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A B S T R A C T

Soil acidification due to climate and anthropogenic changes persistently threatens biodiversity and biomass, the 
essential drivers of ecosystem multifunctionality. However, the influence of a sustained reduction in soil pH on 
the regulatory role of microbial communities in ecosystem multifunctionality has not yet been assessed. Here, we 
investigated the critical pH thresholds at which microbial biomass becomes a key determinant of soil multi-
functionality (SMF) based on a large-scale paddy field study (n = 429) and a global dataset (n = 35,641). We 
found that when the soil pH was <5, microbial biomass (i.e., bacterial or fungal) was significantly positively 
correlated with the soil SMF, representing a critical threshold for microbial biomass regulation of ecosystem 
multifunctionality. We further predicted the global pattern of the microbial drivers of SMF under soil acidifi-
cation scenarios over the next 50 years. Our results indicate that as soil acidification continues, the global area of 
biomass-mediated SMF will increase by approximately 14 % by 2070. Our results highlight that due to ongoing 
acidification, biomass reduction will cause accelerated losses in global SMF.

1. Introduction

Soil multifunctionality (SMF) is a composite concept that reflects the 
ability of a soil ecosystem to perform multiple functions simultaneously 
and is used to evaluate ecosystem value (Manning et al., 2018; Zhao, 
2024). Multiple soil indicators, including soil nutrient status, biodiver-
sity, and other soil properties, can be used to measure multifunctionality 
(Hu et al., 2021). The soil microbiota (i.e., bacteria and fungi) is re-
ported to regulate ecosystem multifunctionality by participating in 
terrestrial ecosystem functions, such as carbon (C) dynamics, nutrient 
cycles, and plant productivity (Delgado-Baquerizo et al., 2018; Manning 
et al., 2018; Schuldt et al., 2018; Wardle et al., 2004). Although inter-
related, the associations between microbial diversity, biomass, and SMF 
are discordant and context dependent. For example, numerous studies 
have demonstrated that in grassland, forest, and dryland ecosystems, 
bacterial and fungal communities exert positive impacts on multi-
functionality (Delgado-Baquerizo et al., 2016; Hu et al., 2021; Ma et al., 

2022), while in semiarid grasslands and subtropical forests, the effects 
on multifunctionality are negative (Bardgett and van der Putten, 2014; 
Wardle et al., 2004). Consequently, it is crucial to investigate the reg-
ulatory factors that shape the interactions between microbial commu-
nities (i.e., bacterial and fungal diversity and biomass) and SMFs.

Soil pH is a critical and robust predictor of microbial biomass and 
diversity in terrestrial ecosystems (Schuldt et al., 2018; Wagg et al., 
2019; Wang et al., 2020). For example, in the pH range from 4.0 to 8.3, 
the diversity and relative abundance of bacteria are positively respon-
sive to increasing pH, while fungi are less responsive (Wang et al., 2020). 
In comparison, a century-old experiment conducted in cropland showed 
that low pH favoured fungal growth and that high pH favoured bacterial 
growth (Wagg et al., 2019). Additionally, soil pH was found to have 
threshold effects on microbial diversity, microbial composition, and co- 
occurrence structure between bacteria and fungi (Shi et al., 2021). 
Although there are varying findings about how microbes react to pH 
shifts, these studies confirmed that soil pH dominates the associations 

* Corresponding author.
** Correspondence to: Y. Liang, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, 

China.
E-mail addresses: rlhuang@ahstu.edu.cn (R. Huang), ytliang@issas.ac.cn (Y. Liang). 

