Supplemental materials

Figure S1. The phylogenetic tree to visualize the similarities between the 33 mock community strains. Red dots depict the low GC content strains and green dots depict the high GC content strains.

Figure S2. The box plot illustrating the GC contents of the chimeric and non-chimeric reads in the Bm1 trimmed (Q20-W2) community. Boxes and whiskers indicate quartiles and black line indicate mean values. Two tail T Test was done to compare GC contents between the chimeric and non-chimeric reads which showed the significant difference (p<0.001).

Figure S3. Error rates of the high, medium and low GC content strain clusters of Bm1. Error rates were calculated for the high, medium, and low GC content strain clusters of Bm1. An ANOVA was conducted to compare the mean errors of the three clusters, followed by Tukey's multiple comparisons test. The resulting p-values are reported for each comparison.

Figure S4. Relationship between error rate and OTU abundance. Average error rate of each OTU across all libraries, including libraries for all three mock communities and with all three library generation methods and their replicates, was calculated and plotted against the OTU abundance (the sequence number of each OTU).

Table S1. Summary of Sequence data statistics (raw data).

Table S2. (A) Number of chimeras in raw sequence reads (Bm1), (B) Number of chimeras in raw sequence reads (Bm2), and (C) Number of chimeras in raw sequence reads (Bm3).

Table S3. (A) Error rate of raw sequences and sequences after processing and methods comparisons-Bm1, (B) Error rate of raw sequences and sequences after processing and methods

comparisons-Bm3, and (C) Error rate of raw sequences and sequences after processing and methods comparisons-Bm2.

Table S4. OTU/sequence detection by UPARSE and artifacts sources analysis when a balanced mode was used for chimera identification.

Table S5. Sources of artifacts when zOTUs were detected and classed by UPARSE and a sensitive mode was used for chimera identification.

Table S6. (A) Methods comparisons in OTU or ASV detection and artifact composition and sources when a balanced mode was used for chimera detection, and (B) Methods comparisons in artifact composition and sources when a sensitive mode was used for chimera identification.

Table S7. Contaminants (ASVs or (z)OUTs) detected from Bm3 using different data processing methods.

Table S8. (A) Sources of the spurious sequences-Bm1, (B) Sources of the spurious sequences-Bm2, (C) Sources of the spurious sequences-Bm3.

Table S9. (A) Mock community strains observed ratio and differences to expected- Bm1, (B) Mock community strains observed ratio and differences to expected- Bm2, (C) Mock community strains observed ratio and differences to expected- Bm3.

Table S10. (A) Statistics of Template Free control 16S Amplicon Sequence – Lab Contaminants,
(B) Statistics of Template Free control 16S Amplicon Sequence – Lab Contaminants -Phyla, (C)
Statistics of Template Free control 16S Amplicon Sequence – Lab Contaminants -Genera.

Table S11. Mock community strains.

Table S12. (A) Forward and sequencing primers for non-phasing method, and (B) Assignment of non-phasing reverse primers for tagged PCR libraries with non-phasing method. (C) Phasing Forward Primers, (D) Assignment of phasing reverse primers for tagged PCR libraries with one-

step phasing method, (E) Assignment of phasing reverse primers for tagged PCR libraries with two-step phasing method.

File S1. Bacteria mock community strain V4 sequences.

Fig. S1. The phylogenetic tree to visualize the similarities between the 33 mock community strains. Red dots depict the low GC content strains and green dots depict the high GC content strains.

Fig. S3. Error rates of the high, medium and low GC content strain clusters of Bm1. Error rates were calculated for the high, medium, and low GC content strain clusters of Bm1. An ANOVA was conducted to compare the mean errors of the three clusters, followed by Tukey's multiple comparisons test. The resulting p-values are reported for each comparison.

Fig. S4. Relationship between error rate and OTU abundance. Average error rate of each OTU across all libraries, including libraries for all three mock communities and with all three library generation methods and their replicates, was calculated and plotted against the OTU abundance (the sequence number of each OTU).

	N	Ion-phasin	g	One	e-step pha	sing	Two	o-step pha	sing
Replicate	Bm1	Bm2	Bm3	Bm1	Bm2	Bm3	Bm1	Bm2	Bm3
1	28002	36012	26496	10330	10206	12289	30569	20629	19742
2	23763	28318	23410	6638	9326	13190	21662	10682	15735
3	33906	20237	20869	18631	11559	11163	32654	17315	35515
4	27536	16240	15544	9904	12894	10776	15867	15953	27762
5	24901	24673	18918	10161	8094	10256	21647	25624	16179
6	25188	14807	21454	11358	9338	8442	20201	16778	17897
7	27553	25492	28876	12670	8015	6773	16281	12648	12306
8	22869	20132	25560	7917	9184	8294	8840	12903	8400
9	21621	25906	31831	12221	11242	9352	26210	25149	26014
10	23762	27989	27064	10348	11861	10681	23310	17430	14921
11	28671	25692	25909	9272	8894	6536	13901	10512	14751
12	25838	25214	28028	7657	8425	7131	17403	8394	14972
13	22989	26184	26015	7667	9087	9187	14264	14150	25195
14	21364	22301	26779	11919	18898	10635	29146	34956	20886
15	20717	17264	31607	8042	10731	12707	12128	10210	22406
16	21223	30577	24715	7135	19557	8595	14456	33765	13273
17	17500	19240	29594	8568	10286	10651	16515	28255	23569
18	27912	29086	30330	14148	19743	8715	12849	26441	14647
19	26410	29865	31667	7572	15923	11069	15938	38880	21480
20	27774	31591	28867	8175	12498	14312	11772	23310	20661
21	34166	22947	26315	6256	5688	7725	11863	11322	19906
22	20462	26391	27404	11852	8148	10516	20757	16715	20538
23	25993	25546	17098	8984	8128	8214	12041	19015	14138
24	23503	15439	22716	9122	12438	10628	11169	11156	11797

Table S1. Summary of Sequence data statistics (raw data) ^a

^a Number in the table are paired reads.

		uence ^b		Total			Detected			Un-detected	
		Total seq	Chimera ^c	%	Significance ^d	Chimera °	%	Significance ^d	Chimera °	%	Significance ^d
	Non-phasing	195190	812 (143)	10.01 (1.03)	а	525 (95)	6.47 (0.75)	а	287 (53)	3.54 (0.38)	а
Forward reads	One-step phasing	217835	909 (361)	10.03 (3.25)	а	564 (219)	6.23 (2.01)	а	346 (146)	3.80 (1.31)	а
	Two-step phasing	217729	520 (329)	5.83 (3.00)	b	339 (207)	3.81 (1.93)	b	181 (123)	2.01 (1.10)	b
	Non-phasing	130473	512(91)	9.44 (1.06)	а	388 (68)	7.18 (0.90)	а	124 (27)	2.27 (0.29)	а
Reverse reads	One-step phasing	212824	897 (385)	10.10 (3.41)	а	697 (302)	7.86 (2.72)	а	200 (87)	2.24 (0.75)	а
	Two-step phasing	219924	496 (327)	5.51 (2.89)	b	396 (260)	4.40 (2.30)	b	100(69)	1.11 (0.61)	b
	Non-phasing	235870	1038 (181)	10.59 (1.13)	а	720 (133)	7.35 (0.89)	а	318 (56)	3.25 (0.37)	а
Joined Sequences	One-step phasing	241683	1149 (472)	11.40 (3.69)	а	822 (339)	8.15 (2.66)	а	327 (137)	3.24 (1.08)	а
	Two-step phasing	238884	641 (425)	6.54 (3.42)	b	469 (307)	4.79 (2.47)	b	172 (119)	1.75 (0.96)	b

Table S2A. Number of chimeras in raw sequence reads (Bm1)^a

^a Per mock community per method involved 24 replicates. Data in parenthesis is standard deviation.

^b The sum of all 24 replicates.

^c The average of the 24 replicates.

^d Lowercase letters (i.e., a, b, ab, and c) show the results of ANOVA and LSD tests to examine the significant differences.

