.

Several major approaches have been used to infer com-
munity assembly mechanisms, such as multivariate analysis,
null modeling analysis, and ecological theory‐based process
models (i.e., niche and neutral models)4,15. Compared to the
multivariate and null model‐based statistical approaches, the
ecological theory (niche vs. neutral)‐based process model
approach is more attractive because it allows mechanistic
predictions of community dynamic behavior. One of the most
widely used niche models is Lotka–Volterra competition16,17,
which describes the dynamics of individual taxa as a function
of growth rate and inter‐species interaction. However, this
direct effect is rarely analyzed in nature, and it is challenging
to measure the competition coefficients experimentally17,18.
Such parameter‐rich models are particularly intractable for
studying microbial communities that typically show high di-
versity19–22. An alternative to the generalized Lotka–Volterra
model is the consumer–resource model, which describes the
dynamics of individual taxa as a function of the availability of
resources. This model assumes that species interact only
through competition for a few limiting resources23,24, which
greatly reduces the number of required parameter from the
square of the taxon number (pairwise species interactions) to
the number of resources, and hence it is parsimonious for
complex systems such as microbial communities25. Re-
cently, resource‐related models have been successfully used
for modeling microbial community diversity dynamics26,27.

Neutral models have also been successful in explaining
some of the most widely studied patterns in community
ecology, such as abundance distribution28, rank‐abundance
distribution,13 and frequency‐abundance distribution of in-
dividual taxa12. However, most studies have focused on
community‐level predictions at one time point29–33, but rarely
examined the dynamic behavior of individual populations
from neutral perspectives13. This is an important knowledge
gap to fill because temporal dynamic behavior is critical for
understanding multispecies coexistence6 and functional
stability34. Also, because both niche and neutral mechanisms
play key roles in community assembly35, several studies at-
tempted to develop unified models to reconcile both

mechanisms6,8–10. However, such theoretical models are
rarely applied to actual ecological data owing to mathemat-
ical challenges36,37. Recently, a stochastic differential equa-
tion (SDE)‐based model that consolidates niche and neutral
processes has been developed to simulate the dynamics of
individual microbial taxa13,36. Rooted on the framework of a
neutral model, this SDE model considers the niche effect by
incorporating an advantage term as a linear function of var-
ious environmental variables13. However, this SDE model
does not account for biotic interactions such as competition.

In this study, we developed a novel process model‐based
framework to quantitatively infer assembly mechanisms by
integrating niche and neutral theory‐based models for com-
munity dynamics. Specifically, we first developed an SDE‐
based combined model by incorporating consumer–resource
interactions, immigration, and drift. We then compared this
new model with the consumer–resource model and neutral
model, for the ability to capture the temporal dynamics of
individual taxa in anaerobic bioreactors. We estimated eco-
logically relevant model parameters such as the immigration
rate and competition strength, and inferred the relative im-
portance of stochastic versus deterministic processes in
driving community dynamics. We applied this framework to
analyze time‐series data from anaerobic bioreactors under
stable or disturbed process conditions. Our results indicated
that it provides a robust, reliable process model‐based tool
for assessing assembly mechanisms controlling taxa and
community dynamics.

RESULTS
Overview of modeling framework
To assess the mechanisms controlling community dynamics,
raw time‐series sequence data are first processed to gen-
erate relative abundances of individual taxa represented as
exact sequence variants (ESVs) (Figure 1A). The reference
taxon is chosen as the one with the top frequency and rel-
ative abundance, and the ratio of taxa abundance to the
abundance of the reference taxon is then calculated for each
taxon. The observed time‐series data of each taxon are then
fitted with the neutral, consumer–resource, and combined
models (Figure 1B). The performances of the three models
are compared according to the Akaike information criteria
(AIC) values, aiming to reveal potential mechanisms driving
the dynamics of individual taxa. Ecologically important pa-
rameters, such as λi (the rate of migration from the meta-
community into the local community) and −b C b Ci i r r (relative
competition strength to the resource), are estimated using
the least‐square method for model fitting (Figure 1C). Finally,
the determinism for taxa and community dynamics are as-
sessed based on the SDEs of the combined model
(Figure 1D), as the SDEs comprise the deterministic and
stochastic part. It is noted that, while the immigration is
generally considered as a stochastic process15, it is included
in the deterministic part of the SDEs (Equations 6, 9, and 11).
In fact, the immigration process acts as a restoring force that
makes the relative abundance return to its mean value when
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there is a deviation between the current relative abundance
and the mean relative abundance.