Contents lists available at ScienceDirect

Applied Soil Ecology

journal homepage: www.elsevier.com/locate/apsoil

https://doi.org/10.1016/j.apsoil.2024.105623
Received 18 May 2024; Received in revised form 1 September 2024; Accepted 1 September 2024  

Applied Soil Ecology 203 (2024) 105623 

Available online 5 September 2024 
0929-1393/© 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

mailto:rlhuang@ahstu.edu.cn
mailto:ytliang@issas.ac.cn
www.sciencedirect.com/science/journal/09291393
https://www.elsevier.com/locate/apsoil
https://doi.org/10.1016/j.apsoil.2024.105623
https://doi.org/10.1016/j.apsoil.2024.105623
http://crossmark.crossref.org/dialog/?doi=10.1016/j.apsoil.2024.105623&domain=pdf


between microbial diversity, biomass, and the functions of soil nutrient 
cycles (Fierer and Jackson, 2006; Rousk et al., 2009, 2010). Recent 
studies have shown that soil acidification with reduced soil pH may 
potentially reduce soil C and nitrogen (N) stocks by constraining mi-
crobial diversity or biomass (Crowther et al., 2019; Huang et al., 2019). 
However, it remains unclear whether pH affects the associations be-
tween microbial diversity, biomass, and SMF and therefore may change 
along pH gradients.

Here, we hypothesize that the existence of pH thresholds affects the 
associations between microbial diversity, biomass, and SMF. Since soil 
acidification reduces the functional redundancy of microbial commu-
nities (Huang et al., 2021; Malik et al., 2018), we predicted that in acidic 
soil environments, a biomass-driven SMF would be more pronounced. 
To test our hypotheses, we collected a total of 429 paddy soil samples 
with pH values ranging from 3.6 to 8.7 across 13 regions in China’s main 
growing regions. For a comprehensive understanding, we measured the 
soil microbial diversity and biomass, as well as eleven soil variables that 
indicate the nutrient pools, representing matter and energy stocks of soil 
C, N, phosphorus (P), and potassium (K) (Hu et al., 2021).

In addition to field studies, we used a published global microbial 
biomass dataset to assess the associations between microbial biomass 
and the SMF in diverse ecosystems worldwide (Meng et al., 2019). 
Additionally, we predicted changes in the risk of a reduced global SMF 
over the next 50 years under persistent pH changes due to altered 
environmental factors (e.g., continuous nitrogen fertilizer application) 
based on random forest machine learning methods. Our results highlight 
that due to ongoing acidification, biomass reduction will cause accel-
erated losses in global SMFs.

2. Materials and methods

2.1. A field study of constructed rice paddies in China

In total, 429 soil samples (39 paddy soil sites × 11 replicates) were 
collected from a broad spatial extent in 13 regions of China (Fig. 1a, 
Supplementary Table 1). These regions, including Hailun, Changchun, 
Shenyang, Yuanyang, Fengqiu, Lin’an, Quzhou, Zixi, Jian’ou, Changt-
ing, Hengyang, Qingxin and Haikou, encompass a substantial 
geographical range from 110◦10′ E to 126◦14′ E in longitude and 19◦32′ 
N to 46◦58′ N in latitude. The great geographical differences in the mean 
annual temperature (MAT) ranged from 1.5 ◦C to 23.8 ◦C, and the mean 
annual precipitation (MAP) ranged from 399 mm to 2216 mm (Sup-
plementary Table 1). In each region, three rice fields located within 
20km were chosen to maintain a consistent climate, soil type, and 
agricultural practices. Eleven soil samples were collected from a 100m 
× 100m plot using a spatially explicit ‘L-shaped’ sampling design at 
each site. Soil samples from each sampling point were mixed from five 
soil cores (2.5cm in diameter) from the upper 15cm. Living plant ma-
terial was manually removed. The soil samples were transported to the 
laboratory on dry ice, and physicochemical variables were measured 
immediately. Subsamples were stored at − 80 ◦C to measure the soil 
microbial variables.

