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Daily sampling reveals household-specific 
water microbiome signatures and shared 
antimicrobial resistomes in premise 
plumbing

Stagnation in premise plumbing can lead to the degradation of drinking 
water quality, yet the variability of microbiomes and resistomes in these 
systems at fine spatiotemporal scales remains poorly understood. Here we 
track the water microbiome daily across households in St. Louis, Missouri, 
alongside functional gene profiles and antimicrobial resistomes. Our results 
show substantial differences in species composition between households, 
with household identity, instead of temporal fluctuations or specific 
water-use devices, emerging as the dominant variable shaping microbiome 
composition. Using LASSO regression models, we identified informative taxa 
for each household, achieving an average accuracy of 97.5% in estimating a 
sample’s household origin. Notably, distinct profiles of opportunistic premise 
plumbing pathogens (OPPPs) were detected, with Mycobacterium gordonae 
being twice as prevalent as M. chelonae. Community assembly simulations 
indicated that stochastic processes primarily drive household-level 
taxonomic variation. In contrast, antimicrobial resistomes and functional 
gene repertoires were similar across households, likely influenced by common 
chloramine residuals applied throughout the local water distribution systems. 
Genes conferring resistance to beta-lactams were prevalent in bathtub faucet 
water across all households. These results highlight the need to incorporate 
household-level species variation when assessing health risks from OPPPs and 
monitoring antimicrobial resistance. These findings also pave the way for new 
research to better understand plumbing environments as potential routes for 
the transmission of resistant bacteria and their genes.

Drinking water harbours a diverse collection of microorganisms, 
exhibiting spatiotemporal variations in abundance1, community 
composition2–5 and metabolic functions6,7 from source to tap. The vast 
majority of these microorganisms are not pathogenic to humans. Some 
of them even contribute positively, in such ways as by seeding human 
commensals8–10, protecting infrastructure from corrosion11 and degrad-
ing disinfection byproducts12. Nonetheless, overgrowth of indicator 
microorganisms (Escherichia coli and total coliforms), proliferation 
of opportunistic premise plumbing pathogens (OPPPs), nitrification 

and microbially mediated corrosion can lead to public health concerns, 
regulatory compliance challenges and operational issues13,14. To ensure 
the microbiological safety of drinking water, a better fundamental 
understanding of the diversity, variation and dynamics of the drinking 
water microbiome is crucial15. The urgency of this task is underscored by 
the World Health Organization’s guideline that “water entering drinking 
water distribution systems must be microbially safe and ideally should 
also be biologically stable”, highlighting the imperative of understand-
ing the spatiotemporal variations in drinking water microbiomes16,17.
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vary within and between households? (2) Are these variations, if any, 
robust to the daily dynamics of water microbiomes and water use 
devices? (3) Can cross-validated models identifying individual house-
holds be built on the basis of the microbial species profiles in bathtub 
faucet water? To address these questions, we recruited volunteers in 
St. Louis to collect daily water samples over a week as well as samples 
from different water usage devices from their homes. We examined 
the water microbiome and resistome variations within and between 
individual households via complementary 16S ribosomal RNA (rRNA) 
gene amplicon sequencing and shotgun metagenomics. In particu-
lar, daily variations in the microbiomes and resistomes of household 
bathtub faucet water were examined. In addition, within-household 
variations were examined by comparing three types of water: stag-
nant water from bathtub faucets, stagnant water from kitchen fau-
cets and fresh water from kitchen faucets. We found that there was 
strong between-household variation in taxonomic compositions 
but that the resistomes were more similar across households. This 
finding motivated us to use null-model-based simulations to inves-
tigate the community assembly mechanisms and explore the inter-
actions between taxonomic compositions, metabolic functions  
and resistomes.

Results
Households had distinctive bath faucet water microbiomes
To capture the dynamic fluctuations in the compositions of premise 
plumbing microbiomes, we collected 56 water samples from eight 
households over a span of seven consecutive days (Fig. 1a). All samples 
were taken from bathtub faucets. During the week-long sampling, the 
microbial taxon relative abundances, as shown by metagenomic taxo-
nomic profiling, varied from day to day (Fig. 2). The variations in the 
microbial communities at each home did not significantly correlate 
with differences in sample temperature (R2 = 0.04, P = 0.141) but were 
moderately correlated with differences in total chlorine concentration 
(R2 = 0.36, P = 9.79 × 10−7; Supplementary Fig. 1). Despite the day-to-day 
variations, the species profiles in an individual household were strongly 
correlated (Pearson ρ: mean of 0.91, s.d. of 0.13). This observation 
emphasized the resilience of bathtub faucet water microbiomes to 
perturbations in physicochemical water properties.

Each household harboured distinct taxa, in particular in the finer 
taxonomic ranks (Fig. 2). Principal coordinate analysis (PCoA) based 
on the Bray–Curtis distance of the species profiles clearly grouped 
by household (Fig. 3a; permutational multivariate analysis of vari-
ance (PERMANOVA) P = 0.001; pairwise PERMANOVA P values after 
multiple test adjustments are shown in Supplementary Table 1). The 
non-significant differences between the dispersions of the Bray–Curtis 
dissimilarities (permutational analysis of multivariate dispersions 
(PERMDISP) P = 0.176) further support the significant differences in 
centroids between households. A consistent PCoA pattern emerged 
when the same species profile data were analysed via the Jaccard index 
(Supplementary Fig. 2), indicating that community composition simi-
larities and differences were driven by both the occurrence and relative 
abundance of taxa.

Household individuality based on LASSO-selected taxa
Upon detecting microbial community variations among households 
(Fig. 3a), we asked whether microbial species can serve as distinctive 
signatures of the plumbing system of a particular household. To address 
this question, leave-one-out least absolute shrinkage and selection 
operator (LASSO) models were built to identify a minimal set of species 
sufficient to distinguish each household uniquely (Fig. 3b). Remark-
ably, models estimating the household origin of a water sample on the 
basis of the selected microbial taxa achieved an average accuracy of 
97.5% (see Supplementary Table 1 for the accuracy for each household), 
indicating the persistence of household-specific signatures across daily 
sampling of bathtub faucet water microbiomes.

Premise plumbing encompasses the water supply systems within 
the property boundaries. The unique engineering characteristics of 
premise plumbing, for example, a high surface area to volume ratio, 
low concentrations of residual disinfectant, high temperatures and 
intermittent stagnation, lead to an environment distinct from that of 
the distribution system18. Therefore, premise plumbing is usually asso-
ciated with opportunistic pathogen proliferation and overgrowth of 
indicator organisms19,20. In addition, microbial communities of premise 
plumbing, as represented by stagnant water, are often distinct from 
those of distribution systems, as represented by flushed water samples 
from the same building20–22. Furthermore, premise plumbing has been 
observed to induce changes in water microbiome composition within 
hours21 and to exhibit spatial variations between volumes as small as 
1 litre (ref. 22). These findings highlight the critical need to character-
ize premise plumbing microbiomes at various spatial and temporal 
resolutions. Because premise plumbing is currently beyond the scope 
of routine sampling conducted by public water utilities, understand-
ing the spatiotemporal variations in premise plumbing microbiomes 
can provide insights for future monitoring strategy designs and risk 
assessments23.