Model performances on taxon dynamics
To illustrate how the process model‐based framework
(Figure 1) is applied to microbial time‐series data, we col-
lected longitudinal data from two contrasting sets of anae-
robic bioreactors, each with three replicates (Figure S1):
There were a total of 53‐time points from the control bio-
reactors in which stable process conditions were maintained
over 500 days and 11‐time points from the treatment bio-
reactors over 100 days during which the resource levels were
incrementally increased until process conditions deteriorated
to an ultimate collapse. A total of 6799 microbial taxa, rep-
resented by ESVs, were detected, which were present in at
least one sample in control or treatment bioreactors. Further,
models were fitted using the least‐squares method for each
taxon under control or treatment conditions, requiring the
taxon to present in at least six time points (e.g., a taxon

present in at least six out of 53‐time points in bioreactor C1).
Specifically, we combined the time series of the triplicate
treatment bioreactors together to improve the reliability of
model fitting (see Materials and Methods section for details),
and fitted the models on taxa that were present in at least six
out of 33 time points in treatment bioreactors. In addition, the
mean relative abundance of each taxon in control or treat-
ment bioreactors was calculated, based on which taxa were
classified into three groups: the abundant taxa (mean relative
abundance >0.1%), the moderate taxa (mean relative abun-
dance between 0.01% and 0.1%), and the rare taxa (mean
relative abundance <0.01%) (Table S1).

To identify the mechanisms driving the dynamics of in-
dividual taxon, the relative performances of the three models
were compared based on AIC values. In the treatment bio-
reactors, the combined model had the best fit for 58% of the
abundant taxa (Figure 2A), suggesting that most abundant
taxa were driven by both stochastic drift and deterministic
immigration and competition. In contrast, the neutral model
had the best fit for 38% of the abundant taxa, and the

(A)

(B)

(C) (D)

Figure 1. Overview of the framework. (A) The raw sequence data are processed to generate the time series of taxa relative abundances and
the abundance ratio of focal taxon to the reference taxon. (B) The neutral, consumer–resource, and combined model are fitted using the least‐
square methods for each taxon. (C) Key parameters can be estimated from modeling. (D) The taxa and community determinism are assessed
based on the estimated parameters of the combined model. ESV, exact sequence variant.
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consumer–resource model had the best fit for only 4% of the
abundant taxa. For rare taxa, 58% of them in the treatment
bioreactors found best fit with the neutral model, suggesting
that rare taxa were mainly shaped by immigration and drift.
The importance of neutral processes was even more con-
spicuous in the control bioreactors, since the neutral model
had the best fit for 79% of all abundant taxa and 74% of rare
taxa. Therefore, neutral processes of immigration and drift
were identified to drive the dynamics of the majority of rare
taxa, particularly in the control bioreactors. When examining
the model performance for the entire community, the neutral
model had the best fit for most taxa in both the control (75%
of all taxa) and treatment bioreactors (57% of all taxa)
(Figure S2A), which was expected as the rare taxa con-
tributed to the majority of the taxa number (Table S1).

Model performance was further examined across the
major phyla. The neutral model was the best for most rare
taxa in both treatment and control bioreactors regardless of
phylogenetic relationships (Figure S3), while the combined
model performed better than the other two models for the
abundant taxa in treatment bioreactors for five out of the top
seven phyla such as Firmicutes and Bacteroidetes
(Figure S3). These results suggested that model performance
was largely unrelated to microbial phylogeny.

Because the combined model includes both the neutral
and consumer–resource interaction terms, the r2 values from
the least‐square fitting are almost always the largest for the
combined model (Figure 2B). On average, the combined
model can explain 36%± 20% (mean ±SD) of the variations in
taxon dynamics based on the r2 values, while the neutral
model can explain 31%± 19% and the consumer–resource
model can only explain 4%± 8% of the variations

(Figure S2B). Regarding the ability to represent taxon dy-
namics under different treatment conditions, the neutral model
could explain more variations of the abundant taxa in the
control than the treatment bioreactors (mean r2 value: 22%
v.s. 16%; P < 0.0001 by a two‐tailed t‐test) (Figure 2B). It also
performed better on the rare taxa in the control than the
treatment bioreactors (mean r2 value: 36% vs. 32%;
P < 0.0001 by a two‐tailed t‐test). In contrast, the
consumer–resource model or the combined model was able
to represent taxon dynamics in the treatment bioreactors
better than those in the control bioreactors, as the mean r2

values were significantly higher in the treatment than the
control bioreactors for abundant, moderate, and rare taxa
(P < 0.02 by two‐tailed t‐test). Therefore, the relative perform-
ance of these three models is dependent on taxa abundance
and process conditions in the ecosystem of interest.

Competition strengths among different taxa
Ecologically important parameters such as −b C b Ci i r r re-
flecting the relative competition strength can be estimated
with relative taxon abundance data at discrete time points,
based on the consumer–resource model or the combined
model. Considering the better performance of the combined
model than the consumer–resource model, here, the pa-
rameters were estimated based on the combined model to
enable the comparison across taxa, which are summarized in
Table S2. The top three most competitive taxa in the treat-
ment bioreactors were identified to be associated with the
genera Ornithinicoccus, unclassified Ruminococcaceae and
Gottschalkia, suggesting them as strong competitors for the
organic substrates.