2.2. Soil physicochemical analysis

In the field study, eleven variables were measured as crucial in-
dicators of soil nutrient pools: total phosphorus (TP), available phos-
phorus (AP), total nitrogen (TN), dissolved organic nitrogen (DON), 
nitrate nitrogen (NO3

− -N), ammonium nitrogen (NH4
+-N), dissolved total 

nitrogen (DTN), available potassium (AK), total potassium (TK), dis-
solved organic carbon (DOC), and soil organic carbon (SOC) (Supple-
mentary Table 1). TP was measured using HF-HClO4 (Jackson, 1958), 
and AP was determined using the molybdenum blue method with so-
dium bicarbonate (Olsen et al., 1954). The TN, NH4

+-N, and NO3ˉ-N 
contents were quantified using the Kjeldahl method (Page, 1982). DTN 
was measured with a spectrophotometer following oxidation with 

sodium hydroxide‑potassium persulfate. The DON content was assessed 
using the difference between DTN and the sum of NO3ˉ-N and NH4

+-N. 
TK was measured using HF-HClO4 (Jackson, 1958), and AK was detected 
by atomic absorption spectrophotometry using ammonium acetate 
(Page, 1982). SOC was quantified by employing the potassium dichro-
mate method during wet digestion (Nelson, 1982). DOC was measured 
using a total organic carbon analyser (Shimadzu Corporation, Kyoto, 
Japan). The soil pH was measured using a glass electrode, maintaining a 
water-to-soil ratio of 2.5:1. The soil cation exchange capacity (CEC) was 
determined using the sodium acetate method (Meimaroglou and Mou-
zakis, 2019).

2.3. Microbial biomass analysis

Soil microbial biomass was analysed using phospholipid fatty acid 
(PLFA) analysis (Fan et al., 2017). Briefly, 0.5 g of fresh soil was mixed 
with an extract of chloroform:methanol:phosphate buffer (1:2:0.8 v/v/ 
v). The phospholipids were separated and extracted, and then methanol 
was added to form fatty acid methyl esters. The contents of various fatty 
acids were determined by gas chromatography. For indicating bacterial 
biomass, the PLFAs i15:0, a15:0, i16:0, 16:1ω9, 16:1ω7t, 16:1ω7c, i17:0, 
a17:0, cy17:0, 18:1ω7, and cy19:0 were used (Bastida et al., 2021). To 
indicate fungal biomass, the PLFA 18:2ω6 was used (Frostegard and 
Baath, 1996).

2.4. DNA extraction, PCR amplification, and amplicon sequencing

For field studies, genomic DNA was extracted from 2g of soil sample 
by combining freeze grinding and sodium dodecyl sulfate for cell lysis. 
For bacteria, the primers 338F (ACTCCTACGGGAGGCAGCA) and 806R 
(GGACTACHVGGGTWTCTAAT) were used to amplify the V3-V4 region 
of the 16S rRNA gene (Degnan and Ochman, 2012). For fungi, the 
primers ITS1-1737F (GGAAGTAAAAGTCGTAACAAGG) and ITS2- 
2043R (GCTGCGTTCTTCATCGATGC) were used to amplify the inter-
nal transcribed spacer 1 (ITS1) region of the rRNA gene (Kong, 2011). 
Polymerase chain reaction (PCR) amplification was performed in trip-
licate with a 20 μl reaction system containing 4 μl of 5 × FastPfu Buffer, 
0.8 μl of each primer (5 μM), 2 μl of 2.5 mM dNTPs, 10 ng of template 
DNA, and 0.4 μl of FastPfu Polymerase on an ABI GeneAmp® 9700 (ABI, 
Foster City, CA, U.S.A.). The thermocycling conditions for bacteria were 
as follows: predenaturation at 95 ◦C for 3 min; 28 cycles of 30 s at 94 ◦C, 
30 s at 55 ◦C, and 45 s at 72 ◦C; and extension at 72 ◦C for 10 min. The 
thermocycling conditions for fungi were as follows: predenaturation at 
95 ◦C for 3 min; 35 cycles of 30 s at 95 ◦C, 30 s at 59.3 ◦C, and 45 s at 
72 ◦C; and extension at 72 ◦C for 10 min. Triplicate PCR products were 
mixed and purified. The pooled DNA was diluted to 2 nM and processed 
using a MiSeq benchtop sequencer (Illumina Inc., San Diego, CA, USA) 
following the manufacturer’s instructions. The sequencing library was 
prepared with a TruSeq DNA kit. The library was sequenced using an 
Illumina MiSeq platform to generate 250bp paired-end reads.