Our current understanding of spatiotemporal variations in prem-
ise plumbing microbiomes relies primarily on studies using large build-
ings, such as hospitals and university buildings, as model systems24,25. 
In these settings, community compositions are influenced primarily by 
factors such as stagnation and the plumbing configuration; moreover, 
residual disinfectant levels and water temperature are often affected 
by these factors24–26, which probably act as environmental stressors on 
the microbial communities. Our knowledge of the premise plumbing 
microbiome in household settings remains limited, even though they 
represent the primary setting where drinking water quality is experi-
enced by individual consumers as well as the main location for aero-
solized exposure27. Experimental studies have shown that variations in 
community composition, including the occurrence of opportunistic 
pathogens28,29, can arise from various system ages and water heater 
materials. For example, Mathys and colleagues showed that relatively 
new plumbing systems were less likely to be colonized by Legionella 
and that plumbing systems in houses using on-demand water heaters 
had lower occurrences of Legionella than households using a storage 
tank and recirculation30. These results underscore the need to investi-
gate premise plumbing microbiome variations in actual households. 
Although variations in the occurrence and abundance of opportunistic 
pathogens in households have been reported29,31,32, species-level char-
acterization of OPPPs in real-world premise plumbing water remains a 
critical knowledge gap in risk mitigation33. Furthermore, we still lack a 
clear understanding of how premise plumbing microbiomes vary by 
household, especially at finer taxonomic resolutions.

Recent studies have also indicated that drinking water is an 
overlooked reservoir of antimicrobial resistance. An international 
antimicrobial resistance survey across multiple cities in Hong Kong, 
Singapore and Mainland China revealed the widespread prevalence of 
multidrug, bacitracin and aminoglycoside resistance genes in various 
size fractions of the drinking water microbiome34,35. These findings 
underscore the necessity of monitoring antimicrobial resistance in 
drinking water. Furthermore, studies in China and Brazil have shown 
greater resistance gene loadings in distribution systems than in fin-
ished water36,37, emphasizing the need to study the spatiotemporal 
variation in resistomes (all acquired and intrinsic resistance genes, 
their precursors and resistance mechanisms) during water distribution. 
Nevertheless, previous works on antimicrobial resistance in drinking 
water distribution systems have focussed mainly on spatiotemporal 
variations at coarse granularities (for example, across cities or regions), 
and whether within-city variations in drinking water microbiomes play 
a role in shaping resistome remains an open question.

In this study, we are particularly interested in the following ques-
tions: (1) How much do the water microbiomes in premise plumbing 
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Closer examinations of the household-indicative taxa revealed 
associations with biofilm-forming species, such as Mycobacterium 
and Sphingomonas38,39. Furthermore, distinct species within the same 
genus can signify separate households. For example, Sphingomonas 
ursincola was associated with household STL-7, whereas Sphingo-
monas hankookensis and Sphingomonas koreensis were associated 
with STL-1 and S. hankookensis was detected only in STL-1. Moreover, 
among Mycobacterium spp., M. arupense, M. mucogenicum and M. 
gordonae were associated with households STL-3, STL-4 and STL-6, 
respectively (Fig. 3b).

While not specifically looking for OPPPs, the model selected the 
aforementioned non-tuberculous mycobacteria (NTMs) as well as an 
Acinetobacter species, suggesting that household-level individuality 
was contributed by differences in relative abundances of OPPPs (for 
extended reports on OPPPs, see ‘Presence and prevalence of OPPPs 
vary by household’ section). It is worth noting that the selection of 
a taxon by LASSO does not necessarily mean that it is unique to the 

household. Despite this, the relative abundance of these taxa showed 
strong associations with specific households.

Household identity explains more variation than devices
To investigate how various water use devices and volumetric segments 
of samples affect our ability to detect between-household differences 
in microbiomes, we performed a follow-up experiment (Fig. 1b).  
A total of 54 samples were collected over 2 days from three households, 
including overnight-stagnant water from a bathtub faucet (hot side), 
overnight-stagnant water from a kitchen faucet (cold side) and fresh 
tap water from a kitchen faucet (cold side) following a 5 min faucet 
flush (Fig. 1b). For each water type, three volumetric segments were 
taken consecutively: the first, the second and the third litre coming 
out of the faucet. These samples were analysed via 16S rRNA gene 
amplicon sequencing. When water samples across households, sam-
ple types and sample volumes were analysed together, the PCoA of 
Bray–Curtis dissimilarities exhibited the most marked clustering by 
households (Fig. 4). This distinction was supported by tests on the 
group centroids (PERMANOVA P = 0.001; Extended Data Table 1), 
but it was not explained by differences in the degrees of dispersion  
(PERMDISP P = 0.061).

To what extent can the large heterogeneity be explained by 
household identity, sample type and volumetric segment, respec-
tively? Household identities significantly affected the group centroids 
(PERMANOVA P = 0.001) and explained the highest proportion of 
variations (52%) (Extended Data Table 1). Sample type had a signifi-
cant effect on the microbiome composition (PERMANOVA P = 0.001; 
Fig. 4), but the proportion of variance explained was much smaller 
than that accounted for by household identities (R2 = 0.11; Extended 
Data Table 1). Specifically, stagnant bathtub faucet water microbi-
omes differed significantly from those of both stagnant (PERMANOVA 
P = 0.001) and flushed kitchen faucet water (PERMANOVA P = 0.001), 
whereas the stagnant and flushed kitchen faucet water microbiomes 
did not significantly differ (PERMANOVA P = 0.163; Extended Data 
Table 1). Sample volumetric segment did not have a significant effect 
on the water microbiome composition when all samples were analysed 
together (PERMANOVA P = 0.291; Extended Data Table 1) or when each 
type of sample was analysed separately (PERMANOVA P > 0.937; Sup-
plementary Table 2), although this could be affected by the limited 
statistical power caused by the small sample size. A closer examination 
of the Bray–Curtis dissimilarities within each household showed that, 
among the bathtub faucet water microbiomes, the first litre was more 
different from the other two volumetric segments (Extended Data 
Fig. 1a). A plausible explanation is that volumetric segments affect 
water microbiome compositions, yet their effect can be blurred by 
daily dynamics and household-level differences (Extended Data Fig. 1b).

Presence and prevalence of OPPPs vary by household
To characterize the presence of OPPPs and their relative abundances, 
we applied MetaPhlAn4 to generate species profiles from the metage-
nomes of daily bathtub faucet water samples (experiment 1). Diverse 
NTMs, including M. arupense, M. chelonae, M. frederiksbergense,  
M. gadium, M. gilvum, M. gordonae, M. llatzerense, M. mucogenicum and 
an uncultured species M. sp YC RL4, were detected in bathtub faucet 
water (Fig. 5). These organisms have various degrees of involvement in 
clinical cases. Among the NTM species, M. chelonae is known as one of 
the most pathogenic rapidly growing mycobacteria, and it is commonly 
associated with skin and soft tissue infections40. M. arupense has been 
associated with a variety of clinical presentations41. M. mucogenicum is 
one of the most common causes of bloodstream infection in patients 
with catheters in place42,43. M. frederiksbergense, M. llatzerense and  
M. gordonae have been associated with rare cases of human 
infection44–48. M. gilvum and M. gadium have not been reported to cause 
any human infections. Notably, individual households varied in terms of 
the NTM diversity and species composition. For example, at a detection 

Experiment 2: within-home and between-home variations

Experiment 1: daily dynamics in bathtub faucet water 
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Fig. 1 | Schematic of the two sampling campaigns and analyses performed. 
a, Bathtub faucet water samples were collected from 8 households across 7 days 
to examine daily dynamics in bathtub faucet water micrbiome. b, Three types of 
water samples were collected from 3 households on 2 days to examine within- 
and between-home water microbiome variations.
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limit (DL) of 0.1%, M. gordonae was found in all households, whereas  
M. chelonae was found in 50% of the households.