(A) (B)

Figure 2. Model fitting on microbial taxa in control bioreactors with stable substrate feeding and treatment bioreactors with incremental
substrate feeding. (A) Percentages of the neutral model (N), the consumer–resource model (CR), and the combined model (C) being the best
model describing taxon dynamics. For each taxon, we fitted the three models, and the best model for that taxon was determined as the one
with the lowest Akaike information criteria (AIC) value. Three groups of taxa were classified by mean relative abundance, with mean relative
abundance <0.01% for rare taxa, from 0.01% to 0.1% for moderate taxa, and >0.1% for abundant taxa. (B) Distribution of r2 values of the three
models.
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We were curious whether phylogenetically closely related
taxa are more likely to have similar competition strengths.
Thus, we examined the relationship between taxa phylogeny
and the estimated relative competition strength. When the
sequence similarity between taxa was larger than 70%, the
difference in b Ci i had a significant negative correlation with
sequence similarity in the treatment bioreactors (Spearman's
ρ = −0.04, P < 0.0001) (Figure 3A), suggesting that closely
related microbial taxa had similar competition strengths (i.e.,
phylogenetic signal) when resource levels were altered. The
negative correlation between competition strength difference
and sequence similarity robustly held under even higher se-
quence similarity (Spearman's ρ = −0.04, P < 0.0001 for se-
quence similarity >80% and Spearman's ρ = −0.07, P = 0.003
for sequence similarity >90%). However, this negative cor-
relation did not hold when the sequence similarity of the 16S
rRNA gene was less than 70% (Spearman's ρ = 0.03 for
treatment bioreactors). For control bioreactors, the negative
correlation between sequence similarity and the difference in
b Ci i was observed when sequence similarity was larger than
85% (Spearman's ρ = −0.06, P < 0.0001) but not below that
threshold (Figure 3A). Therefore, the phylogenetic signal of
resource competition strengths is relevant only within certain
phylogenetic distances. It is also noted that, although sig-
nificant, the correlations were weak (absolute Spearman's
ρ < 0.1), suggesting that phylogeny could only explain a
minor proportion of variations in taxa resource competition
strengths.

Since the mean b Ci i difference of microbial taxa was
substantially larger in control bioreactors (0.21 ± 0.19,
mean ± SD) than that in treatment bioreactors (0.16 ± 0.14,
mean ± SD), microbial responses to resource levels were
more predictable in the treatment bioreactors, where
changes in resource levels could lead to greater environ-
mental selection. As a result, temporal dynamics of closely
related ESVs was more similar in the treatment bioreactors
than the control bioreactors. For example, ESV4 and ESV
221, which are 98.8% similar in sequence, belong to the
same genus T78 of family Anaerolineaceae. The temporal
dynamics of their relative abundance were not correlated
(Pearson's r = 0.17, P = 0.36) in the control bioreactors
(Figure 3B,D) but significantly correlated (Pearson's r = 0.54,
P = 0.001) in the treatment bioreactors (Figure 3C,E).

Negative correlation between immigration rates
and taxa abundances
The neutral model presented the best fit for most taxa in the
control bioreactors (Figure 2A). We further examined how the
estimated λi, which represents the immigration rates, varied
across all taxa. The estimated relative immigration rates were
similar for the same ESVs across triplicate bioreactors but
highly different among various taxa, spanning differences of
up to 104 folds. The estimated values of λi were negatively
and significantly (Spearman's ρ = −0.95 to −0.92, P < 0.0001)
correlated with the average relative abundances of ESVs
(Figure 4A). Furthermore, the estimated λi values were highly

variable within each phylum because they were negatively
dependent on taxa abundance (Figure S4), suggesting that
the estimated immigration rates were related to abundance
but not phylogeny.

The probability density distribution of individual taxon abun-
dance under equilibrium can be derived for the neutral model12.
This abundance distribution is not possible for the
consumer–resource or the combined model because taxon dy-
namics is dependent on the resource variable in these models.
The probability density distributions of the relative abundances of
an ESV can be predicted by λi and pi (the relative abundance of
that ESV in the source community) in the neutral model, which
were shown to follow a beta distribution12. Exemplified by the
distributions of relative abundances for several representative
ESVs ranging from abundant to rare ones in the control bio-
reactors, the beta distributions predicted the dynamics of ESVs
well, with much higher λi values for the rarer taxa (Figures 4B
and S5). These results suggested that the neutral model could be
used to predict the range of fluctuation for each microbial taxon
under equilibrium, which may be valuable for assessing the
boundaries of population abundance in a stable microbial
community.