2.5. Sequence processing

The quality control of the raw sequencing reads was determined 
using the Trimmomatic (version 0.40) program. Poorly quality reads 
were removed by Btrim, and chimeras were detected by Uchime (Edgar 
et al., 2011). Unassembled reads were discarded. Operational taxonomic 
units (OTUs) were clustered at 97 % nucleotide identity by Usearch 
(version 7.1) and annotated with the taxonomy data available in the 
Ribosomal Database using a confidence threshold of 0.7. Bacterial 
taxonomic assignment was performed using the SILVA database (version 
138) (Quast et al., 2012); fungal taxonomic assignment was performed 
using the UNITE database (version 8.2) (Kõljalg et al., 2013).
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2.6. Assessment of soil multifunctionality

Eleven variables, namely, TP, AP, TN, DON, NO3
− -N, NH4

+-N, DTN, 
AK, TK, DOC, and SOC, were measured as crucial indicators of soil 
nutrient pools (Supplementary Table 1). These variables are regarded as 
equivalent to the storage of C, N, P, and K and serve as indicators of the 
availability of these elements to plants and microorganisms in terrestrial 
ecosystems (Delgado-Baquerizo et al., 2016). Briefly, these variables are 
considered individual soil functions that are commonly measured in-
dicators of terrestrial multifunctionality (Delgado-Baquerizo et al., 
2016; Fetzer et al., 2015; Hu et al., 2021), reflecting various functional 
categories, including soil properties and fertility, nutrient cycling, and 
climate regulation (Fetzer et al., 2015). We standardized each soil 
function by transforming its Z scores and averaging them to obtain the 
multifunctionality indices.

To avoid potential trade-offs and redundancy among individual soil 
functions (Hu et al., 2021), we calculated Pearson’s correlation co-
efficients for a total of 66 pairs of soil functions. Among these, 29 pairs 
showed significant positive correlations (Supplementary Fig. 1), while 
the other combinations were independent, with none exhibiting signif-
icant negative correlations, indicating no trade-offs between them. 
Additionally, we identified soil function redundancy by distinguishing 
combinations of soil variables with strong correlations (Gamfeldt et al., 
2008; Hu et al., 2021; Manning et al., 2018). However, our study 
revealed only one instance where the correlation between TP and AP 
had r value >0.7 (Supplementary Fig. 1), suggesting that the redun-
dancy among the soil variables was relatively low.

2.7. Moving-window analysis

To evaluate how the microbial biomass-SMF relationships varied 
along pH gradients, we performed a moving-window analysis (Hu et al., 
2021). Briefly, the linear mixed-effects model was constructed in a 
subset window of 100 samples with the lowest pH values, and this 
process was repeated for the remaining samples along the pH gradient. 
Within each window of 100 samples, the standardized coefficients were 

bootstrapped 500 times. A nonlinear regression was then fitted to these 
coefficients of diversity, biomass, and their correlations with pH across 
the gradient. The pH thresholds were identified for the changes in the 
coefficients between SMF, diversity, and biomass.

2.8. Data processing and statistical analyses

R (v 4.1.1; www.r-project.org/) and Python (v 3.12; www.python. 
org/) were used for all the data analyses and figures, with a signifi-
cance level of p < 0.05 for all the statistical tests. Spearman correlation 
analysis was used to estimate the relationships between eleven soil 
variables and abiotic factors (i.e., pH, CEC, MAT, and MAP) and biotic 
factors (i.e., microbial diversity indices and microbial biomass). 
Furthermore, we constructed a linear mixed-effects model (Supple-
mentary Table 2; Eq. (1)) to verify the correlations between multiple 
biotic and abiotic factors and the SMF: 

SMF = pH + CEC + MAT + MAP + Biomass + Diversity + MAT × MAP

+ pH × Biomass + pH × Diversity + (1|Region)
(1) 

where “×” indicates an interaction term. To account for the similarities 
in soil among the 13 regions in the field study, we included “(1|Region)” 
as a random term.