Table S2B. Number of chimeras in raw sequence reads (Bm2)^a

		lences ^b		Total			Detected			Un-detected	
		Total sequ	Chimeras ^c	%	Significance ^d	Chimeras ^c	%	Significance ^d	Chimeras ^c	%	Significance ^d
	Non-phasing	211280	251 (63)	2.87 (0.44)	а	164 (43)	1.87 (0.31)	b	87 (23)	1.00 (0.19)	а
Forward reads	One-step phasing	229496	273 (91)	2.93 (0.77)	а	208 (76)	2.24 (0.68)	а	65 (23)	0.69 (0.19)	b
	Two-step phasing	224212	169 (81)	1.84 (0.65)	b	131 (61)	1.44 (0.48)	С	38 (21)	0.41 (0.19)	с
	Non-phasing	143086	146 (45)	2.44 (0.38)	а	111 (35)	1.87 (0.33)	b	34 (12)	0.57 (0.11)	а
Reverse reads	One-step phasing	224154	245 (88)	2.70 (0.76)	а	207 (78)	2.29 (0.69)	а	38 (16)	0.42 (0.14)	b
	Two-step phasing	224279	150 (74)	1.62 (0.56)	b	130 (64)	1.41 (0.48)	с	20 (12)	0.21 (0.11)	с
	Non-phasing	238870	292 (69)	2.95 (0.35)	а	198 (49)	1.99 (0.26)	b	95 (23)	0.96 (0.15)	а
Joined Sequences	One-step phasing	242882	313 (105)	3.19 (0.85)	а	244 (88)	2.50 (0.77)	а	69 (26)	0.69 (0.19)	b
	Two-step phasing	240258	192 (93)	1.94 (0.64)	b	154 (73)	1.56 (0.51)	с	38 (21)	0.38 (0.16)	с

^a Per mock community per method involved 24 replicates. Data in parenthesis is standard deviation.

^b The sum of all 24 replicates.

^c The average of the 24 replicates.

^d Lowercase letters (i.e., a, b, ab, and c) show the results of ANOVA and LSD tests to examine the significant differences.

Table S2C. Number of chimeras in raw sequence reads (Bm3)^a

		ences ^b		Total			Detected			Un-detected	
		Total sequ	Chimeras ^c	%	Significance ^d	Chimeras ^c	%	Significance ^d	Chimeras ^c	%	Significance ^d
	Non- phasing	166949	637 (124)	9.20 (1.20)	а	451 (84)	6.53 (0.83)	а	185 (43)	2.67 (0.45)	а
Forward reads	One-step phasing	197239	780 (302)	9.40 (2.86)	а	565 (228)	6.79 (2.11)	а	215 (84)	2.60 (0.88)	а
	Two-step phasing	203632	399 (212)	4.52 (1.64)	b	281 (150)	3.18 (1.14)	b	119 (63)	1.35 (0.51)	b
	Non- phasing	104422	410 (88)	9.47 (1.19)	а	303 (62)	7.00 (0.86)	b	107 (29)	2.47 (0.48)	а
Reverse reads	One-step phasing	193088	832 (343)	10.16 (3.17)	а	671 (286)	8.19 (2.62)	а	161 (65)	1.98 (0.66)	b
	Two-step phasing	211905	414 (229)	4.48 (1.68)	b	332 (187)	3.58 (1.37)	с	82 (44)	0.90 (0.34)	с
	Non- phasing	231778	952 (180)	9.89 (1.15)	b	694 (130)	7.21 (0.86)	b	258 (54)	2.68 (0.38)	а
Joint Sequences	One-step phasing	240312	1144 (454)	11.26 (3.41)	а	894 (364)	8.79 (2.70)	а	250 (97)	2.47 (0.80)	а
	Two-step phasing	236852	537 (289)	5.19 (1.88)	с	409 (221)	3.96 (1.45)	с	128 (70)	1.23 (0.47)	b

^a Per mock community per method involved 24 replicates. Data in parenthesis is standard deviation.

^b The sum of all 24 replicates.

^c The average of the 24 replicates.

^d Lowercase letters (i.e., a, b, ab, and c) show the results of ANOVA and LSD tests to examine the significant differences.

			Fo	rward Rea	ads	Re	everse Rea	ads	Join	ed seque	nces
			non-phasing ^c	One-step phasing	Two-step phasing	non-phasing	One-step phasing	Two-step phasing	non-phasing	One-step phasing	Two-step phasing
		rate	1.30%	1.13%	0.91%	1.63%	0.98%	0.83%	0.84%	0.86%	0.65%
	w/ chimera	stdv	0.09%	0.17%	0.16%	0.13%	0.24%	0.22%	0.08%	0.24%	0.22%
Davis		Significance ^b	а	b	с	а	b	с	а	а	b
KdW		rate	0.96%	0.84%	0.72%	1.24%	0.50%	0.56%	0.44%	0.42%	0.39%
	w/o chimera	stdv	0.05%	0.09%	0.09%	0.12%	0.09%	0.09%	0.04%	0.10%	0.09%
		Significance ^b	а	b	с	а	b	b	а	ab	b
		rate	0.78%	0.69%	0.53%	0.85%	0.85%	0.59%	0.79%	0.84%	0.59%
	w/ chimera	stdv	0.07%	0.19%	0.17%	0.08%	0.25%	0.21%	0.08%	0.24%	0.22%
Trim 020 M/5		Significance ^b	а	а	b	а	а	b	а	а	b
Trim Q20-W5		rate	0.43%	0.38%	0.34%	0.41%	0.36%	0.31%	0.40%	0.40%	0.33%
	w/o chimera	stdv	0.03%	0.09%	0.08%	0.03%	0.09%	0.07%	0.04%	0.10%	0.09%
		Significance ^b	а	b	b	а	b	с	а	а	b
		rate	0.74%	0.67%	0.50%	0.80%	0.81%	0.55%	0.78%	0.83%	0.56%
	w/ chimera	stdv	0.08%	0.19%	0.16%	0.09%	0.24%	0.21%	0.08%	0.24%	0.21%
T : 000 11/0		Significance	а	а	b	а	а	b	а	а	b
Trim Q20-W2		rate	0.42%	0.38%	0.31%	0.35%	0.33%	0.27%	0.39%	0.40%	0.30%
	w/o chimera	stdv	0.04%	0.10%	0.08%	0.03%	0.08%	0.07%	0.04%	0.10%	0.08%
		Significance ^b	а	а	b	а	а	b	а	а	b
		ratio	0.75%	0.67%	0.51%	0.81%	0.83%	0.56%	0.78%	0.83%	0.57%
	w/ chimera	stdv	0.07%	0.19%	0.17%	0.08%	0.25%	0.21%	0.08%	0.24%	0.22%
		Significance ^b	а	а	b	а	а	b	а	а	b
Trim Q25-W5		rate	0.42%	0.38%	0.32%	0.35%	0.34%	0.28%	0.39%	0.40%	0.31%
	w/o chimera	stdv	0.03%	0.09%	0.08%	0.03%	0.09%	0.07%	0.04%	0.10%	0.09%
		Significance ^b	а	а	b	а	а	b	а	а	b
		rate	0.69%	0.63%	0.47%	0.75%	0.80%	0.51%	0.77%	0.80%	0.55%
	w/ chimera	stdv	0.08%	0.18%	0.16%	0.10%	0.24%	0.20%	0.08%	0.23%	0.21%
		Significance ^b	а	а	b	а	а	b	а	а	b
Trim Q25-W2		rate	0.39%	0.37%	0.29%	0.29%	0.31%	0.24%	0.39%	0.38%	0.29%
	w/o chimera	stdv	0.04%	0.09%	0.08%	0.04%	0.08%	0.06%	0.04%	0.10%	0.08%
		Significance ^b	а	а	b	а	а	b	а	а	b
		rate	0.70%	0.63%	0.49%	0.78%	0.80%	0.52%	0.77%	0.82%	0.55%
	w/ chimera	stdv	0.07%	0.18%	0.17%	0.11%	0.24%	0.20%	0.09%	0.23%	0.21%
		Significance ^b	а	а	b	а	а	b	а	а	b
Trim Q30-W5		rate	0.40%	0.36%	0.30%	0.31%	0.31%	0.25%	0.38%	0.39%	0.30%
	w/o chimera	stdv	0.04%	0.09%	0.08%	0.05%	0.08%	0.07%	0.04%	0.10%	0.09%
		Significance ^b	а	а	b	а	а	b	а	а	b