With respect to the other OPPPs, Legionella pneumophila was 
below the DL (0.1%) in all the samples. If the reports below DL were 
considered, there were extremely low relative abundances in several 
samples (0.0007–0.006%; Supplementary Table 4). Mycobacterium 
avium, Pseudomonas aeruginosa and Acinetobacter baumannii were 
not detected. Among the organisms related to OPPPs at the genus level, 
A. junii and A. parvus were above the DL in two and three households, 
respectively (Fig. 5). Although these two species are rarely associated 
with infections, A. junii can affect patients who have had prior antimi-
crobial therapy, invasive procedures or malignancies49,50.

Two Pseudomonas clades, P. chengduensis and P. fluvialis, were 
detected in multiple households. Both species were recently discovered 
with isolates from landfill leachate and river sediment, respectively51,52. 
There have not been reports of their associations with infections.  

A list of all clades related to OPPPs as well as their relative abundances, 
including both those above and those below the DL, is provided in 
Supplementary Table 4.

Among the opportunistic pathogen-related species, four out 
of the nine Mycobacterium species (M. sp YC RL, M. mucogenicum,  
M. gordonae and M. arupense) as well as A. junii were selected by LASSO 
as taxa associated with household identity (‘Household individuality 
based on LASSO-selected taxa’ section). Their environmental associa-
tions were investigated, with regression models built to estimate their 
relative abundances with total chlorine levels and water temperature 
as the explanatory variables. Significant counter-correlations with 
total chlorine levels were detected in three of the four NTM groups  
(M. gordonae, M. mucogenicum and M. arupense) as well as A. junii, indi-
cating a possible positive role of residual disinfectants in controlling 
these groups (Supplementary Table 5). With respect to the tempera-
ture association, only M. sp YC RL4 and A. junii presented significant 
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darker colour indicates higher relative abundance, and white indicates the 
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associations, yet the directions of the effects differed, suggesting a 
more nuanced role of temperature in OPPP control.

Bath faucet water across households has similar resistomes
To explore the antimicrobial resistome in bathtub faucet water, we 
mapped the metagenomic reads to MEGARes 2.0, a database of anti-
microbial resistance genes (ARGs), using the AMR++ 2.0 pipeline53.  
A total of 162 ARGs were detected across 56 water metagenomes. The 
most abundant traits in the resistomes were multidrug resistance, 
macrolide–lincosamide–streptogamine resistance and beta-lactam 
resistance (Fig. 6a). These traits have also been reported in other drink-
ing water systems35,36,54. Multidrug efflux pumps have been associated 
with increased microbial survival in response to water disinfectants and 
other environmental stressors55–57. Because chloramines are routinely 
used for disinfecting the drinking water supply, the enrichment of these 
genetic determinants in the resistome is anticipated. ARGs confer-
ring resistance to critically important antimicrobials, such as Guiana 
extended-spectrum β-lactamase (blaGES), blaFAR-1, blaBJP-1 and Adelaide 
imipenemase gene (blaAIM), were also detected (Fig. 6b). These genes 
can confer resistance to high-priority critically important antimicro-
bials such as carbapenems and monobactams, which are used for the 
treatment of recalcitrant multidrug-resistant infections58–62.

It is noteworthy that, while the microbial community composi-
tions were household specific, the antimicrobial resistance profiles did 
not show strong clustering by home (Extended Data Fig. 2; PERMANOVA 
P values after adjustment are shown in Supplementary Table 6). In 
addition, the abundant ARGs, with an average reads per kilobase of 
transcript per million reads mapped (RPKM) ranking in the top 20, 
were detected in all the bathtub faucet water samples for at least 1 day. 
The detection frequency of those genes ranged from 0.59 to 1 (Sup-
plementary Table 7). It is possible that the similarities between ARG 
profiles from different households and multiple days within the same 
household arise from the use of a common disinfectant, chloramines, 
in the municipality. There are slight variations in ARG detection within 

households (Fig. 6b), yet with the ARGs detected at small RPKMs, these 
variations are potentially related to the daily dynamics of the rare or 
less abundant microbes.

Similar coarse-grained functions and distinct gene profiles
To explore the functional profile of bathtub faucet water microbiomes, 
we annotated the functional pathways from their metagenomes. In 
total, 9,650 Kyoto Encyclopedia of Genes and Genomes orthology 
(KO) functions were detected. The functional profiles were very similar 
between homes at coarse functional groups, specifically at the Func-
tional Ontology Assignments for Metagenomes (FOAM) levels 1 (Fig. 7a) 
and 2 (Supplementary Figs. 3–22). For example, in terms of the nitrogen 
cycle, genes related to nitrogenated compound reduction, nitrogen 
fixation, nitrification and ammonium assimilation were detected in all 
the bathtub faucet water samples (Fig. 7b). Similarly, with respect to 
methylotrophy, genes related to methane oxidation to CO2, methanol 
oxidation to formaldehyde, methylamine to formaldehyde and vari-
ous pathways involved in the transformation of formaldehyde were 
detected in all households (Extended Data Fig. 3). Not all functions were 
well resolved at the finer levels, for example, FOAM level 3. However, 
for those functions that were well classified at FOAM level 3, such as the 
nitrogen cycle, the profiles were highly similar across homes (Extended 
Data Fig. 4). Curiously, at the gene level, variations across households 
emerged. Distinct clustering by homes was observed in the PCoA of 
the Bray–Curtis dissimilarity of the KO profiles (Extended Data Fig. 5; 
PERMANOVA P = 0.001; PERMANOVA P values after adjustment are 
shown in Supplementary Table 8), suggesting household individuality.

We further asked whether the cross-household similarities in 
coarse functional groups (FOAM Levels 1 and 2) were specific to the 
St. Louis drinking water or common for other premise plumbing water 
microbiomes. Premise plumbing water metagenomes from a pilot-scale 
hot water plumbing rig study in Blacksburg, Virginia, were analysed63. 
Similar FOAM Level 1 profiles were detected between the St. Louis water 
and pipe rig water samples (Extended Data Fig. 6). At FOAM level 2, 
when the nitrogen cycle was used as an example, functions involved in 
the nitrogen cycle were present in most of the samples (Extended Data 
Fig. 7), although the detection of specific KOs varied (Extended Data 
Fig. 8). Thus, the coarse-level functional similarity probably arises from 
adaptation to residual disinfectant-carrying drinking water systems 
as a kind of habitat.

Correlation between taxonomic and functional profiles
When the similarity of the functional profiles and that of the taxonomic 
profiles were compared, the similarity of the species profiles was well 
correlated with that of the KO profiles (R2 = 0.6, P = 2.2 × 10−16; Fig. 7c). 
However, the similarity in ARG profiles was less well explained by the 
similarity in the KO profiles (R2 = 0.06, P = 7.51 × 10−12; Fig. 7d) and not 
well explained by that of the species profiles (R2 = 0.001, P = 0.097). 
The dissociation between the ARG and KO profiles further highlights 
that ARGs are highly mobile.