The moving-window analysis showed a clear shift in the relation-
ships between the SMF and microbial biomass at the three pH thresh-
olds. We divided 429 soil samples from the field into three groups: 
samples with pH < 5 (low pH, n = 119); samples with pH > 6 (high pH, 
n = 122); and samples with pH 5–6 (moderate pH, n = 188). Linear 
regression analysis was performed to determine the relationships be-
tween each component of microbial diversity and biomass and SMF 
within the different pH ranges based on ordinary least squares (OLS) 
regression.

To verify the relationship between the SMF and microbial biomass at 
the global scale, we constructed a global database including global mi-
crobial biomass, MAT, MAP, pH, SMF and ecosystem type. The global 

Fig. 1. Illustration of the sampling scheme and the relationships between different factors and soil multifunctionality. (a) The black dots represent 13 different 
regions. Three paddy fields were randomly selected in each region, and 11 samples were collected from each paddy field, for a total of 429 samples. Linear and 
nonlinear relationships between abiotic (b) and biotic (c) factors and soil multifunctionality (SMF). The solid black line represents linear models (LMs), and the red 
dashed line represents generalized additive models (GAMs).
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microbial biomass and ecosystem data were obtained from He et al. (n =
35,641) (He et al., 2020). The nutrient variables used to calculate the 
global SMF were obtained from the Global Soil Dataset for Earth System 
Modelling at a 10 km resolution. The MAT and MAP data were obtained 
from the WorldClim database (https://www.worldclim.org), which has 
a resolution of 1 km. After these efforts, we constructed a simplified 
linear mixed-effects model through Eq. (2) (Supplementary Table 3) and 
performed moving-window analysis to vary the associations among 
microbial biomass and SMF with pH: 

SMF = pH + MAT + MAP + MAT × MAP + Biomass + pH × Biomass
+ (1|Ecosystem Type)

(2) 

where “(1|ecosystem type)” indicates a random term to account for the 
similarities of soil among ecosystems in the global database.

To investigate the potential impact of soil pH reduction caused by 
fertilization on the relationship between biomass and SMF, we predicted 
global soil pH changes at the 0–15 cm depth after 50 years. Briefly, 
based on published global metadata from Zhao et al. (2022), we con-
structed a random forest model to estimate the factors (i.e., the duration 
of N application, nitrogen fertilizer application amount, initial soil pH, 
MAP, and MAT) that influence soil pH changes. We adjusted some of the 
primary hyperparameters to obtain the optimal model in the RF model. 
The model demonstrated the least mean square error (MSE = 0.11) with 
ntree = 337, mtry = 156, nodesize = 10, and maxnodes = 30. To ensure 
model reliability, five replications and tenfold cross-validation were 
carried out, resulting in a model MSE of 0.12, indicating no overfitting 
or underfitting problems. Finally, the pH was predicted based on the best 
model trained by the above method. The initial soil pH was obtained 
from the Global Soil Dataset for Earth System Modelling. The nitrogen 
fertilizer application rates were reported by the Food and Agriculture 
Organization (FAO) of the United Nations (https://www.fao.org) (FAO, 
2021).

3. Results

3.1. Driving factors of soil multifunctionality in paddy fields in China

Our field analysis indicated that pH was the primary abiotic factor 
influencing individual soil functions (i.e., eleven soil variables) (Sup-
plementary Fig. 2a). In comparison, the primary biotic factor affecting 
the function of the elemental cycle was microbial biomass (bacterial and 
fungal biomass) (Supplementary Fig. 2b). Subsequently, linear and 
generalized additive models showed that the SMF responded non-
linearly to most of the increasing abiotic and biotic variables (e.g., pH, 
CEC, and bacterial and fungal biomass) (Fig. 1b and c). This finding 
implies that interactions between different biotic and abiotic factors 
may affect their relationships with the SMF.

We then fitted a linear mixed-effects model to evaluate the re-
lationships between multiple biotic and abiotic factors and the SMF 
(Supplementary Table 2). We found that the pH, CEC, MAT, and total 
microbial biomass were positively correlated (p < 0.01) with the SMF. In 
particular, total microbial biomass alone was positively associated with 
SMF, whereas the interaction between pH and total biomass was nega-
tively associated with SMF (p < 0.001). Similarly, while the microbial 
diversity index alone showed a weak correlation with the SMF (p =
0.08), the interaction term between the diversity index and pH was not 
correlated with the SMF (p = 0.70). These findings indicated that the 
associations between microbial community (i.e., diversity and biomass) 
and SMF may delicately shift with changes in pH.