Higher determinism in the treatment bioreactors
The determinism of taxa at certain time points was calculated
based on the parameters estimated of the combined model
using the above‐mentioned approach (Figure 1). Interest-
ingly, taxa determinism showed a significant negative cor-
relation with the mean relative abundance of taxa in both
control (Spearman's ρ = −0.53, P < 0.0001) and treatment
bioreactors (Spearman's ρ = −0.55, P < 0.0001) of rare and
abundant taxa, suggesting that rare taxa tended to be more
predictable than abundant taxa. Further, the mean taxa de-
terminism was higher in treatment than control bioreactors
for abundant (mean determinism: 16 vs. 13; P < 0.0001 by a
two‐tailed t‐test), moderate (mean determinism: 57 vs. 54;
P = 0.01 by a two‐tailed t‐test), and rare taxa (mean de-
terminism: 196 vs. 152; P < 0.0001 by a two‐tailed t‐test)
(Figure 5A).

The community‐level determinism was further derived by
aggregating the determinism of co‐occurring taxa within the
community. The abundance‐weighted determinism and un-
weighted community determinism were not different be-
tween the control and treatment bioreactors before Day 90
(P = 0.06–0.94 by a two‐tailed t‐test on each time point)
(Figure 5B). On Day 90, the mean weighted community de-
terminism of treatment bioreactors was significantly higher
than that of the controls (P = 0.02 by a two‐tailed t‐test). On
Day 97, which was before the collapse of treatment bio-
reactors, both the weighted determinism and the unweighted
community determinism were substantially higher in the
treatment bioreactors than the controls (P = 0.004 for
weighted community determinism and P = 0.04 for un-
weighted community determinism by a two‐tailed t‐test)
(Figure 5B), indicating stronger selection in the treatment
bioreactors.
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(A)

(B)

(C)

(D) (E)

Figure 3. Relationship between ESVs' sequence similarity and the difference of estimated b Ci i representing the competition strength for
resource. (A) Smoothed lines showing the mean difference in b Ci i at different sequence similarity levels between ESVs. The shaded area
represents the 95% confidence interval. (B) The time series of two taxa in the control reactors. The two taxa, ESV4 and ESV221, were from
genus T78 of the family Anaerolineaceae, and they were 98.8% similar in 16S sequences. (C) Time series of ESV4 and ESV221 in the treatment
reactors showing consistent fluctuations of their relative abundances. (D, E) Correlation between ESV4 and ESV221 in control (D) and treatment
(E) reactors. C1, C2, and C3 represent the control bioreactors; D1, D2, and D3 represent the treatment bioreactors.
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DISCUSSION
Untangling ecological processes controlling community dy-
namics is a major challenge in microbial ecology, primarily
due to the lack of an appropriate theoretical framework and
long‐term time‐series data sets13,49. With recent advances of
genomics technology, massive longitudinal data can be
rapidly obtained across different environmental conditions50,
which offers great opportunities for testing microbial eco-
logical theories15,51. Here, we described a novel process
model‐based framework to quantitatively assess the as-
sembly mechanisms controlling community dynamics. Dif-
ferent from statistical approaches such as VPA52,53 and null
model‐based methods15,51,54,55, the process models are
mechanistically developed to enable the prediction of com-
munity dynamics and their underlying mechanisms. Our
analyses demonstrate that this framework could discern the
relative importance of deterministic processes (immigration,
resource competition) and the stochastic process of drift in
driving taxa and community dynamics. The developed
framework represents a significant advance in reconciling
both niche and neutral theories for predicting community
dynamics and underlying mechanisms toward predictive
microbial ecology, the ultimate goal in this field.

Microbial rarity can result from both stochastic and de-
terministic processes56. For instance, low local abundance
can emerge by stochastic population fluctuations. A recently
immigrated taxon might also be rare when it first enters a new
community. Niche processes, including abiotic and biotic
factors, can play crucial roles in driving taxon rarity. Rare
biosphere members can be ascribed to narrow niche
breadth, thus remaining generally inactive and at low density
in most conditions but becoming dominant when favorable
conditions arise57,58, which is best illustrated by the extreme
case of microbial dormancy. An alternative is the
competition–colonization trade‐off hypothesis, which is
rooted in the classic niche‐based ecology predicting that
taxa with low competitive ability may remain rare rather than
become extinct due to the advantage in immigration and
colonization59,60. Since microbial dynamics are very fast,
competitive exclusion may not have sufficient time to play
out61. Our study suggested that immigration played im-
portant roles in driving community dynamics, especially for
rare taxa (Figure 4). Rare microbial populations were shown
to have the best fit to the neutral model in both control and
treatment bioreactors (Figure 2A), indicating a dominant role
of immigration and drift in shaping rare taxa dynamics,