The contrast between taxonomic diversity and functional diversity 
has been used to indicate functional redundancy, that is, taxonomi-
cally distinct community assemblages carrying similar functions64. 
In this context, a complete lack of correlation indicates functional 
redundancy, whereas a very high correlation indicates otherwise. 
In our bathtub faucet water metagenomes, the correlation between 
taxonomic diversity and functional diversity was moderate (Fig. 7e; 
R2 = 0.18, P = 0.0006) in comparison with reports of other microbial 
systems (R2 = 0.76 in soil systems and R2 = 0.69 in a marine system)65,66. 
The moderate correlation suggests partial functional redundancy. The 
variation in functional diversity was also affected by household identity 
(Supplementary Fig. 23). Nevertheless, the Bray–Curtis dissimilarities 
between water microbiomes from different homes were significantly 
greater for the species profile (mean of 0.47, s.d. of 0.16) than for the 
KO profile (mean of 0.17, s.d. of 0.05), suggesting that taxonomically 
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distinct microbes in the bathtub faucet water microbiome may carry 
similar functions (Fig. 7f). Functional redundancy has been examined 
in other microbial systems as a mechanism to maintain community 
resilience. This mechanism potentially contributes to the maintenance 
of the drinking water microbiome.

Community assembly in the bath faucet water microbiome
We used a null-model-based approach to further investigate the rela-
tive importance of stochastic and deterministic assembly processes 
in shaping the bathtub faucet water microbial communities. In this 
approach, the stochastic processes include ‘drift’ (DR), dispersal limita-
tion and homogenizing dispersal (HD), and the deterministic processes 
include homogeneous selection (HoS) and heterogeneous selection 
(HeS). The household premise plumbing water microbial community 

could be seeded by two possible sources: the fresh supply from the 
distribution system and the biofilm in the premise plumbing system. 
The process of migration from a common public water supply to indi-
vidual houses can be conceived of as homogenizing dispersal, which 
usually results in a similar community structure in the local community 
in each house (Fig. 8a). On the other hand, the plumbing biofilms in 
each house could harbour distinct microbial communities, depend-
ing on the specific plumbing environment conditions in each house. 
The migration of microbes from biofilms to the water in each house 
could be considered as dispersal limitation, since those microbes are 
isolated from one house to another. In addition, the premise plumbing 
microbiome is constantly under pressure from disinfectant residuals 
and warm temperatures, which might cause environmental filtering for 
particular microorganisms. The structure of the microbial community 
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in the premise plumbing could be a joint result of all the aforementioned 
ecological processes.

The 16S amplicon data from daily sampling across eight homes 
were examined for the community assembly processes. Stochas-
tic processes contributed greater proportions of the community 
assembly forces than did deterministic processes (64.48% versus 
35.52%). Among stochastic processes, ‘drift’ was the most dominant, 

contributing an average relative importance of 52.51% across homes 
(s.d. of 10.93%, nhome = 8). Homogenizing dispersal and dispersal limita-
tions contributed an average of 7.27% (s.d. of 5.35%, nhome = 8) and 4.71% 
(s.d. of 3.07%, nhome = 8; Fig. 8b), respectively. Between the two deter-
ministic processes, HoS was dominant, contributing to an average of 
35.37% (s.d. of 9.09%, nhome = 8). The overall dominant role of stochastic 
processes is in agreement with reports of community assembly in 
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environmental systems elsewhere67,68. The greater importance of 
HoS indicates that the selection may take place among taxa that are 
closely related, for example, different amplicon sequence variant 
(ASVs) within the same genus.

Furthermore, we investigated the relative importance of each 
ecological process in the daily turnover of the microbial communities 
within the same home. Stochastic processes still governed the turnover 
between communities on consecutive days in each home (Fig. 8c). HoS, 
the most important deterministic process, can be attributed to the 
fact that the water in each home was exposed to similar environmental 
filtering from day to day, for example, disinfectant residuals and warm 
temperatures. As a result, the microbial communities were stable under 
similar environmental pressures. In addition, the relative importance 
of stochastic and deterministic processes remained fairly stable in the 
daily turnover of the communities in each home.

To discern the relative importance of the measured environmental 
variables contributing to the variation in microbial community com-
position, we applied multiple regression on distance matrices (MRM), 
with the Bray–Curtis dissimilarity as the response distance matrix and 
total chlorine concentration, temperature, building age and pedes-
trian distance as explanatory distance matrices. The model outputs 
revealed significant effects of total chlorine concentration (P = 0.001) 
and pedestrian distance (P = 0.008) but not temperature (P = 0.142) 
or building age (P = 0.275) (Extended Data Table 2). Upon backwards 
selection, a final model consisting of total chlorine concentrations 
and pedestrian distances explained 23.17% of the variance. When each 
variable was examined independently, total chlorine concentrations 
explained the highest variance (R2 = 0.21; Supplementary Table 9). 
The MRM analysis showed that the majority of the community varia-
tion (76.83%) could not be explained by the measured environmental 
variables, which is consistent with the dominant role of stochastic 
processes inferred from the null-model-based approach.

Discussion
Implications for monitoring antimicrobial resistance risks
The antimicrobial resistance profiles were highly similar across house-
holds despite differences in taxonomic compositions (Fig. 6), poten-
tially driven by the common chloramine residuals applied throughout 
local drinking water distribution systems. Notably, we detected the 
presence of genes encoding extended-spectrum beta-lactamases in 
multiple households, such as blaGES, blaFAR-1, blaBJP-1 and blaAIM, which 
are genes that can confer resistance to aztreonam and meropenem, 
two last-resort antibiotics. The presence of extended-spectrum 
beta-lactamase genes in the premise plumbing microbiome is alarm-
ing because clinically important resistance, even when carried by 
non-pathogenic environmental organisms, can be horizontally trans-
ferred to opportunistic pathogens under selective pressures58. Fol-
lowing the resistome analysis, we performed follow-up analyses using 
metagenome assembly and binning to link the resistance determinants 
to specific taxa (Supplementary Method 1). This analysis revealed the 
presence of genome bins related to Pseudoxanthomonas mexicana 
carrying the blaAIM gene (Supplementary Results). Recently, it has been 
hypothesized that Pseudomonas aeruginosa with newly discovered 
beta-lactam resistance could have acquired the blaAIM gene from P. 
mexicana through horizontal gene transfer; however, the exact mecha-
nisms involved remain to be elucidated58. With P. aeruginosa being a 
group of opportunistic premise plumbing pathogens and our find-
ings of P. mexicana carrying the blaAIM gene in premise plumbing, we 
hypothesize that potable water uses (for example, shower and wound 
cleaning) could act as routes where the human microbiome interacts 
with blaAIM-carrying P. mexicana. Future work to identify and confirm 
the host range for resistance determinants, using techniques such as 
long-read sequencing or emulsion, paired isolation and concatenation 
polymerase chain reaction69–71, will probably be a promising avenue, 
despite the challenges when applying these techniques in low-biomass 

drinking water systems. More broadly, strategies to monitor antimi-
crobial resistance in drinking water deserve further attention. Lig-
uori and colleagues suggested discussions on prioritized targets and 
suitable methodologies for antimicrobial resistance monitoring in 
various aquatic environments72. Proctor and colleagues advocated 
for a holistic approach to address antimicrobial resistance and OPPP 
challenges73. With respect to the premise plumbing environment, our 
findings suggest the importance of broadly monitoring the resistome, 
as well as gaining a more specific understanding about non-pathogenic 
environmental organisms with potential horizontal gene transfer 
mechanisms to OPPPs.