3.2. Threshold effects of soil pH on associations between the microbial 
community and soil multifunctionality

To investigate the potential roles of soil pH in shaping the 

associations between SMF, microbial diversity, and biomass, we per-
formed a moving-window analysis (Fig. 2). We observed that the posi-
tive relationship between SMF and microbial biomass decreased sharply 
in a linear pattern as the pH increased to 5 in paddy fields (Fig. 2a). 
When the pH increased from 5 to 6, the relationship shifted to a 
nonlinear pattern and maintained a positive association with the SMF. 
When the pH exceeds 6, the relationships between the SMF and micro-
bial biomass become negatively correlated and gradually decrease with 
increasing pH. Moreover, the correlation coefficients between SMF and 
diversity with increasing pH showed similar but more subtle changes. 
Additionally, the relationship between the SMF and the microbial-pH 
interaction terms displayed consistent thresholds intervals with oppo-
site patterns across the three pH ranges (pH < 5, 5 ≤ pH ≤ 6, and pH >
6), especially for the pH:biomass interaction term (Fig. 2b). The inverse 
patterns observed between SMF and biomass, as well as the pH:biomass 
interaction, can be attributed to the negative correlation between pH 
and total microbial biomass (Supplementary Table 4).

We determined whether a significant linear correlation existed be-
tween each variable of biomass/diversity and the SMF across the three 
pH groups (Supplementary Fig. 3). As expected, in samples with pH < 5 
(n = 119), OLS regression revealed a strong positive correlation between 
bacterial biomass and SMF (goodness of fit: R2 = 0.25, significance: p <
0.001; Spearman’s correlation coefficient: r = 0.59, p < 0.001). How-
ever, there was no significant relationship between SMF and fungal 
biomass or diversity in samples with pH < 5 (p > 0.05). In samples with 
pH values between 5 and 6 (n = 122), SMF was positively correlated 
with the microbial diversity index (R2 = 0.06, p < 0.05; r = 0.24, p <
0.01), while no relationship was detected with biomass (p > 0.05). In 
samples with pH > 6 (n = 188), the SMF showed a notable negative 
correlation with fungal biomass (R2 = 0.02, p < 0.05; r = − 0.17, p <
0.05) and a positive correlation with fungal diversity (R2 = 0.03, p <
0.05; r = 0.18, p < 0.05). These results agreed with our hypothesis that 
pH exerts threshold effects on the associations between microbial di-
versity, biomass, and SMF.

3.3. Global-scale impact of soil pH on biomass-multifunctionality 
relationships across ecosystems

Building upon our findings from region-scale field samples collected 
from artificial wetland ecosystems (i.e., paddy fields) in China (Fig. 2a 
and b), we further conducted a global meta-analysis to evaluate the ef-
fect of pH on biomass-multifunctionality relationships in different eco-
systems (Fig. 2c and d). Given the significant impact of the interaction 
term of pH and microbial biomass (p < 0.05, Supplementary Table 3), a 
clear nonlinear association between microbial biomass and SMF as 
global soil pH increased was detected (Fig. 2c and d). Although the 
variation pattern indicated distinct pH thresholds (i.e., pH < 5, 5–7.5, 
and pH > 7.5), which differed from the pH range observed in the paddy 
field results, we still observed consistent patterns (Supplementary 
Fig. 4). Specifically, SMF had the strongest positive correlation with 
biomass in samples with pH < 5; the positive relationship became 
weaker in samples with pH values between 5 and 7.5, and there was no 
positive correlation in samples with pH > 7.5.