Table S3A. Error rate of raw sequences and sequences after processing and methods comparisons-Bm1^a

		rate	0.64%	0.58%	0.46%	0.75%	0.76%	0.49%	0.75%	0.80%	0.52%
	w/ chimera	stdv	0.08%	0.17%	0.16%	0.17%	0.23%	0.21%	0.09%	0.23%	0.21%
Trim 020 W/2		Significance ^b	а	а	b	а	а	b	а	а	b
11111 Q30-W2		rate	0.39%	0.36%	0.28%	0.25%	0.27%	0.21%	0.39%	0.38%	0.27%
	w/o chimera	stdv	0.06%	0.10%	0.08%	0.07%	0.08%	0.06%	0.04%	0.10%	0.08%
	-	Significance ^b	а	а	b	ab	а	b	а	а	b

^a w/ chimera, with chimera, a chimera removal step was not used; w/o chimera, without chimera, chimera detected by UCHIME using the greengenes database were removed.

^b Lowercase letters (i.e., a, b, ab, and c) show the results of ANOVA and LSD tests to examine the significant differences.

^c Per method involved 24 replicates.

Table S3B. Error rate of raw sequences and sequences after processing and methods comparisons-Bm3 $^{\circ}$

			Fo	rward Rea	ads	Reverse Reads Joined sequences					nces
			non- phasing ^c	One-step phasing	Two-step phasing	non- phasing	One-step phasing	Two-step phasing	non- phasing	One-step phasing	Two-step phasing
		rate	1.70%	1.62%	1.14%	1.93%	0.99%	0.79%	0.77%	0.79%	0.55%
	w/ chimera	stdv	0.11%	0.17%	0.10%	0.16%	0.19%	0.11%	0.07%	0.20%	0.12%
Bow		Significance ^b	а	b	с	а	b	с	а	а	b
Kaw		rate	1.42%	1.37%	1.01%	1.58%	0.49%	0.57%	0.39%	0.33%	0.34%
	w/o chimera	stdv	0.10%	0.13%	0.06%	0.15%	0.06%	0.06%	0.03%	0.07%	0.05%
		Significance ^b	а	а	b	а	а	b	а	с	b
		rate	0.70%	0.62%	0.44%	0.79%	0.80%	0.49%	0.70%	0.77%	0.47%
	w/ chimera	stdv	0.07%	0.16%	0.10%	0.08%	0.21%	0.11%	0.07%	0.20%	0.12%
		Significance ^b	а	b	с	а	а	b	а	а	b
11111 Q20-W5		rate	0.37%	0.30%	0.29%	0.38%	0.30%	0.26%	0.33%	0.31%	0.26%
	w/o chimera	stdv	0.03%	0.07%	0.05%	0.03%	0.06%	0.04%	0.03%	0.07%	0.05%
		Significance ^b	а	b	b	а	b	с	а	а	b
		rate	0.70%	0.59%	0.42%	0.75%	0.76%	0.45%	0.69%	0.75%	0.44%
	w/ chimera	stdv	0.08%	0.16%	0.10%	0.11%	0.21%	0.11%	0.07%	0.20%	0.12%
		Significance ^b	а	b	с	а	а	b	а	а	b
11111 Q20-W2		rate	0.37%	0.29%	0.26%	0.31%	0.27%	0.22%	0.32%	0.30%	0.24%
	w/o chimera	stdv	0.04%	0.07%	0.05%	0.05%	0.06%	0.04%	0.03%	0.07%	0.05%
		Significance ^b	а	b	b	а	b	с	а	а	b
		ratio	0.69%	0.59%	0.42%	0.77%	0.77%	0.46%	0.69%	0.76%	0.45%
	w/ chimera	stdv	0.08%	0.16%	0.10%	0.10%	0.21%	0.11%	0.07%	0.20%	0.12%
		Significance ^b	а	b	с	а	а	b	а	а	b
11111 Q25-W5		rate	0.36%	0.28%	0.27%	0.32%	0.28%	0.23%	0.32%	0.30%	0.24%
	w/o chimera	stdv	0.04%	0.07%	0.05%	0.04%	0.06%	0.04%	0.03%	0.07%	0.05%
		Significance ^b	а	b	b	а	b	с	а	а	b
Trim Q25-W2	w/ chimera	rate	0.68%	0.55%	0.40%	0.72%	0.71%	0.41%	0.69%	0.73%	0.43%

		stdv	0.09%	0.15%	0.10%	0.15%	0.20%	0.12%	0.07%	0.20%	0.12%
		Significance ^b	а	b	с	а	а	b	а	а	b
		rate	0.35%	0.28%	0.25%	0.25%	0.24%	0.19%	0.32%	0.29%	0.22%
	w/o chimera	stdv	0.04%	0.07%	0.05%	0.05%	0.05%	0.04%	0.03%	0.07%	0.05%
		Significance ^b	а	b	b	а	а	b	а	b	с
		rate	0.68%	0.56%	0.41%	0.74%	0.73%	0.43%	0.70%	0.74%	0.43%
	w/ chimera	stdv	0.09%	0.15%	0.10%	0.13%	0.20%	0.12%	0.07%	0.20%	0.12%
		Significance ^b	а	b	с	а	а	b	а	а	b
11111 Q30-W5		rate	0.36%	0.28%	0.26%	0.26%	0.25%	0.20%	0.33%	0.30%	0.23%
	w/o chimera	stdv	0.05%	0.07%	0.05%	0.05%	0.06%	0.04%	0.03%	0.07%	0.05%
		Significance ^b	а	b	b	а	а	b	а	b	с
		rate	0.68%	0.53%	0.40%	0.65%	0.67%	0.39%	0.70%	0.72%	0.41%
	w/ chimera	stdv	0.12%	0.14%	0.11%	0.19%	0.19%	0.12%	0.08%	0.20%	0.11%
Trim 020 14/2		Significance ^b	а	b	с	а	а	b	а	а	b
Trim Q30-W2		rate	0.35%	0.28%	0.26%	0.19%	0.20%	0.17%	0.34%	0.29%	0.20%
	w/o chimera	stdv	0.06%	0.07%	0.06%	0.08%	0.04%	0.04%	0.04%	0.07%	0.05%
		Significance ^b	а	b	b	а	а	а	а	b	С

^a w/ chimera, with chimera, a chimera removal step was not used; w/o chimera, without chimera, chimera detected by UCHIME using the greengenes database were removed.

^b Lowercase letters (i.e., a, b, ab, and c) show the results of ANOVA and LSD tests to examine the significant differences.

^c Per method involved 24 replicates.