Implications for monitoring opportunistic pathogen risks
Our study detected diverse species of Mycobacterium, Pseudomonas 
and Acinetobacter in household bathtub faucet water. Notably, the 
diversity of OPPPs at the species level can vary highly across house-
holds; however, once OPPPs are detected, they can be robustly 
detected across multiple days. While a lot of attention has been given 
to the public health risks associated with OPPPs, a quantitative risk 
assessment framework for NTM is currently available for only the 
M. avium complex74. The varied prevalences of NTM species across 
households are especially relevant when considering future develop-
ments in dose–response models. Doses estimated from representa-
tive samples from water facilities or distribution systems may not be 
sufficient to infer the health risk faced by each resident, since every 
home has a unique species profile. Therefore, a more intensive and 
individual household-based sampling plan, for example, an environ-
mental exposome approach that considers multiple pathogens and/
or contaminants, exposure points and spatiotemporal variations73,75, 
should be considered when evaluating the health risk from waterborne 
opportunistic pathogens.

Implications for mechanism-based biological quality control
We showed that variations in water microbiome taxonomic composi-
tions, both the between household variation and the daily turnover, 
were largely driven by stochastic processes (Fig. 8b,c). MRM analysis 
revealed that the majority of the variation in the microbial community 
was not explained by the measured environmental variables (Extended 
Data Table 2), which is consistent with the result inferred from the 
null-model-based approach (Fig. 8), although uncharacterized envi-
ronmental variables could also contribute to the unexplained variance. 
HoS came second. The dominance of stochasticity and HoS appeared 
counterintuitive given the observed household individuality in com-
munity compositions, yet multiple ecological processes, such as drift, 
HoS and HeS, can each independently lead to household individuality 
(as detailed in Supplementary Discussion).

The new understandings of the community assembly mechanisms 
in premise plumbing could shed light on more mechanism-informed 
biological quality control strategies. For example, stochastic assem-
bly does not mean that the community assembly is not controllable, 
given that stochastic processes have been found to be highly related 
to resources76–78 or stress levels79. In the context of the drinking water 
microbiome, this provides a justification for strategies to reduce 
the total cell count, such as limiting the overall nutrient input to the 
distribution system by biofiltration and reducing stagnation at the 
point of use. The multitude of community-level assembly mecha-
nisms shown here provide a justification for future work to examine 
specific mechanisms driving the distribution of organisms of interest 
to develop mechanism-informed control strategies. For example, 
species governed by selection need to be controlled via environmen-
tal conditions, for example, temperature and disinfectants, whereas 
those governed by dispersal will require the intervention of dispersal 
or source communities, for example, the control of hydraulic condi-
tions. Computational tool development to link community assembly 
mechanisms to species-level taxa still presents challenges, yet their 
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successful development and implementation will probably generate 
valuable new insights.

Conclusion
This study examined the within- and between-household variations 
in the premise plumbing microbiomes as well as the daily variations 
in the microbiomes and resistomes of household bathtub faucet 
water. We found that households had distinctive water microbiomes 
and that household-specific signatures persisted throughout the 
week-long sampling of bathtub faucet water. Households differ in 
their species-level compositions of NTMs as well as the prevalence 
and relative abundances of detected species, with M. gordonae being 
twice as prevalent as M. chelonae. Despite differences in microbial 
community composition, broad categories of antimicrobial resistomes 
were shared across households, and ARGs conferring resistance to 
critically important antimicrobials were detected in the bathtub fau-
cet water from each household. Community assembly simulations 
revealed that variations in water microbiome taxonomic composi-
tions, both between-home variations and the daily turnover, were 
largely driven by stochastic processes. Our results highlight the impor-
tance of species- and household-level data for assessing health risks 
associated with NTMs. The detection of clinically important resist-
ance genes also calls for further monitoring of antimicrobial resist-
ance and its putative relationship with opportunistic pathogens in  
premise plumbing.

Methods
Background on distribution systems
In this study, water microbiomes were sampled from 11 households in 
the St. Louis, Missouri, area between 2018 and 2021 (details in ‘Sam-
pling design’ section). St. Louis City received drinking water from 
the St. Louis City Water Division, whereas St. Louis County received 
water from Missouri American Water. Depending on water pressure, 
households near the border between the city and county could receive 
water from either source or receive a mixture. Because the objective 
of this study did not involve examining distribution system factors, 
volunteer recruitment was agnostic to water sources.

Sampling design
Two sampling campaigns examined the daily water microbiome 
dynamics (‘Sampling to examine daily water microbiome dynamics’ 
section; Fig. 1a) and within-household water microbiome variations 
(‘Sampling to examine within-household variations’ section; Fig. 1b).

Sampling to examine daily water microbiome dynamics. Following 
protocol training provided by the core research team, the occupants 
of eight households sampled water from a bathtub hot-side faucet 
on seven consecutive days in October 2018 and October 2019. In this 
study, water was collected from bathtub faucets to accurately control 
the sampling volume and avoid any loss of water to splashing, which 
are crucial factors in retrieving samples representative of the premise 
plumbing water. All samples were taken in the morning, immediately 
after overnight stagnation, to minimize the impacts of same-day vari-
ation in the water microbiomes80,81. To collect the samples, partici-
pants used a provided sampling kit containing three steam-sterilized 
1 litre polypropylene containers, three 50 ml Falcon tubes and a rack 
to hold them, a thermometer, a data sheet, gloves, alcohol pads and 
an insulated bag. Before any water usage in the morning, 3 liters of 
water samples from the bathtub faucet were collected in the sterilized 
polypropylene containers. The participants were trained to wear sterile 
nitrile gloves during sampling. The water stagnation times (that is, the 
time between the use of the shower or bathtub faucet, typically over-
night) were recorded. Within 2 h after collection, the water samples 
were transported in an insulated bag to the laboratory for biomass 
collection and water chemistry analyses.

Sampling to examine within-household variations. To examine 
the effects of water usage scenarios on the water microbiome com-
positions, a separate sampling effort was conducted. Three types of 
water samples were collected: (1) overnight stagnant water from a 
bath hot-side faucet, (2) overnight stagnant water from a kitchen sink 
cold-side faucet and (3) fresh water from the kitchen sink cold-side 
faucet, which was collected after allowing the faucet to run cold water 
for 5 min. For each type of water, three 1 litre water samples were col-
lected and labelled sequentially, with the tap closed between samples. 
On two consecutive days in June 2021, water samples were collected 
from three households. Within 2 h after collection, the samples were 
transported to the laboratory in an insulated bag for biomass collection 
and water chemistry analyses.