Notably, we found that the random effects of the model (i.e., 
ecosystem type) influenced the explanatory effects of different 
biochemical variables on SMF changes (Supplementary Table 3). 
Moreover, we verified whether ecosystem type may influence the 
pH–biodiversity–multifunctionality relationships in less and more acidic 
regions. We found that among the six ecosystems (Supplementary 
Table 5), including temperate coniferous forest, cropland, mixed forest, 
temperate broadleaf forest, pasture, and tundra, the positive correla-
tions between SMF and bacterial and fungal biomass decreased with 
decreasing acidity. Notably, in natural wetland and tropical/subtropical 
forest systems, the positive correlation between SMF and bacterial and 
fungal biomass was strongest in samples with pH 5–7.5 and weakest or 
negative in samples with pH > 7.5. Accordingly, these results support 
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the existence of pH thresholds that affect biomass-SMF relationships, 
especially at pH < 5.

3.4. Intensified soil acidification accelerates the loss of soil 
multifunctionality under continued soil acidification

As reported by the FAO (https://www.fao.org) as the global N 
fertilization rate for 2019 across six continents (FAO, 2021), we pre-
dicted global soil pH changes at depths of 0–15 cm for the next 50 years. 
We included the duration of N application, nitrogen fertilizer applica-
tion amount, initial soil pH, MAP, and MAT in the prediction model. We 
found that the duration and amount of N fertilizer applied are critical 
factors causing a decrease in pH at the global scale (importance = 49.5 
% and 47.7 %, p < 0.01, n = 441; Supplementary Figs. 5, 6, and 7). As 
predicted, the global soil pH will change considerably in the next 50 
years when temperature and precipitation are constant, especially in 
regions where the initial soil pH is <5 and >7.5 (Fig. 3a and b). 
Therefore, we categorized the risk of SMF loss under acidification con-
ditions into three zones based on the discovered pH thresholds in this 
study: high (pH < 5), moderate (pH between 5 and 7.5), and low (pH >
7.5). Specifically, the area of regions with a pH < 5 was expected to 
increase by 13.54 %, while that of low-risk regions with a pH > 7.5 
would decrease by 12.65 % (Fig. 3c). These results indicated that 
continued soil acidification may exacerbate the risk of biomass-driven 
loss of SMFs in the future.

4. Discussion

Our results demonstrated the threshold effects of soil pH on driving 
the associations between the microbial community and SMF at both 
regional and global scales. Specifically, below a pH threshold of 5, 
bacterial biomass becomes the primary biological indicator in paddy 
fields, while both bacteria and fungi drive soil multifunctionality across 
various ecosystems globally where the pH is below 5. This phenomenon 
may be attributed to the specific management practices and anaerobic 
conditions prevalent in paddy fields, which potentially favour bacterial 
activity over fungal activity (Liu et al., 2016; Wang et al., 2017). Given 
the greater aerobic tolerance of fungi than bacteria, fungi typically 
exhibit greater activity in drier environments, potentially diminishing 
their significance in flooded rice paddies (Wang et al., 2021). Therefore, 
at the global scale, although the threshold effects on multifunctionality 
are consistent, the response of microbial community dynamics to soil pH 
across different ecosystems exhibits a more complex pattern.

Slightly different pH thresholds were observed in paddy fields 
compared to global samples; for example, in paddy fields, the pH 
threshold ranges included <5, 5–6, and >6, whereas in global samples, 
the pH thresholds ranged from <5, 5–7.5, and >7.5. This discrepancy 
could be attributed to the diverse array of ecosystem types worldwide. 
Our regional-scale study exclusively included paddy fields, a particular 
type of wetland ecosystem. Moreover, rice cultivation areas in China are 
predominantly situated in regions characterized by acidic soils and 
facing challenges associated with soil acidification (Dong et al., 2022; 
Guo et al., 2018). Regions with pH < 5 typically have single or multiple 
attributes, such as humid climates, high organic C stocks, high 