Figure 4. Testing the neutral model on species time series in control bioreactors. (A) Estimated λi from the neutral model versus the mean
relative abundance of all taxa in each reactor. (B) Prediction of the neutral model on the distribution of the relative abundances of several
exemplified ESVs. When the local community size was large, the relative abundance of a specific taxon followed a beta distribution under
neutral scenarios, whose shape was determined by parameters λi and pi (the relative abundance of this taxon in the source community)12. The
gray histograms represent the observed value, and the dark blue shadow represents the model predictions using the parameters λi and pi

calibrated from the time series.
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consistent with the observation that ecological drift was
pronounced for rare planktonic eukaryotes62. Further, the
estimated relative immigration rate was higher for rare taxa
than abundant taxa (Figure 4A). This also supports the
competition–colonization trade‐off hypothesis that rare taxa
are recruited mainly through immigration58,63. It was noted
that the determinism of rare taxa was higher than abundant
taxa (Figure 5A), which could be explained by their immi-
gration rate. Higher immigration rate of a taxon would result
in less variations in its relative abundances, as the taxon
tends to return to its correspondent relative abundance in the
metacommunity12, that is, higher determinism of taxa dy-
namics. In contrast, taxa with low immigration rates are less
affected by the metacommunity, which may be subject to
larger effects of local drift and result in more variations in their
relative abundances.

Deterministic processes of resource competition might
play an important role in shaping the dynamics of abundant
taxa in treatment bioreactors, consistent with the resource‐
related theory. The resource‐ratio theory successfully ex-
plained the “paradox of enrichment” in sludge bioreactors,
that is, higher resource levels of nitrogen and oxygen initially
increased and then decreased the diversity of the ammonia‐
oxidizing bacteria26, as a result of competition among mul-
tiple taxa with different resource‐ratio requirements. A
modified consumer–resource model to include nonspecific
cross‐feeding interactions explained experimental results
that many microbial taxa could co‐exist in a single‐resource
environment27. Exploitative competition, rooted in the

consumer–resource model, significantly contributed to
abundant taxa dynamics in the disturbed environment
(Figure 2A), possibly because increases in resources stimu-
lated the competition among abundant microbial pop-
ulations. As a result, the determinism at the community level
was significantly higher in the treatment bioreactors as
compared to the controls (Figure 5B).

The estimated competition strengths showed a
stronger phylogenetic signal in the treatment than control
bioreactors (Figure 3A). Temporal dynamics patterns of
closely related ESVs were more similar in treatment bio-
reactors than the controls (Figure 3B), resonating with the
physics‐based theory that views microbial community as
a fully disordered background with unstructured in-
dividuals (i.e., behaviors of individuals are not clustered
by their taxonomic identity)64, and that imposing dis-
turbance will order the disordered individuals based on
traits, resulting in ecological clusters that are disturbance
dependent.

Understanding the mechanisms underlying community
assembly is important not only to ecologists but also to
practitioners. The relative importance of deterministic vs
stochastic processes in controlling microbial community
assembly has increasingly attracted interest in the last
several years4. Since the treatment reactors were oper-
ated under fluctuating resource levels45, the microbial
communities in treatment reactors appear more filtered
compared to the control reactors under stable operating
conditions, resulting in higher determinism. Our findings

(A)

(B) (C)

Figure 5. Species‐level and community‐level determinism. (A) Predicted determinism across taxa under control and treatment bioreactors. (B,
C) Comparisons of the predicted unweighted (B) and weighted (C) community‐level determinism between the control and treatment reactors.
The lines represent the mean determinism of the three replicated control or treatment bioreactors, and the error bars represent the standard
deviations.
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that deterministic processes are more important for
controlling the taxa and community dynamics in the
treatment reactors (Figure 5) are highly consistent with
this expectation. In addition, the knowledge learned in
this study could help environmental engineers maintain
microbial systems for desired functions. For example, the
neutral model could predict how taxa fluctuate in the
control bioreactors (exemplified in Figure 4B). Given its
simplicity, the neutral model could be useful in long‐term
monitoring of stable systems such as wastewater treat-
ment plants and human guts. The deviation of certain taxa
from the predicated range may signify abnormal con-
ditions of the system. Also, the increase of community
determinism could provide early warnings for system
functional instability, as exemplified by the treatment bi-
oreactors before system collapse (Figure 5B). The relative
competition strengths inferred from the consumer–
resource model or the combined model can be used to
identify functionally important taxa. Since abundant mi-
crobial populations play significant roles in bio-
geochemical cycling in ecosystems65, it is interesting to
examine how changes in such functionally important taxa
would affect resources such as the carbon pool by con-
sidering the coupled dynamics of resource and consumer
under the framework of ecological stoichiometry66.