			Fo	rward Rea	ads	Re	everse Rea	ads	Join	ed seque	nces
			non- phasing ^c	One-step phasing	Two-step phasing	non- phasing	One-step phasing	Two-step phasing	non- phasing	One-step phasing	Two-step phasing
		rate	0.47%	0.37%	0.46%	0.92%	0.42%	0.51%	0.33%	0.34%	0.34%
		stdv	0.03%	0.06%	0.06%	0.12%	0.06%	0.07%	0.03%	0.05%	0.05%
	w/ chimera	Significance ^b	a ^b	b	а	а	с	b	а	а	а
		rate	0.34%	0.24%	0.38%	0.80%	0.26%	0.42%	0.21%	0.19%	0.25%
		stdv	0.02%	0.03%	0.04%	0.11%	0.03%	0.05%	0.01%	0.02%	0.03%
Raw	w/o chimera	Significance ^b	b	с	а	а	с	b	b	с	а
		rate	0.32%	0.29%	0.29%	0.35%	0.33%	0.30%	0.30%	0.33%	0.29%
		stdv	0.03%	0.06%	0.05%	0.03%	0.05%	0.05%	0.03%	0.05%	0.04%
	w/ chimera	Significance ^b	а	b	ab	а	а	b	b	а	b
		rate	0.20%	0.15%	0.21%	0.22%	0.16%	0.20%	0.18%	0.18%	0.19%
		stdv	0.02%	0.02%	0.02%	0.01%	0.02%	0.02%	0.01%	0.02%	0.02%
Trim Q20-W5	w/o chimera	Significance ^b	а	b	а	а	с	b	b	b	а
		rate	0.30%	0.28%	0.26%	0.32%	0.31%	0.27%	0.28%	0.32%	0.26%
		stdv	0.03%	0.06%	0.05%	0.04%	0.05%	0.05%	0.03%	0.06%	0.04%
	w/ chimera	Significance ^b	а	ab	b	а	а	b	b	а	b
		rate	0.19%	0.15%	0.18%	0.18%	0.15%	0.16%	0.16%	0.17%	0.17%
		stdv	0.01%	0.02%	0.02%	0.02%	0.02%	0.02%	0.01%	0.02%	0.02%
Trim Q20-W2	w/o chimera	Significance ^b	а	с	b	а	с	b	а	а	а
		ratio	0.30%	0.28%	0.27%	0.33%	0.32%	0.28%	0.29%	0.32%	0.27%
		stdv	0.03%	0.06%	0.05%	0.03%	0.05%	0.05%	0.03%	0.05%	0.04%
	w/ chimera	Significance ^b	а	ab	b	а	а	b	b	а	b
		rate	0.19%	0.15%	0.18%	0.18%	0.15%	0.18%	0.17%	0.17%	0.18%
		stdv	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%	0.01%	0.02%	0.02%
Trim Q25-W5	w/o chimera	Significance ^b	а	b	а	а	b	а	а	а	а
		rate	0.26%	0.26%	0.24%	0.29%	0.30%	0.24%	0.27%	0.30%	0.25%
		stdv	0.03%	0.05%	0.05%	0.05%	0.06%	0.05%	0.03%	0.06%	0.04%
	w/ chimera	Significance ^b	а	а	а	а	а	b	b	а	b
		rate	0.17%	0.14%	0.15%	0.14%	0.13%	0.14%	0.15%	0.15%	0.16%
		stdv	0.02%	0.02%	0.02%	0.03%	0.02%	0.02%	0.01%	0.02%	0.02%
Trim Q25-W2	w/o chimera	Significance ^b	а	b	b	а	b	ab	а	а	а
		rate	0.28%	0.27%	0.25%	0.31%	0.31%	0.25%	0.28%	0.31%	0.26%
		stdv	0.03%	0.05%	0.05%	0.06%	0.05%	0.05%	0.03%	0.05%	0.04%
	w/ chimera	Significance ^b	а	ab	b	а	а	b	b	а	b
		rate	0.18%	0.15%	0.17%	0.16%	0.14%	0.15%	0.16%	0.16%	0.17%
		stdv	0.02%	0.02%	0.02%	0.03%	0.02%	0.02%	0.01%	0.02%	0.02%
Trim Q30-W5	w/o chimera	Significance ^b	а	b	а	а	b	b	а	а	а
		rate	0.24%	0.25%	0.23%	0.31%	0.29%	0.22%	0.26%	0.30%	0.23%
		stdv	0.03%	0.05%	0.05%	0.11%	0.06%	0.05%	0.03%	0.05%	0.04%
	w/ chimera	Significance ^b	а	а	а	а	а	b	b	а	с
		rate	0.17%	0.14%	0.14%	0.16%	0.11%	0.11%	0.15%	0.15%	0.14%
		stdv	0.02%	0.02%	0.02%	0.07%	0.03%	0.02%	0.02%	0.02%	0.02%
Trim Q30-W2	w/o chimera	Significance ^b	b	а	с	а	b	b	а	ab	b

Table S3C. Error rate of raw sequences and sequences after processing and methodscomparisons-Bm2 a

^a w/ chimera, with chimera, a chimera removal step was not used; w/o chimera, without chimera, chimera detected by UCHIME using the greengenes database were removed.

^b Lowercase letters (i.e., a, b, ab, and c) show the results of ANOVA and LSD tests to examine the significant differences.

^c Per method involved 24 replicates.

				OTUs						Sequence	es		
		Non-pha	asing	One-ste phasing	p g	Two-st phasir	ep 1g	Non-phasi	ng	One-step ph	asing	Two-step ph	asing
		Number	۰ %	Number	۰ %	Number	۰ %	Number	۰ %	Number	۰ %	Number	۰ %
	Total OTU	36±1		38±2		55±5		21116±3352		8566±2437		16356±6088	
	Coverage of the 33 strains	31±0		31±0		32±0		21078±3347		8542±2432		15386±5742	
	Missing strain(s)	2±0		2±0		1±0		9±0		9±0		2±3	
Bm1	Total Artifacts ^b	5±1		7±2		23±5		38±8		24±8		78±31	
	Chimeras ^c	2±1	31	2±1	31	1±0	3	6±3	16	8±5	33	4±4	5
	Contaminants	2±1	29	3±2	40	8±3	34	2±1	4	3±2	13	12±5	15
	Erroneous OTUs	2±0	40	2±0	29	14±3	63	30±7	79	13±5	54	63±27	80
	Total OTU	32±2		33±5		52±7		23103±5155		10886±3702		18602±8303	
	Coverage of the 33 strains	28±2		27±2		29±2		23092±5152		10876±3698		18547±8281	
	Missing strain(s)	5±2		6±2		4±2		32±13		42±17		29±14	
Bm2	Total artifacts ^b	4±1		6±3		23±6		11±5		10±7		55±26	
	Chimeras ^c	0±0	0	0±1	0	0±0	0	0±0	0	0±0	0	0±0	0
	Contaminants	1±1	33	4±2	62	8±3	35	2±2	14	5±4	53	12±6	21
	Erroneous OTUs	2±0	67	2±1	38	15±3	65	9±4	86	5±3	47	43±20	79
	Total OTU	33±3		30±3		53±5		20327±3600		8309±1670		16893±5323	
	Coverage of the 33 strains	27±2		24±1		29±1		20293±3595		8281±1664		16819±5299	
	Missing strain(s)	6±2		9±1		4±1		9±0		9±0		1±0	
Bm3	Total artifacts ^b	6±2		6±2		24±4		35±8		28±11		74±25	
	Chimeras ^c	2±0	28	2±1	36	1±0	4	23±7	68	22±10	80	17±11	23
	Contaminants	1±1	17	2±1	38	9±3	35	1±1	3	2±2	8	12±5	17
	Erroneous OTU	3±2	55	2±1	26	15±2	61	10±4	29	3±2	12	44±14	60

Table S4. OTU/sequence detection by UPARSE and artifacts sources analysis when a balanced mode was used for chimera identification ^a

^a All data is presented as mean ± s.e. calculated from 24 replicates for each method.

^b Total artifacts in the detected OTUs, including chimera, contaminants, and erroneous OTUs. Chimeric sequences were identified based on predictions by UCHIME2 algorithm from USEARCH using the mock community strains as a reference. FASTA sequences for all artifacts were used as query for BLAST search against nt database from NCBI and the mock community strains as reference database. For non-chimera artifacts, all sequences were matched to the nt database from NCBI with a minimum identity of 85%.

Those not matched to the mock community strains by BLAST are defined as contaminants, while those matched to the mock community strains by BLAST with the identity above 70% are defined as erroneous OTUs.