Water temperature and total chlorine measurements
Water temperatures were measured on site by trained participants 
using thermometers provided by the research group. To protect 
the integrity of the water samples in the 1 litre containers for later 
microbiological analyses, for immediate temperature measurement, 
participants were trained to pour a small sample from each 1 litre con-
tainer directly into one of the provided 50 ml tubes immediately after 
sample collection. The total chlorine concentration was measured in 
the laboratory on the same day as the samples were received, using 
the N,N-diethyl-p-phynylenediamine colorimetric method (Standard 
Method 4500-Cl G). The temperature and total chlorine concentration 
data are provided in Supplementary Figs. 26 and 27.

Total organic carbon and nitrate measurements
Total organic carbon (TOC) and nitrate concentrations were meas-
ured for four households in the first campaign: STL-1, 2, 6 and 8. The 
other households did not participate in the chemical analyses because 
they had moved out. TOC was measured following the non-purgeable 
organic carbon method using a TOC-L analyser (Shimadzu, Japan). 
Nitrate concentration was measured using ion chromatography 
(Dionex, USA) according to Environmental Protection Agency method 
300.0. The nitrate and TOC results are shown in Supplementary Fig. 28.

Other metadata
We collected building age data and renovation records from real estate 
brokerage websites, for example, LoopNet and Redfin (Supplementary 
Table 10). Street addresses were used to calculate pedestrian distances 
between households from the Google Maps application programming 
interface. The actual addresses were excluded from the reported meta-
data to protect the participants’ privacy. We chose to use pedestrian 
distances as a proxy for pipe distances between households, which are 
more relevant for the potential of microbial dispersal.

Biomass collection and genomic DNA extraction
Biomass was collected by filtering each water sample through a sterile 
0.22 μm mixed cellulose ester membrane filter (Millipore Sigma; cata-
logue information provided in Supplementary Table 11) to collect the 
retained cells. Genomic DNA from the water samples was extracted 
using a protocol previously demonstrated to have high yield and low 
bias towards the drinking water microbiome82,83. Briefly, the membrane 
filters were dissected and transferred into sterile screw-cap centrifuge 
tubes with sterile 0.1 mm glass beads. The samples were subjected to 
bead beating at 4.5 m s−1, enzymatic treatment with lysozyme (Millipore 
Sigma) and achromopeptidase (Millipore Sigma), followed by two 
incubations. The first incubation was with a mixture of proteinase K 
(New England Biolabs) and sodium dodecyl sulfate (Millipore Sigma), 
and the second was with a solution of hexadecyltrimethylammonium 
bromide (Millipore Sigma) and sodium chloride (Millipore Sigma). Fol-
lowing these treatments, DNA was extracted with a premixed phenol–
chloroform–isoamyl alcohol solution (25:24:1) (Millipore Sigma), and 
precipitated overnight in an isopropanol solution (Millipore Sigma). 

http://www.nature.com/natwater


Nature Water | Volume 2 | December 2024 | 1178–1194 1189

Article https://doi.org/10.1038/s44221-024-00345-z

The extracted DNA pellets were resuspended in molecular biology 
grade water (Sigma Aldrich) and then purified with the Wizard DNA 
Cleanup System (Promega). Two types of blank controls were included 
in the analysis. One was a membrane filter autoclaved under the same 
conditions as the filters for biomass collection from water samples 
and extracted using the same protocol, and the other contained only 
DNA extraction reagents. The blank samples were used in sequencing 
analyses to minimize noise from reagents. Purified DNA samples were 
quantified with an AccuBlue High Sensitivity dsDNA Quantification 
Kit (Biotium, USA) and then stored at −80 °C until sequencing library 
preparations.

16S rRNA gene amplicon library preparation and sequencing
The 16S rRNA libraries were constructed through two steps of PCR84. 
First, the extracted DNA was amplified using a universal primer set 
515F(GTGCCAGCMGCCGCGGTAA)/806R(GGACTACHVGGGTWTCT
AAT), which targets the V4 region of the 16S rRNA gene. Next, unique 
indexing sequences were added to each library. Technical replicates 
were performed for every sample by preparing two libraries with dif-
ferent barcodes. The final products were purified with the Wizard SV 
Gel and PCR Clean-Up System. Multiplexed sequencing was performed 
on an Illumina MiSeq platform (2×250) at the Edison Family Center 
for Genome Sciences and Systems Biology at Washington University 
in St. Louis.

Shotgun metagenomic sequencing
Metagenomic sequencing was performed on daily water samples col-
lected as described in ‘Sampling to examine daily water microbiome 
dynamics’ section. Shotgun genomic libraries were prepared using 
the Nextera DNA Flex Library Prep Kit, with an average library insert 
size of 437 bp (ranging from 200 to 2,375 bp), and sequenced on a 
NovaSeq 6000 platform at the Genome Technology Access Center at 
the McDonnell Genome Institute.

16S rRNA gene sequence analysis
Raw sequencing reads were demultiplexed using the Illumina bclto-
fastq2 program at the Edison sequencing facility. Upon receiving 
demultiplexed raw fastq paired-end reads, we completed quality fil-
tering and denoising and then generated ASV tables using the QIIME 2 
platform85. For quality control, the forward reads were trimmed at 10 bp 
and truncated at 180 bp; the reverse reads were trimmed at 10 bp and 
truncated at 150 bp. This procedure resulted in a quality score above 30 
for all the nucleotides. The trimmed reads were denoised and merged 
using the DADA2 algorithm as implemented in the q2-dada2 plugin86, 
which uses a quality-aware model of Illumina amplicon errors and 
resolves differences as subtle as one nucleotide. Sequencing reads with 
more than two expected errors (that is, the average number of errors 
under the error probability distribution) and detected chimeras were 
discarded. An ASV table was thus generated. Taxonomy classification 
of the resulting ASVs was performed using a multinomial naive Bayes 
classifier, which was trained on a SILVA 138 reference database with the 
confidence threshold set at 0.7 (refs. 87,88).

The QIIME 2 objects were imported into R (version 3.6.1) using the 
qiime2R package (https://github.com/jbisanz/qiime2R) for diversity 
analysis, statistical analysis and visualization. Details of the preprocess-
ing of technical replicates and blank control samples are provided in 
Supplementary Method 2. To compare microbial diversity across sam-
ples, the obtained sequences were first rarefied to 70,399 sequences 
per sample for the experiment 1 data and 4,434 sequences per sample 
for the experiment 2 data (determined by the sample with the few-
est sequences). Alpha and beta diversity analyses were conducted 
with the R packages phyloseq v1.30.0 and vegan v2.5-6 (refs. 89,90).  
Community composition differences between samples were com-
puted via the Bray–Curtis and Jaccard distances and visualized 
by PCoA. To test the significance of between-group differences in 

community structure and dispersion (within-group variance), 
PERMANOVA and PERMDISP were performed using the ‘adonis2’ 
and ‘betadisper’ functions in the vegan package89. In cases where 
multiple comparisons occurred, the ‘p.adjust’ function was imple-
mented to report P values after both Benjamini–Hochberg and  
Holm corrections.

Metagenomic sequence quality control
The shotgun metagenomic sequencing data were demultiplexed at the 
sequencing center using Illumina’s BCL Convert software. PCR dupli-
cates were removed from paired-end reads using FastUniq v1.1 (ref. 91). 
Quality trimming of the raw reads was performed using Trimmomatic 
v0.39 with a sliding window of 6 bp and quality cutoff of 30 (ref. 92). 
The average number of reads in each metagenome was 55,774,223  
(s.d. of 24,673,160, n = 56) after quality filtering.