In this study, we demonstrated the applicability of the
novel modeling framework in representing the bacterial
community dynamics of anaerobic bioreactors. Given its
mechanistic basis, the framework developed in this study
is expected to be potentially applicable in other ecosys-
tems such as soils, oceans, and guts and also to other
organisms such as eukaryotic microorganisms and
plants. We expect the neutral model to be an appropriate
tool for modeling taxa dynamics in relatively stable envi-
ronments such as human guts, while the combined model
might be better for the abundant taxa in ecosystems with
fluctuating resource levels such as soils. However, the
performance of different models as well as the driving
forces governing taxa dynamics in different ecosystems
remain to be tested. It is also noted that these models
possess certain limitations. For example, the resource
level is assumed to linearly affect the taxa growth in the
consumer–resource model and the combined model,
which may not capture the complicated interaction be-
tween consumers and resources in nature. In addition, to
achieve reliable parameter estimation for the SDE‐based
models, extensive time‐series data of high frequency and
duration must be collected, which often entails significant
time and effort.

MATERIALS AND METHODS
Mathematical framework

Consumer–resource model. Because of its mathemati-
cally tractable form, MacArthur's consumer–resource
model38 has a strong impact on the theory of exploitative
competition39. In this study, we used the following

equation27,40 for its simplicity to describe the consumer–
resource interaction of taxon i:







∑= −

dN
dt

b C R m Ni

j
ij ij j i i (1)

where Ni is the absolute abundance (i.e., population density,
population per unit area) of Taxon i and Rj is the availability of
Resource j. Cij is the rate at which taxon i consumes Re-
source j, while the quality factor, bij, represents taxon i's
ability to convert the consumed resource into its biomass.
Thus, their product, b Cij ij, can represent the competition
strength of taxon i over Resource j. mi represents the min-
imum maintenance cost.

The community size, ∑= =N NT i
n

i1 , is implicitly a function of
time. For typical microbial community data, NT is not avail-
able. Rather, the relative abundances and the ratios between
taxa abundances can be inferred from the compositional
data sets41. We can choose a reference taxon r, and take the
ratio of focal taxon and the reference taxon. Let =Z logi

N
N

i

r
be

the log ratio of taxon i to the reference taxon r. Based on
Equation (1), we have

∑
( )

= = −
d N

dt
dN
N dt

b C R m
log i i

i j
ij ij j i (2)

Thus,

∑ ( )

= =
( )

−
( )

= − − ( − )

dZ
dt

d

dt

d N

dt

d N

dt

b C b C R m m

log log logi

N
N i r

j
ij ij rj rj j i r

i

r

(3)

In this study of the bioreactor data set, the availability
of resource Rj is represented by a single variable, the
volatile solids (VS), in the bioreactors. Rj could be repre-
sented by other resources when applying this model in
other systems. These variables are known at discrete time
points. Further, Equation (3) can be expressed as a simple
linear model

∑= +
dZ
dt

k k Yi

j
j j0 1, 1, (4)

where = −( − )k m mi r0 represents the relative maintenance
cost of taxon i as compared to the reference taxon,

= −k b C b Cj ij ij rj rj1, represents the relative competition
strength of taxon i over resource Rj, and =Y Rj j1, . We can then
estimate the parameters through a least‐squares regression
analysis based on the measured variables at discrete time
points.

The neutral model. In a neutral local community, when an
individual dies, it is replaced by an immigrant of taxon i from
a source community (i.e., regional species pool) with the
probability mi or by regeneration from the local community
with probability − m1 i. Under the neutral assumption,
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⋯= = =m m m1 2 . We set the meantime for replacement of
an individual to be a and define a scaled time τ = t/a. In a
short time period ∆ →τ 0, we can expect only one replace-
ment in the community. The species relative abundance X in
a neutral model follows a Wright–Fisher Process (WFP)42–44,
which is defined by the Ito SDE:

λ τ σ= ( − ) + ( )X p X X Wd d d (5)

where p is the relative abundance of taxa in the meta-
community and λ = N mT is the product of local community
size and taxon immigration probability, representing the rel-
ative rate of migration from the metacommunity into the local
community. σ ( )X is the instantaneous standard deviation of
changes in X per unit time. dW is a standard Wiener process
term. The quadratic covariation between taxa is given by
∑ σσ= T1

2
, where42–44





∑
≠

=
( − ) =

−

X X i j
X X i j

1

ij

i i

i j

The SDE for the focal taxon i is then defined as

  

  

λ τ σ λ τ= ( − ) + ( ) = ( − )

+ ( − )

dX p X d X dW p X d

X X dW2 1

i i i i i i i

i i i

deterministic

stochastic

(6)

where Xi is the relative abundance of taxon i, that is,
=Xi

N
N

i

T
. dWi is a standard Wiener process term following

the standard normal distribution N (0,1). The first term on
the right‐hand side of Equation (6) represents the expect
change of Xi, which is a deterministic term; the second
term represents the variation of change, which is a sto-
chastic term.