^c Percentages of chimera, contaminants, and erroneous OTUs in the artifacts.

				zOTU	5					Sequenc	es		
		Non-pha	sing	One-ste phasing	p g	Two-st phasin	ep Ig	Non-phasi	ng	One-step ph	asing	Two-step ph	asing
		Number of zOTUs	% '	Number of zOTUs	% [`]	Number of zOTUs	% ^c	Number of Sequences	% ^c	Number of Sequences	% ^c	Number of Sequences	% [`]
	Total artifacts ^b	5±1		7±2		23±5		38±8		24±8		78±31	
	Chimera	2±1	33	2±1	31	5±2	21	6±4	17	8±5	33	16±9	20
Bm1	Contaminants	2±1	29	3±2	40	7±2	31	2±1	4	3±2	13	11±5	13
	Erroneous zOTUs	2±0	38	2±0	29	11±2	48	30±7	79	13±5	54	52±22	67
	Total artefacts ^b	4±1		6±3		23±6		11±5		10±7		55±26	
	Chimera	0±0	8	0±1	6	4±2	18	0±1	3	1±1	5	9±5	17
Bm2	Contaminants	1±1	33	4±2	62	7±3	32	2±2	14	5±4	53	11±6	20
	Erroneous zOTUs	2±0	59	2±1	32	11±2	50	9±4	83	4±2	42	35±16	63
	Total artifacts ^b	6±2		6±2		24±4		35±8		28±11		74±25	
Bm3	Chimera	2±1	34	2±1	36	5±2	21	24±7	69	22±10	80	26±13	35
5113	Contaminants	1±1	15	2±1	38	8±2	31	1±1	3	2±2	8	11±5	15
	Erroneous zOTU	3±2	51	2±1	26	12±2	48	10±4	28	3±2	12	37±13	50

Table S5. Sources of artifacts when zOTUs were detected and classed by UPARSE and a sensitive mode was used for chimera identification ^a

^a All data is presented as mean±s.e. calculated from 24 replicates for each method. The proportion of chimera, contaminants, and erroneous OTUs in artifact sequences are displayed.

^b Total artifacts in the detected zOTUs, including Chimera, contamiants, and erroneous zOTUs.

^c Percentage of the artifacts.

		Total zOTU or ASVs	Coverage of the 33 strains	Missing strain(s)	Total artifacts ^b	Chimera	Contaminants	Erroneous OTUs
	DADA2	31±5c	24±2b	9±2a	6±4c	1±1 (18%)	1±1	4±2
0711	Deblur	34±4c	25±2b	8±2a	9±3c	2±1	1±1	6±2
ASVs	UCLUST	110±25a	28±2a	5±2b	82±25a	55±20	7±3	20±5
	UNOISE	75±9b	30±1a	3±1c	46±8b	26±6	4±1	16±2
	UPARSE	53±5bc	29±1a	4±1bc	24±4bc	1±0	9±3	15±2
	DADA2	16148±4970a	16027±4865a	9±0a	121±190a	9±15	3±4	109±176
	Deblur	13555±4141ab	13518±4123ab	6±4b	37±20a	16±13	2±3	19±9
Sequences	UCLUST	9460±2976b	9261±2896b	0±0c	199±97a	147±82	9±5	43±20
	UNOISE	16933±5346a	16740±5263a	0±0c	193±96a	136±80	8±4	48±18
	UPARSE	16893±5323a	16819±5299a	1±0c	74±25a	17±11	12±5	44±14

Table S6A. Methods comparisons in OTU or ASV detection and artifact composition and sources whena balanced mode was used for chimera detection a

^a All data is presented as mean±s.e. calculated from 24 replicates for each method. Significant differences between methods are shown by alphabetic letters using pairwise T-Test (P < 0.05). The proportion of chimera, contaminants, and erroneous OTUs in artifact sequences are displayed.

^b Total artifacts in the detected zOTUs, including Chimera, contaminants, and erroneous zOTUs.

Table S6B. Methods comparisons in OTU or ASV detection and artifact composition and sources when
a sensitive mode was used for chimera identification ^a

		Total zOTU or ASVs	Coverage of the 33 strains	Missing strain(s)	Total artifacts b	Chimera	Contaminants	Erroneous OTUs
	DADA2	31±5c	24±2b	9±2a	6±4c	2±1	1±1	4±2
OTUs or ASVs	Deblur	34±4c	25±2b	8±2a	9±3c 3±1		0±1	5±2
	UCLUST	110±25a	28±2a	5±2b	82±25a	82±25a 62±21		14±3
	UNOISE	75±9b	30±1a	3±1c	46±8b 30±7		4±1	11±2
	UPARSE	53±5bc	29±1a	4±1bc	24±4bc	24±4bc 5±2		12±2
Soquencer	DADA2	16148±4970a	16027±4865a	9±0a	121±190a	121±190a 12±15		106±177
Sequences	Deblur	13555±4141ab	13518±4123ab	6±4b	37±20a	18±13	1±2	18±9

UCLUST	9460±2976b	9261±2896b	0±0c	199±97a	157±83	8±4	34±18
UNOISE 16933±5346a 1674		16740±5263a	0±0c	193±96a	151±86	8±4	34±12
UPARSE	16893±5323a	16819±5299a	1±0c	74±25a	26±13	11±5	37±13

^a All data is presented as mean±s.e. calculated from 24 replicates for each method. Significant differences between methods are shown by alphabetic letters using pairwise T-Test (P < 0.05). The proportion of chimera, contaminants, and erroneous OTUs in artifact sequences are displayed.

^b Total artifacts in the detected zOTUs, including Chimera, contamiants, and erroneous zOTUs.

NCBI accession # ^a	Detected by	Domain	Phylum	Species	Origin ^ь
MK578773	DADA2, UCLUST, UNOISE, UPARSE	Archaea	Candidatus Thermoplasmatota	unclear <i>Thermoplasmata</i> archaeon clone YOBP4	Archaea mock community
MN100310	DADA2, Deblur, UCLUST, UNOISE, UPARSE	Archaea	Candidatus Thermoplasmatota	Ferroplasma acidiphilum	Archaea mock community
JQ346779	UCLUST	Archaea	Crenarchaeota	unclear Sulfolobales archaeon clone YOBP2	Archaea mock community
NR_102972	UCLUST, UPARSE	Archaea	Crenarchaeota	Caldivirga maquilingensis	Archaea mock community
DQ924708	UCLUST	Archaea	Crenarchaeota	Caldivirga maquilingensis	Archaea mock community
KF607848	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanobrevibacter smithii	Archaea mock community
LC183839	UCLUST	Archaea	<u>Euryarchaeota</u>	Methanolacinia paynteri	Archaea mock community
MN505783	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanobrevibacter arboriphilus	Archaea mock community
MG430446	UCLUST	Archaea	Euryarchaeota	unclassified	Archaea mock community
KX133611	UCLUST	Archaea	Euryarchaeota	Thermococcus guaymasensis	Archaea mock community
KR136084	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanothermobacter thermoautotrophicus	Archaea mock community
MK680235	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanobacterium bryantii	Archaea mock community
CP020120	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanococcus maripaludis	Archaea mock community
KT068037	UCLUST, UNOISE, UPARSE	Archaea	Euryarchaeota	Halomicrobium katesii	Archaea mock community
NR_118366	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanospirillum hungatei	Archaea mock community
MH205989	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanohalophilus halophilus	Archaea mock community
KY932730	UCLUST, UPARSE	Archaea	Euryarchaeota	Methanosphaera stadtmanae	Archaea mock community
KU030162	UCLUST, UPARSE	Archaea	Euryarchaeota	Archaeoglobus profundus	Archaea mock community

Table S7. Contaminants (ASVs or (z)OTUs) detected from Bm3 using different data processing methods

MG854222	DADA2, Deblur, UCLUST, UNOISE, UPARSE	Archaea	Euryarchaeota	Thermoplasma	Archaea mock community
MW549204	DADA2, UNOISE, UPARSE	Archaea	Nitrososphaerota	Nitrosopumilus maritimus	Archaea mock community
KJ881840	UCLUST	Archaea	Nitrososphaerota	Nitrosopumilus maritimus	Archaea mock community
MK868065	UCLUST	Archaea	Nitrososphaerota	Nitrosopumilus maritimus	Archaea mock community
HM150163	UCLUST, UNOISE, UPARSE	Archaea	Thermoproteota	unclear Thermoproteales archaeon clone YOBP5	Archaea mock community
KT068192	DADA2, UCLUST, UNOISE, UPARSE	Archaea	Thermoproteota	Thermoprotei	Archaea mock community
MN024249	UCLUST, UPARSE	Archaea	<u>Thermoproteota</u>	Sulfolobus acidocaldarius	Archaea mock community
AB681496	UCLUST	Bacteria	Bacteroidetes	Flavobacterium	unclassified Flavobacterium
CP050461	UCLUST	Bacteria	Bacteroidetes	Nonlabens	unclear
KY275920	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
KU506153	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
KP944828	UCLUST, UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
KY278883	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
KY276160	UCLUST, UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
HM839502	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
КҮ278704	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
LR639402	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MN891656	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
LN516743	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MH315414	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
KY275641	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MW082982	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MZ974455	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
LC496407	UCLUST, UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
MF498141	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MG867092	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
LR638981	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
HQ189625	UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
OK071313	UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
LR640988	UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
MH761168	Deblur	Bacteria	Unclassified	Unclassified	environmental samples