Species profiling from metagenomic data
MetaPhlAn4 was used for taxonomic classification of 56 water metage-
nomes93. We applied MetaPhlAn4 because it is a marker-based profiler 
that directly outputs relative taxonomic abundance representing the 
fraction of each detected taxon94. The MetaPhlAn4 database incorpo-
rates approximately 5.1 million unique clade-specific marker genes 
identified from 26,970 species-level genome bins93. The presence 
and relative abundances of species related to Legionella, Mycobacte-
rium, Pseudomonas and Acinetobacter were retrieved. Because of the 
recent taxonomic debate around the Mycobacterium genus, manual 
curation of MetaPhlAn4 outputs was performed to reflect the latest 
consensus95,96. Specifically, the genera Mycolicibacterium, Mycolici-
bater, Mycolicibacillus and Mycobacteroides were updated to Mycobac-
terium according to the recommendations of Meehan and colleagues95. 
To prevent false positives in metagenomics species detection, outputs 
below 0.1% were excluded from opportunistic pathogen and household 
indicator analyses97,98.

LASSO regression
Informative species for each home were identified by performing 
LASSO regression using the caret package v6.0-94 (ref. 99). The 
metagenomic data from the daily sampling campaign (Fig. 1a) were 
used for this analysis. For each household, a LASSO regression model 
was built to separate the home from the rest of the homes, with micro-
bial taxon abundances as inputs. For each home, a logistic approach 
was applied by labelling samples from this home as 1 and those that 
were not from this home as 0 (equation (1)):

log ( p( y = 1)
1 − p( y = 1) ) = β0 +

n
∑
i=1

βixi, (1)

where i = 1, 2, …, n, with n the number of taxa, βi is the coefficient of the 
ith taxon and xi is the relative abundance of the ith taxon.

The dataset was first randomly split into a training/validation set 
(80%) and a testing set (20%). The hyperparameter in the LASSO model 
(λ) for each household was tuned via leave-one-out cross-validation. 
The optimal model was subsequently used to estimate the household 
origin of the samples in the testing set. The classification accuracy was 
computed as the percentage of samples whose household origin was 
correctly estimated.

Regression models on selected taxa
Linear regression models were built to examine the environmental vari-
ables (total chlorine level and temperature) as sources of fixed effects 
on the relative abundances of LASSO-selected bacterial species related 
to opportunistic premise plumbing pathogens. The ‘lm’ function in 
the R stats package was used to build the models100. A linear model was 
used to fit the log transformed relative abundances of each species. A 
pseudo relative abundance of 0.1% was used to avoid taking logarithms 
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of zeros. The model formula was as follows: log10(species relative abun-
dance + 0.001) ~ total chlorine level + temperature + intercept.

Functional profiling
Each metagenome was assembled individually with SPAdes v3.14.0, 
using the metaSPAdes pipeline with default settings (k-mer sizes of 21, 
33 and 55)101,102. After removing contigs with length <500 bp, the remain-
ing contigs were annotated by Prokka 1.12 (ref. 103). All the prediction 
transcripts from each single home were clustered at the nucleotide level 
by using CD-HIT 4.8.1, with the following parameters: -G 0, -aS 0.9, -c 
0.95, -M 30000, -T 30 and -d 0, where genes sharing >95% identity were 
considered as redundant104. After clustering, an average of 663,628 (s.d. 
of 226,902) sequences were detected across eight homes. The clustered 
genes were further annotated with eggNOG 5.0.2 (e = 0.001)105. KO 
information was extracted from the eggNOG annotation, resulting in 
9,650 KOs in total. To generate a count matrix of the number of reads 
mapped to each gene, the metagenomic reads from each sample were 
mapped to the clustered genes using Bowtie2 (-sensitive-local)106. The 
numbers of mapped reads were normalized by the number of bacte-
rial reads reported by Bracken in each sample and the gene length to 
obtain RPKMs, which represented the relative abundance of each gene. 
The RPKM matrix was rarefied to 632,529 so that each sample had the 
same sum of RPKM values. The clustered genes were further annotated 
using FOAM by searching each KO reported by eggNOG against the 
FOAM database107,108. Finally, for each FOAM level, a count matrix was 
created. Out of the 9,650 identified KOs, 2,162 were classified at both 
FOAM level 1 and level 2. Among those, 1,050 were classified at level 3, 
and 445 were classified at level 4.

Analysis of ARGs
To generate the abundance profiles of ARGs, we followed the AmrPlus-
Plus v2.0 pipeline. Quality-filtered metagenomic reads were mapped 
to the MEGARes 2.0 database using BWA MEM with default parameters 
(-k 19, -w 100, -d 100, -r 1.5 and -c 10000). The alignments were then 
analysed by ResistomeAnalyzer to generate profiles of the numbers of 
aligned reads for each ARG, class, mechanism and group. The numbers 
of aligned reads were normalized by the number of bacterial reads in 
each sample and the gene length to obtain RPKMs, which represented 
the relative abundance of each ARG.

Community assembly mechanism
To quantitatively estimate the relative importance of different eco-
logical processes in the bathtub faucet water microbial community 
assembly, we applied iCAMP v1.6.5 (Inferring Community Assembly 
Mechanisms by Phylogenetic-bin-based null model) to the 16S rRNA 
gene amplicon sequencing data67. The estimation was performed as 
follows: the observed ASVs were divided into 100 phylogenetic bins. 
For each bin, if the between-sample turnover showed a significantly 
greater (β net relatedness index of a bin, βNRIbin > 1.96) or smaller 
(βNRIbin < -1.96) phylogenetic dissimilarity than the null expectation, 
the turnover was considered to be governed by HeS or HoS, respectively. 
If the turnover shows a non-significant phylogenetic dissimilarity (−2 ≤ 
βNRIbin ≤ 2) but a significantly greater (Raup-Crick metric, RCbin > 0.95) 
or smaller (RCbin < -0.95) taxonomic dissimilarity than the null expecta-
tion, it was regarded as governed by dispersal limitation or homogeniz-
ing dispersal, respectively. Otherwise, (−2 ≤ βNRIbin ≤ 2 and −0.95 ≤ 
RCbin ≤ 0.95), the turnover represented the influence of ‘drift’ (including 
stochastic drift, diversification, weak selection and dispersal). The rela-
tive importance of an assembly process in each turnover was assessed 
as the relative abundance sum of the bins governed by the process. In 
this method, dispersal limitation, homogenizing dispersal and ‘drift’ 
are deemed stochastic processes. Attention was given to the regional 
species pool assumption (metagroup setting) in iCAMP to reflect varied 
water sources and sampling times (Supplementary Table 12). Notably, 
iCAMP does not rely on environmental variables as inputs.

Multiple regression on distance matrices
To explore the relationships between environmental variables and 
microbial community compositions, we applied MRM using the MRM 
function in the R package ecodist v2.1.3. The Bray–Curtis dissimilarity 
based on the 16S rRNA gene sequencing data was used as the response 
distance matrix, and the total chlorine concentration, temperature, 
building age and pedestrian distance between households were used 
as explanatory distance matrices. The 16S rRNA gene sequencing data 
were used here to estimate the Bray–Curtis dissimilarities because they 
provide a better representation of the diversity of the community. 
Nitrate and TOC were excluded from MRM because of the limited vari-
ability in nitrate concentrations and the non-significant correlation 
between the Bray–Curtis dissimilarities of the microbial communi-
ties and the Euclidean distances of the TOC concentrations. The final 
model was selected via backwards selection, where we started with a 
full model using all four variables and then deleted the least significant 
one at a time until all variables remaining in the model were significant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw DNA sequences from this study are available on NCBI under 
Bioproject PRJNA1066374.