The covariation between taxon i and taxon j ≠( )i j
is [( − ( ))( − ( ))] = ( ( − ) ×E dX E dX dX E dX E X X dW2 1i i j j i i i

( − ) )X X dW2 1j j j , which equals to − X X2 i j. This gives
us the covariance between the two Wiener processes dWi

and dWj:

ρ = ( ) = −
( − )( − )

E dW dW
X X

X X1 1
.i j

i j

i j
(7)

We can take the log‐ratio transformation as = =Z logi
N
N

i

r

=
/

/
log logN N

N N
X
X

i T

r T

i

r
. Since both Xi and Xr follow the SDE

(Equation 6), the SDE of Zi is derived based on Ito's lemma:
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λ λ
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−
−

−
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+
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−
( − )

dZ
p
X

p
X

d

X
X

dW
X

X
dW

1 1
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i i

i

r r

r
r i

i

i
i

r

r
r

(8)

Given that τ = t/a, and the covariance between dWi and
dWr (Equation 7), the above equation (Equation 8) can be
written as a SDE:







  

  

λ λ
λ λ=

−
−

−
+ −

+ +

dZ
a

p
X

p
X

dt

aX aX
dW

1 1 1

2 2

i
i i

i

r r

r
r i

deterministic

i r
t

stochastic

(9)

where dWt is a Wiener process term, which follows a normal
distribution N (0, dt). Further, Equation (9) can be expressed
as a simple linear model,

ε= + + +
dZ
dt

k k Y k Yi
0 2 2 3 3 (10)

where =
λ λ−k

a0
r i, =

λ −k p

a2
1i i , =Y

X2
1

i
, = −

λ −k p

a3
1r r , =Y

X3
1

r
,

and ε is an error term given by ε = +
aX aX

dW
dt

2 2

i r

t. The pa-

rameters can be estimated through a weighted least‐squares

regression analysis, in which the weights are
+

dt

Xi Xr

2 2 . The

weighted errors should be normally distributed and the

standard residual error of the linear regression model should

be
a
1 . We then estimate the parameter product, λ pi i, based

on the coefficient of variable Y2. Further, pi can be estimated

as the mean relative abundance of taxon i and λi can be

derived by dividing the estimated λ pi i to pi.

The combined model. A combined model of taxon dy-
namics was further developed to include both exploitative
competition and neutral factors. The term of “relative
growth” (can be positive or negative) caused by the re-
source consumption (Equation 3) is added to the de-
terministic part of the SDE (Equation 9) without change,
since it is purely deterministic, which would not bring in
any uncertainty. The combined model is thus given by:





 



  

  

∑λ λ λ λ
=

−
−

−
+ − + (

− ) − ( − )

+ +

dZ
p
aX

p
aX a a

b

C b C R m m dt

aX aX
dW

1 1

2 2

i
i i

i

r r

r

r i

j
ij

ij rj rj j i r

i r
t

deterministic

stochastic

(11)
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Further, Equation (11) can be expressed as a simple linear
model,

∑ ε= + + + +
dZ
dt

k k Y k Y k Yi

j
j j0 1, 1, 2 2 3 3 (12)

where =Z logi
X
X

i

r
is the log ratio of the relative abundance of

taxon i to the reference taxon r. = − + −
λ λk m m
a a r i0
r i ,

= −k b C b Cj ij ij rj rj1, represent the relative competition strength

of taxon i on resource Rj, and =Y Rj j1, . =
λ −k p

a2
1i i , =Y

X2
1

i
,

= −
λ −k p

a3
1r r , =Y

X3
1

r
, and ε is an error term given by

ε = +
aX aX

dW
dt

2 2

i r

t. The parameters can be estimated through a

weighted least‐squares regression analysis, in which the weights

are
+

dt

Xi Xr

2 2 . The weighted errors should be normally distributed

and the standard residual error of the linear regression model

should be
a
1 . pi can be estimated as the mean relative abun-

dance of taxon i. We can estimate the parameters k0, k1, k2, and

k3 in the linear model, by which the model parameters

−b C b Cij ij rj rj, λi, and pi can be further derived.