MN857808	UCLUST, UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
MF660344	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MH526910	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MF950503	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples
MH934243	UPARSE	Bacteria	Unclassified	Unclassified	environmental samples
LC667825	UCLUST	Bacteria	Firmicutes	Rossellomorea	unclear
HQ183839	UCLUST	Bacteria	Proteobacteria	Unclassified	environmental samples
OL897515	UCLUST	Bacteria	Proteobacteria	Diaphorobacter	unclassified Diaphorobacter
HG986835	UCLUST	Bacteria	Proteobacteria	Massilia group	environmental samples
MK603690	UCLUST, UPARSE	Bacteria	Proteobacteria	Unclassified	unclear
MN664230	DADA2, UCLUST, UNOISE, UPARSE	Bacteria	Proteobacteria	Thiobacillus	environmental samples
CP053837	UCLUST	Bacteria	Proteobacteria	Aliarcobacter	unclear
KC433404	UCLUST, UPARSE	Bacteria	Proteobacteria	Catenovulum	unclassified Catenovulum
MZ734445	UCLUST	Bacteria	Proteobacteria	Providencia	unclassified Providencia
EF092210	UCLUST	Bacteria	Proteobacteria	Legionella	environmental samples
OK464425	UCLUST	Bacteria	Proteobacteria	Acinetobacter	unclear
OL630582	UCLUST, UPARSE	Bacteria	Proteobacteria	Psychrobacter	unclear
MW287983	UCLUST	Bacteria	Proteobacteria	Unclassified	unclear
KU721136	UCLUST	Bacteria	Proteobacteria	Methylophaga	environmental samples
KT039578	UCLUST	Bacteria	Unclassified	Unclassified	environmental samples

^a All NCBI sequences shown here are matched to detected ASVs or (z)OTUs with identity above 94%.

^b Contaminant sequences were used as query for BLAST search against the archaea mock community strains as reference database. The identities between archaea mock community and all matched contaminant sequences are above 98% except for MK868065 (78%).

		Non-Phasing		One-step phasing		Two-step phasing	
		number	%	number	%	number	%
Total Spurious		516		495		465	
	total	504	97.7	487	98.4	457	98.3
	chimera	376	74.6	358	73.5	221	48.4
	True Positive	0	0.0	0	0.0	0	0.0
Singletons	E. coli	4	0.8	0	0.0	0	0.0
Singletons	other contaminant strains	44	8.7	44	9.0	80	17.5
	erroneous sequences	80	15.9	85	17.5	156	34.1
	total	12	2.3	8	1.6	8	1.7
	chimera	9	75.0	6	75.0	6	75.0
	True Positive	0	0.0	0	0.0	0	0.0
Doubletons	E. coli	0	0.0	0	0.0	0	0.0
	other contaminant strains	1	8.3	2	25.0	1	12.5
	erroneous sequences	2	16.7	0	0.0	1	12.5
	total	0	0.0	0	0.0	0	0.0
	chimera	0	0.0	0	0.0	0	0.0
	True Positive	0	0.0	0	0.0	0	0.0
Other Unique	E. coli	0	0.0	0	0.0	0	0.0
OTUs ^a	other contaminant strains	0	0.0	0	0.0	0	0.0
	erroneous sequences	0	0.0	0	0.0	0	0.0

Table S8A. Sources of the spurious sequences-Bm1

^a OTUs have \geq 3 sequences and present in only one library across the entire experiments.

		None- Phasing		One-step phasing		Two-step phasing	
		number	%	number	%	number	%
Total Spurious		183		202.		284	
	total	182	99.5%	200	99.0%	278	97.9%
	chimera	78	42.9%	85	42.5%	71	25.5%
	True Positive	0	0.0%	0	0.0%	0	0.0%
	E. coli	2	1.1%	0	0.0%	0	0.0%
Singletons	other contaminant strains	29	15.9%	31	15.5%	69	24.8%
	erroneous sequences	73	40.1%	84	42.0%	138	49.6%
	total	1	0.6%	2	1.0%	5	1.8%
	chimera	0	0.0%	1	50.0%	1	20.0%
	True Positive	0	0.0%	0	0.0%	0	0.0%
	E. coli	0	0.0%	0	0.0%	0	0.0%
Doubletons	other contaminant strains	1	100.0%	1	50.0%	1	20.0%
	erroneous sequences	0	0.0%	0	0.0%	3	60.0%
	total	0	0.0%	0	0.0%	1	0.4%
	chimera	0	0.0%	0	0.0%	0	0.0%
	True Positive	0	0.0%	0	0.0%	0	0.0%
	E. coli	0	0.0%	0	0.0%	0	0.0%
Other Unique OTUs	other contaminant strains	0	0.0%	0	0.0%	1	0.4%
	erroneous sequences	0	0.0%	0	0.0%	0	0.0%

Table S8B. Sources of the spurious sequences-Bm2^a

		None- Phasing		One-step phasing		Two-step phasing	
		number	%	number	%	number	%
Total Spurious		298		278		280	
	total	295	97.7%	274	98.6%	274	97.9%
	chimera	185	62.7%	185	67.5%	90	32.9%
	True Positive	0	0.0%	2	0.73%	1	0.4%
	E. coli	2	0.7%	0	0.0%	0	0.0%
Singletons	other contaminant strains	28	9.5%	37	13.5%	87	31.8%
	erroneous sequences	80	27.1%	50	18.3%	96	35.0%
	total	3	1.0%	4	1.4%	6	2.1%
	chimera	1	33.3%	4	100.0%	3	50.0%
	True Positive	0	0.0%	0	0.0%	0	0.0%
	E. coli	0	0.0%	0	0.0%	0	0.0%
Doubletons	other contaminant strains	1	33.3%	0	0.0%	1	16.7%
	erroneous sequences	1	33.3%	0	0.0%	2	33.3%
	total	0	0.0%	0	0.0%	0	0.0%
	chimera	0	0.0%	0	0.0%	0	0.0%
	True Positive	0	0.0%	0	0.0%	0	0.0%
	E. coli	0	0.0%	0	0.0%	0	0.0%
Other Unique OTUs	other contaminant strains	0	0.0%	0	0.0%	0	0.0%
	erroneous sequences	0	0.0%	0	0.0%	0	0.0%