Code availability
The custom code used in this study is available on GitHub(https://
github.com/linglab-washu/DW_daily_dynamics).
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Extended Data Fig. 1 | Bray Curtis dissimilarities relevant for sample 
volumetric segments comparisons. a, The between-group Bray Curtis 
dissimilarities between each volumetric segments in each households. Each box 
represents four pairs of comparisons. b, The between and within-group Bray 
Curtis dissimilarities grouped by sample types. Each box comparing Bray Curtis 
dissimilarities between different volumetric segments represents 36 pairs of 
comparisons. Each box comparing Bray Curtis dissimilarities within the same 

volumetric segment represents 15 pairs of comparisons. In the box plot, the box 
shows the interquartile range (IQR), which spans from the 25th percentile (Q1) 
to the 75th percentile (Q3) of the data. The thick line inside the box represents 
the median of the data. The lower whisker extends from Q1 to the smallest value 
in the dataset that is greater than or equal to Q1 - 1.5 × IQR (minima); the upper 
whisker extends from Q3 to the largest value in the dataset that is less than or 
equal to Q3 + 1.5 × IQR (maxima).
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Extended Data Fig. 2 | PCoA plot on ARG profiles. PCoA plot on Hellinger distance between ARG profiles from different homes. Distance was computed on number of 
reads (each sample rarefied to 18,783 reads, which got 17 samples excluded).
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Extended Data Fig. 3 | RPKMs of FOAM level 2 functions in methylotrophy. A heatmap showing RPKMs of FOAM level 2 functions in methylotrophy.
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Extended Data Fig. 4 | RPKMs of KOs involved in the nitrogen cycle. A heatmap showing RPKMs of KOs involved in the nitrogen cycle.
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Extended Data Fig. 5 | PCoA plot of Bray Curtis distances computed on KO profiles. KO profiles clustered by households (PERMANOVA p = 0.001 R2 = 0.81). P-value 
was computed based on two-sided tests.

http://www.nature.com/natwater


Nature Water

Article https://doi.org/10.1038/s44221-024-00345-z

Extended Data Fig. 6 | Relative abundances of FOAM level 1 functions of 
water samples from a pilot-scale hot water plumbing rig study. A stacked 
bar chart showing relative abundances of environmentally relevant functional 

groups at FOAM level 1 of water samples from a pilot-scale hot water plumbing rig 
study (Dai et al., 2018). The sample labels were kept consistent with the original 
publication.
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Extended Data Fig. 7 | RPKMs of level 2 functions in the nitrogen cycle 
of St. Louis premise plumbing water in comparison to a pilot-scale hot 
water plumbing rig study. A heatmap showing RPKMs of level 2 functions in 
the nitrogen cycle of St. Louis premise plumbing water from this study (STL-1 

through 8) in comparison to a previously published pilot-scale hot water 
plumbing rig study in Blacksburg, VA (those samples of which the sample names 
starting with “T”, Dai et al., 2018).
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Extended Data Fig. 8 | RPKMs of KOs involved in the nitrogen cycle of St. Louis 
premise plumbing water in comparison to a pilot-scale hot water plumbing 
rig study. A heatmap showing RPKMs of KOs involved in the nitrogen cycle in 

bathtub faucet water samples from this study (STL-1 through 8) in comparison to 
those from a published pilot-scale hot water plumbing rig study in Blacksburg, VA 
(those samples of which the sample names starting with “T”, Dai et al., 2018).
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Extended Data Table 1 | PERMANOVA p values between different households, sample types, and volumetric segments

PERMANOVA p values between different households, sample types, and volumetric segments after Benjamini‒Hochberg and Holm corrections. P-values were computed based on two-sided 
tests.
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Extended Data Table 2 | Coefficients and p values of MRM models

Coefficients and p values of MRM models built on distance matrices of environmental variables against the Bray Curtis dissimilarity of ASV profiles. P-values were computed based on 
two-sided tests.
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Reporting on sex and gender This item does not apply to this study because this study does not involve research on human populations.

Reporting on race, ethnicity, or 
other socially relevant 
groupings

This item does not apply to this study because this study does not involve research on human populations.

Population characteristics This item does not apply to this study because this study does not involve research on human populations.

Recruitment Participants in this study were volunteers from the Department of Energy, Environmental and Chemical Engineering at 
Washington University in St Louis. They were recruited to collect water samples from their residences. 

Ethics oversight The Washington University Human Research Protection Office reviewed this project and determined that it did not involve 
activities that are subject to Institutional Review Board (IRB) oversight.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study examined the microbiome and resistome of drinking water samples collected by volunteers from their residences.

Research sample The samples in this study were drinking water collected from bathtub faucets and kitchen sink faucets. We were interested in the 
premise plumbing microbiome because it represents the primary setting where drinking water quality is experienced by customers. 
To represent the premise plumbing environment, samples were collected after overnight stagnation. 

Sampling strategy This study examined drinking water microbiomes in different households on the city scale and no such data were available in 
literature. We made our best effort to recruit volunteers to collect samples from their residences and the sample size was mostly 
restrained by logistic challenges.

Data collection Sample temperatures were recorded by volunteers on site using the sampling kits we provided. Other water chemistry data were 
measured in the laboratory. Sequencing libraries were prepared in Ling Lab and sequencing data were provided by the Genome 
Technology Access Center at the McDonnell Genome Institute and the Edison Family Center for Genome Sciences & Systems Biology 
at Washington University in St. Louis.

Timing and spatial scale The first experiment examining daily water microbiome dynamics was conducted in October 2018 and October 2019. Each volunteer 
collected bathtub faucet water samples from their homes on seven consecutive days. The second experiment examining within-
household water microbiome variations was conducted in June 2021. Each volunteer collected water samples from bathtub faucet 
and kitchen sink faucet in their homes on two consecutive days.

Data exclusions No data were excluded from the analyses.

Reproducibility Bathtub faucet water samples were collected on seven days and data were reproducible as revealed by high Pearson correlations 
between microbial community compositions collected on different days.

Randomization This item does not apply to this study because this study is not a randomized controlled trial and does not involve research on human 
populations.

Blinding This item does not apply to this study because this study is not a randomized controlled trial and does not involve research on human 
populations.

Did the study involve field work? Yes No
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Field work, collection and transport

Field conditions This item does not apply to this study because the sampling was conducted in built environments (households).

Location Samples were collected from 11 households in St Louis, Missouri, USA. 

Access & import/export The Washington University Human Research Protection Office reviewed this project and determined that it did not involve activities 
that are subject to Institutional Review Board (IRB) oversight. The samples were transported to the laboratory by volunteers within 
two hours of collection.

Disturbance The volunteers were aware of the time demands (e.g., time cost to collect and transport water samples) before implementing this 
study.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Animals and other organisms
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Dual use research of concern

Plants
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Seed stocks This study does not involve plant material.
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