Determinism. The SDE of the combined model (Equa-
tion 11) can be written as

⏟⏟μ τ σ= +dZ d dW

deterministic stochastic

where μ is the expected change of Z per unit time and σ is the
instantaneous standard deviation of changes in Z per unit
time. dW is a standard Wiener process term. We define taxa
determinism as the inverse of the variation coefficient, that is,

μ

σ
=determinism (13)

After parameter estimation using weighted least‐
squares regression analysis, the taxa determinism can be
calculated for each taxon at each time point based on
Equation (13). For the combined model, the determinism of
taxon i can be calculated based on parameters of the linear
model Equation (12):

∑( )
=

+ + + ×

+

k k R a
determinism

j j j
k
X

k
X

X X

0 1,

2 2

i r

i r

2 3

(14)

Note that the stochasticity is calculated on the scaled time
unit τ. Then, the community‐level determinism is calculated as
the mean determinism among taxa, either weighted by the rel-
ative abundance of each taxon (weighted determinism) or not
(unweighted determinism).

Anaerobic bioreactor operation and 16S rRNA
gene sequencing
The operation of anaerobic bioreactors, biomass sampling,
and chemical analyses were processed as previously de-
scribed45. In brief, two sets of triplicated, continuous
anaerobic bioreactors (i.e., the control bioreactors C1, C2,
and C3 and the treatment bioreactors D1, D2, and D3) were
operated at 35°C and fed at 4‐h intervals, each with a
working volume of 3.6 l. The control bioreactors were fed
with dairy manure at a constant rate and continuously op-
erated for 501 days, which showed a stable organic matter
level (Figure S1A). The treatment bioreactors were operated
for 100 days before they collapsed by supplementing in-
cremental poultry waste, resulting in higher ammonia tox-
icity (Figure S1B). Sludge samples were generally taken
every 3–10 days from each bioreactor, resulting in 53‐time
points for control and 11‐time points for treatment bio-
reactors.

DNA extraction and 16S rRNA gene sequencing were proc-
essed as previously described45. In brief, biomass samples were
suspended in 630 μl of DNA‐extraction buffer and treated with a
lysozyme mixture (60 μl, 37°C, 60min), a protease mixture (60 μl,
37°C, 30min), and 20% sodium dodecyl sulfate (80 μl, 37°C,
90min). The treated sample suspension was then extracted
using phenol–chloroform–isoamyl alcohol (25:24:1) at 65°C for
20min, followed by extraction with chloroform–isoamyl alcohol
(24:1) to obtain a supernatant. Further, DNA extract was com-
bined with 0.6 volume of isopropanol and stored overnight at
4°C; DNA was obtained through centrifugation, followed by
washing with 70% cold ethanol, drying, and resuspension in
nuclease‐free water. The purity and concentration of DNA were
subsequently assessed utilizing a NanoDrop spectrophotometer
(NanoDrop Technologies Inc.). The V4 region of the microbial
16S rRNA gene was amplified by primer pairs of 515F and
806R46. PCR amplicon sequencing was conducted on the
MiSeq Illumina platform at the Institute for Environmental Ge-
nomics (IEG), University of Oklahoma. Sequences were proc-
essed to generate exact ESVs by UNOISE347 at the 100%
sequence similarity threshold. ESVs with fewer than eight reads
were removed using the default “‐minsize” values. Taxonomy
was assigned with a confidence cutoff of 50% using the RDP
classifier48. The reference taxon was then chosen as the one
with the top frequency and relative abundance, which was ESV1
detected at all time points.

Since there were only 11‐time points for each treatment
bioreactor, we combined the time series of the triplicate
bioreactors together to improve the reliability of model fitting.
For example, if the dependent variable (as for Equations 4,
10, and 12) of one taxon in treatment bioreactor D1 is

( ) =
dZ
dt D1

i







( )( )

−

−

−

−

), …,
z z

t t D

z z

t t D2 1 1,1 11 10 1,10

i t i t i t i t, 2 , 1 , 11 , 10 , the dependent

variable of this taxon in D2 is


( )( ) =

−

−
, …,dZ

dt D

z z

t t D2 2 1 2,1

i i t i t, 2 , 1



( )

−

−

)z z

t t D11 10 2,10

i t i t, 11 , 10 and that in D3 is


( )( ) =

−

−
, …,dZ

dt D

z z

t t D3 2 1 3,1

i i t i t, 2 , 1



( )

−

−

z z

t t D11 10 3,10

i t i t, 11 , 10 , then the dependent variable for the
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combined time series is
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i t i t i t i t i t i t

i t i t i t i t i t i t

, 2 , 1 , 11 , 10 , 2 , 1

, 11 , 10 , 2 , 1 , 11 , 10
.

Similarly, the independent variables can be combined in the
same way. The combined dependent and independent variables
for the treatment bioreactors were then used for the linear re-
gression analyses based on the least‐squares method. We note
that this is not a standard way to apply the model fitting for
common time‐series data. Yet, this combination method may
provide an option for replicated time series. In fact, fluctuations in
microbial community compositions were highly consistent for the
three replicated treatment bioreactors (Figure S1C), which en-
abled us to test the dynamical pattern of microbial taxa based on
the combined time series.
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