Table S8C. Sources of the spurious sequences-Bm3^a

Table S11. Mock Community strains	
-----------------------------------	--

	Strains	Groupa	Abundance (%)			V3-V5	V4 GC
	Strains	Group -	Bm1	Bm2	Bm3	GC (%)	(%)
1	Acidobacteria_JQ346769	Low GC	3.03	8.41	0.01	53	55.82
2	Bacteroidetes_clone1_JQ346767	Low GC	3.03	8.41	0.01	50	47.26
3	Syntrophobacter_fumaroxidans_JQ346744	Low GC	3.03	8.41	0.01	57	56.32
4	Protochlamydia_amoebophila_JQ346728	Low GC	3.03	8.41	0.01	51	51.37
5	Chlorobi_JQ346768	Low GC	3.03	8.41	0.01	52	53.42
6	Desulfurispirillum_alkaliphilum_JQ346730	Low GC	3.03	8.41	0.01	53	50.68
7	Cyanobacterium_JQ346766	Low GC	3.03	8.41	0.01	47	45.55
8	Syntrophococcus_sucromutans_JQ346731	Low GC	3.03	8.41	0.01	53	54.11
9	Leptotrichia_hofstadii_JQ346732	Low GC	3.03	8.41	0.01	53	54.11
10	Victivallis_vadensis_JQ346729	Low GC	3.03	8.41	0.01	52	50
11	Mycoplasma_orale_JQ346727	Low GC	3.03	8.41	0.01	49	49.83
12	Actinobacterium_JQ346771	Medium GC	3.03	0.67	0.67	49	53.42
13	Persephonella_hydrogeniphila_JQ346733	Medium GC	3.03	0.67	0.67	60	59.25
14	Caldisericum_exile_JQ346734	Medium GC	3.03	0.67	0.67	55	54.11
15	Deinococcus_indicus_JQ346735	Medium GC	3.03	0.67	0.67	55	56.51
16	Desulfovibrio_AJ786059	Medium GC	3.03	0.67	0.67	54	55.82
17	Planctomycete_JQ346772	Medium GC	3.03	0.67	0.67	55	54.79
18	Syntrophus_buswellii_JQ346736	Medium GC	3.03	0.67	0.67	54	54.11
19	Syntrophus_gentianae_JQ346737	Medium GC	3.03	0.67	0.67	53	54.45
20	Spirochaetes_JQ346773	Medium GC	3.03	0.67	0.67	55	54.45
21	Synergistetes_JQ346774	Medium GC	3.03	0.67	0.67	55	54.11
22	Verrucomicrobia_JQ346775	Medium GC	3.03	0.67	0.67	55	55.14
23	Sulfurihydrogenibium_yellowstonense_JQ346738	High GC	3.03	0.01	8.41	56	56.51
24	Thermomicrobium_roseum_JQ346739	High GC	3.03	0.01	8.41	67	68.84
25	Deferribacter_desulfuricans_JQ346740	High GC	3.03	0.01	8.41	59	59.25
26	Dictyoglomus_thermophilum_JQ346741	High GC	3.03	0.01	8.41	59	59.59
27	Fibrobacter_succinogenes_JQ346742	High GC	3.03	0.01	8.41	56	57.19
28	Syntrophothermus_lipocalidus_JQ346743	High GC	3.03	0.01	8.41	57	57.88
29	Gemmatimonadetes_JQ346776	High GC	3.03	0.01	8.41	61	62.33
30	Nitrospira_JQ346777	High GC	3.03	0.01	8.41	57	59.93
31	Bacteroidetes_clone2_JQ346770	High GC	3.03	0.01	8.41	55	50
32	Thermodesulfobacterium_commune_JQ346745	High GC	3.03	0.01	8.41	61	60.96
33	Thermotoga_neapolitana_JQ346746	High GC	3.03	0.01	8.41	62	63.7

^a Average GC content: Low GC group, 51.1±2.1%; medium GC group: 55.1±1.8%; high GC group, 59.3±3.3%.

>JQ346769.1 acidobacteria_jq346769

TACGTAGGGAGCAAGCGTTGTTCGGATTTACTGGGCGTAAAGGGCGCGTAGGCGGCGCGACAAGTCACTTGTGAAATCTC CGGGCTTAACTCGGAACGGCCAAGTGAAACTGTCATGCTAGAGTGCAGAAGGGGGCAATCGGAATTCTTGGTGTAGCGGTG AAATGCGTAGATATCAAGAGGAACACCTGAGGTGAAGACGGGTTGCTGGGCTGACACTGACGCTGAGGCGCGAAAGCCAG GGGAGCAAACGGG

>JQ346771.1 actinobacterium_jq346771

TACATAGGCTTCAAGCGTTGTCCGGATTTATTGGGCGTAAAGAGTTCGTAGGCGGTCGAGTAAGTCGGGTGTGAAAATTC TGGGCTCAACCCAGAGACGCCACCCGATACTGCTTAACTTGAGTTCGATAGGGGAGTGGGGGAATTCCTAGTGTAGCGGTG AAATGCGCAGATATTAGGAGGAACACCGGTGGCGAAGGCGCCACTCTGGATCGACACTGACGCTGAGGAACGAAAGCATG GGTAGCAAACAGG

>JQ346767.1 bacteroidetes_clone1_jq346767

TACGGAGGGTGCAAGCGTTGTCCGGATTTATTGGGTTTAAAGGGTGCGCAGGTGGTTTATTAAGTCAGTGGTGAAAGACG GTCGCTCAACGATTGCAGTGCCATTGAAACTAGTAGACTTGAGTAAAGTAGAGGTGGGCGGAATTGATAGTGTAGCGGTG AAATGCATAGATATTATCAAGAACTCCAATTGCGTAGGCAGCTCACTTGGCTTTTACTGACACTCATGCACGAAAGTGTG GGTATCAAACAGG

>JQ346770.1 bacteroidetes_clone2_jq346770

>JQ346734.1 caldisericum_exile_jq346734

>JQ346768.1 chlorobi_jq346768

TACAGGGGTGGCAAGCGTTGTCCGGATTTACTGGGTGTAAAGGGTGCGCAGGCGGGCTCATAAGTCGGGGGTTAAATCCA TGTGCTTAACACATGCATGGCTTCCGATACTGTGAGTCTAGAGTCTCGAAGAGGAAGATGGAATTTCCGGTGTAACGGTG GAATGTGTAGATATCGGAAAGAACACCAGTGGCGAAGGCAGTCTTCTGGTCGAGAACTGACGCTCAGGCACGAAAGCGTG GGGAGCAAACAGG >JQ346766.1 cyanobacterium_jq346766

GACGGAGGATGCAAGTGTTATCCGGAATCACTGGGCGTAAAGCGTCTGTAGGTGGTTTAATAAGTCAACTGTTAAATCTT GAGGCTCAACTTCAAAATCGCAGTCGAAACTATTAGACTAGAGGTATAGTAGAGGGTAAAGGGAATTTCCAGTGGAGCGGTG AAATGCGTAGATATTGGAAAGAACACCGATGGCGAAAGCACTTTACTGGGCTATTACTAACACTCAGAGACGAAAGCTAG GGTAGCAAATGGG

>JQ346740.1 deferribacter_desulfuricans_jq346740

>JQ346735.1 deinococcus_indicus_jq346735

>AJ786059.1 desulfovibrio_aj786059

>JQ346730.1 desulfurispirillum_alkaliphilum_jq346730

TACGGATGGAGCAAGCGTTGTCCGGAATCATTGGGCGTAAAGGGTGCGTAGGCGGTTTTTTAAGTCTGCATTGTAAGTTC AGTGCTTAACGCTGAAATTGGTGCGGAAACTGGAAGACTTGAGTACTGTAGGGGGAAAGCGGAATGCCCTGTGTAGAGGTG AAATTCGTAGATATAGGGTGGAACATCAAAAGCGAAGGCAGCTTTCTGGGCAGTAACTGACGCTGAGGCACGAAAGCGTG GGGAGCAAACAGG

>JQ346741.1 dictyoglomus_thermophilum_jq346741

GACGTAGGGGGGGGGGGGGGGTGTTGTCCGGATTTACTGGGCGTAAAGGGCGTGTAGGCGGGCTTAGCAAGTCAGATGTGGAAGCCC TGAGCTCAACTCAGGGAGGTCATCTGATACTGCTAAGCTAGAGGGGCAGGAGAGGAGGAGGGGAACTTCCGGTGTAGCGGTG AAATGCGTAGATATCGGAAGGAACGCCGGTGGCGAAGGCGGCTCTCTGGACTGACCCTGACGCTGAGGCGCGAAAGCTAG GGGAGCGAACGGG

>JQ346742.1 fibrobacter_succinogenes_jq346742

TACGAGGGGTGCAAGCGTTGTTCGGAATTACTGGGCGTAAAGGGAGCGTAGGCGGAGATTCAAGCGGATTGTACAATCCC GGGGCCCAACCCCGGCTCTGTAGTCCGAACTGGATCTCTTGGATAGTTCAGGGGCAGGCGGAATTCCTGGTGTAGCGGTG GAATGCGTAGAGATCAGGAAGAACACCGATGGCGAAGGCAGCCTGCTGGGGGACTTATCGACGCTGAGGCTCGAAAGTGCG GGTAGCAAACAGG

>JQ346776.1 gemmatimonadetes_jq346776

TACAGAGGGTGCGAGCGTTGTCCGGAATCACTGGGCGTAAAGGGCGCGTAGGCGGCCGATCAAGTGTGTGGTGAAAGCCC GGGGCTCAACCCCGGGTCTGCCGTGCAAACTGGTTGGCTTGAGCACTGTAGAGGCAGGTGGAATTCCGGGTGTAGCGGTG GAATGCGTAGAGATCCGGAAGAACACCGGTGGCGAAGGCGGCCTGCTGGGCAGTAGCTGACGCTGAGGCGCGACAGCGTG GGGAGCAAACGGG

>JQ346732.1 leptotrichia_hofstadii_jq346732

TACGTATGTCGCAAGCGTTATCCGGAATTATTGGGCATAAAGGGCATCTAGGCGGCCAGGCAAGTCTGGGGTGAAAACTT GCGGCTCAACCGCAAGCCTGCCCTGGAAACTGCCTGGCTAGAGTGCTGGAGGAGGTGGACGGAACTGCACGAGTAGAGGTG AAATTCGTAGATATGTGCAGGAATGCCGATGATGAAGATAGTTCACTGGACGGCAACTGACGCTGAAGTGCGAAAGCTGG GGGAGCAAACAGG

>JQ346777.1 nitrospira_jq346777

>JQ346733.1 persephonella_hydrogeniphila_jq346733

TACGTAGGTCCCGAACGTTGCGCGAAATTACTGGGCGTAAAGGGTCCGTAGGCGGTCTGGTAAGTGGAAGGTGAAAGCCT GGGGCTCAACTCCAGAATTGCCTTCCAAACTGCCGGAACTGAGGCAGGGAGGAGGGCGGGAGTCGGCGGAATTCCCGGTGTAGCGGTG AAATGCGTAGATATCGGGAGGAACACCAGTGGCGAAGGCGGCCGACTGGAACTGTCCTGACGCTGAGGGACGAAAGCCAG GGGAGCGAACCGG

>JQ346772.1 planctomycete_jq346772

TACGAACCGGACAAACGTTATTCGGAATCACTGGGCTTAAAGAGTGCGTAGGCGGTCTACCAAGTTGGGTGTGAAATCCC

TCGGCTCAACCGAGGAATTGCGCTCAAAACTGGCAGACTCGAGGAAGGCAGGGGTAAGCGGAACTGATGGTGGAGCGGTG AAATGCGTTGATATCATCAGGAACACCAGTGGCGAAGGCGGCTTACTGGGCCTTTTCTGACGCTGAGGCACGAAAGCTAG GGTAACGAACGGG

>JQ346728.1 protochlamydia_amoebophila_jq346728

>JQ346773.1 spirochaetes_jq346773

>JQ346738.1 sulfurihydrogenibium_yellowstonense_jq346738

>JQ346774.1 synergistetes_jq346774

>JQ346744.1 syntrophobacter_fumaroxidans_jq346744

TACGGAGGGTGCGAGCGTTATTCGGAATTACTGGGCGTAAAGCGCGTGCAGGCGGTTTGGCAAGTCTGATGTGAAAGCCC CGGGCTTAACCTGGGAAGTGCATTGGAAACTGCCGGACTTGAGTACTGGAGAGGAAGGGGGGAATTCCCGGTGTAGAGGTG AAATTCGTAGAGATCGGGAGGAATACCAGTGGCGAAGGCGCCCTTCTGGACGGTTACTGACGCTGAGACGCGAAAGCGTG GGGAGCAAACAGG

>JQ346731.1 syntrophococcus_sucromutans_jq346731

TACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGCAGACGGCAGTGCAAGTCTGAAGTGAAAACCC GAGGCTCAACCACGGGATTGCTTTGGAAACTGTACAGCTAGAGTGTCGGAGGGGTAAGCGGAATTCCTAGTGTAGCGGTG AAATGCGTAGATATTAGGAGGAACACCGGTGGCGAAGGCGGCTTACTGGACGATAACTGACGTTGAGGCTCGAAAGCGTG GGGAGCAAACAGG

>JQ346743.1 syntrophothermus_lipocalidus_jq346743

GACGTAGGGGGGGGGGGGGGTGTCCGGAATTACTGGGCGTAAAGAGCGTGTAGGCGGGGCTGTTAAGTCAGGTGTGAAATACC GCAGCTCAACTGCGGGGGTGGCATCTGATACTGGCAGTCTTGAGGGGCAGGAGGGGAAGTGGAATTCCTGGTGTAGCGGTG AAATGCGTAGATATCAGGAGGAACACCAGTGGCGAAGGCGGCTTCCTGGACTGGCCCTGACGCTGAGACGCGAAAGCGTG GGGAGCAAACAGG

>JQ346736.1 syntrophus_buswellii_jq346736

TACGGGGGGTGCTAGCGTTGTTCGGAATCATTGGGCGTAAAGAGCGTGTAGGCGGCTAGGCAAGTCAGATGTGAAATCCC TGGGCTTAACCCAGGACGTGCATTTGAAACTGCTTGGCTTGAGTAGGGGAAGAGGGAAGTGGTATTCCTGGTGTAGAGGTG AAATTCGTAGATATCAGGAGGAACACCGGTGGCGAAGGCGACTTCCTGGTCCTATACTGACGCTGAGACGCGAGAGCGTG GGGAGCAAACAGG

>JQ346737.1 syntrophus_gentianae_jq346737

TACGGGGGGTGCAAGCGTTGTTCGGAATCATTGGGCGTAAAGAGCGTGTAGGCGGCTAGGCAAGTCAGATGTGAAATCCC TGGGCTTAACCCAGGACGTGCATTTGAAACTGCTTGGCTTGAGTAAGGAAGAGGGAAGTGGAATTCCTGGTGTAGAGGTG AAATTCGTAGATATCAGGAGGAACACCGGTGGCGAAGGCGACTTCCTGGTCCTATACTGACGCTGAGACGCGAGAGCGTG GGGAGCAAACAGG

>JQ346745.1 thermodesulfobacterium_commune_jq346745

TACGCAGGTGGCGAGCGTTGCCCGGAATTACTGGGCGTAAAGGGTGCGTAGGCGGCCGGACAAGTCATAGGTTAAAGCCC GGAGCTCAACTCCGGAAAGGCCTATGATACTGTCTGGCTTGAGGGCCGGAAGGGCTGGCGGAATTCCCGGTGTAGGGGTG AAATCCGTAGATATCGGGAGGAACACCGGTGGGGAAGCCGGCCAGCTGGACGGTTCCTGACGCTGAGGCACGAAAGCGTG GGGAGCAAACCGG

>JQ346739.1 thermomicrobium_roseum_jq346739

>JQ346746.1 thermotoga_neapolitana_jq346746

GGGAGCAAACCGG

>JQ346775.1 verrucomicrobia_jq346775

TACGAAGGTCCCGAGCGTTGTTCGGAATCACTGGGCGTAAAGGGAGCGTAGGCGGCGTGGTAAGTCAGATGTGAAATCCC GGGGCTCAACCCCGGAACTGCATCCGATACTGCCGTGCTAGAGGAATGGAGAGGTAGCTGGAATTCTTGGTGTAGCAGTG AAATGCGTGGATATCAAGAGGGAACACTCGTGGCGAAAGCGAGCTACTGGACATTTTCTGACGCTGAGGCTCGAAGGCTAG GGTAGCGAAAGGG >JQ346729.1 victivallis_vadensis_jq346729

TACGTAGGTGGCGAGCGTTGTTCGGATTTATTGGGCGTAAAGGGTCTGTAGGAGGTTTGTTAAATACGAGGTGAAATCCG GGGGCTCAACTTCCGAATTGCCTTGTAGACTGATGAACTAGAGTACTGGAGAGGGTAAGCGGAATACCAGGTGTAGCGGTG GAATGCGTAGATATCTGGTAGAACACCAATAGCGAAGGCAGCTTGCTGGACAGAAACTGACTCTGAAAGACGAAAGCATG GGGAGCAAACAGG