Fig. 2. Nonlinear variation in the relationship between soil multifunctionality and microbes with soil pH at the regional and global scales. The white trend line is a 
nonlinear curve between pH and the bootstrapped standardized coefficient obtained from the linear mixed-effects models. The red dashed line shows the linear 
regression analysis between standard coefficients and pH in different pH ranges (i.e., pH < 5, pH between 5 and 7.5 and pH > 7.5) in c and d. The dashed grey line 
represents the threshold pH values.
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exchangeable aluminium ions, high nitrogen deposition, or high- 
intensity management practices such as excessive fertilization 
(Crowther et al., 2019). At the global scale, regions with pH < 5 were 
mainly distributed in boreal forests, natural wetlands, mixed forests, and 
tropical/subtropical forest systems (Supplementary Table 5). The re-
gions with pH values between 5 and 7.5 had the most expansive dis-
tribution range, and there were no apparent commonalities among these 
regions. In contrast, regions with pH > 7.5 (Shangguan et al., 2014), 
such as shrubland, pasture, and desert ecosystems, typically have a dry 

climate. In these systems, aridity is explicitly a limiting factor and may 
decouple the positive microbe-SMF relationship (Delgado-Baquerizo 
et al., 2016). Moreover, the lower availability of soil micronutrients (e. 
g., Fe and Zn) in arid regions with high soil pH will force microbial 
communities to comprise more cooperators (Evans and Cushman, 2009). 
These findings provide crucial insights into ecosystem-specific charac-
teristics and dynamic changes in microbial communities when main-
taining the stability and functionality of soil ecosystems.

Moreover, as the pH shifts from acidic to alkaline, the abundance and 

Fig. 3. Changes in global soil pH and the risk of reduced soil multifunctionality under acidification scenarios over the next 50 years. (a) Soil pH at 0–15 cm depth 
globally at present and in 2070 based on 58 kg⋅ha− 1 of N fertilizer application when MAT and MAP are constant. (b) Changes in the risk of reduced soil multi-
functionality (SMF). (c) Variations in the risk of reduced soil multifunctionality at different risk levels with latitude.

M. Jiang et al.                                                                                                                                                                                                                                   Applied Soil Ecology 203 (2024) 105623 

6 



function of different microbial groups (e.g., bacteria and fungi) diverge 
in their contributions to SMF. In acidic conditions (pH < 5), the positive 
correlation between SMF and microbial biomass, particularly bacteria, 
strengthened as pH decreased (Fig. 2, Supplementary Fig. 3). This sug-
gested that bacterial adaptations to low pH environments play a role in 
organic matter decomposition and nutrient (e.g., N) cycling (He et al., 
2024), which enhanced their positive association with SMF. Conversely, 
in alkaline soils, the slope of the relationship between microbial biomass 
and multifunctionality decreased sharply, indicating that microbial di-
versity (e.g., fungi) becomes more crucial to multifunctionality (Sup-
plementary Fig. 3). Although the functional roles of individual fungal 
groups may be diluted, sustaining fungal diversity contributes to 
maintain functionality (Mori et al., 2016; Xue et al., 2023). These dy-
namic responses of SMF highlight that soil pH exerts differential impacts 
on microbial biomass, diversity, composition, and interactions across pH 
ranges (Rousk et al., 2010; Shi et al., 2021), potentially influencing 
nutrient biogeochemical cycling.

Accordingly, thresholds for soil pH have been demonstrated in many 
aspects of terrestrial ecosystems, such as microbial community struc-
ture, nutrient cycling, organic matter decomposition, and plant–microbe 
interactions (Fierer et al., 2012; Rousk et al., 2010). For example, when 
the pH in acidic soil increased to a threshold of pH = 6.2 due to 
anthropogenic changes, the acid retardation of microbial growth was 
alleviated following increased soil carbon decomposition (Malik et al., 
2018). This may be because soil pH is considered a comprehensive in-
dicator influenced by various factors, including soil properties, climate 
change, and soil management strategies (Malik et al., 2018; Slessarev 
et al., 2016), which directly affect crucial processes, such as nutrient 
availability, enzyme activities, and SOM decomposition (Feyissa et al., 
2022; Malik et al., 2018). Furthermore, increasing the soil pH above 
certain thresholds can significantly alter the microbial enzyme activities 
that facilitate soil P and N release, enhancing plant growth and further 
influencing the microbial population structure (Aciego Pietri and 
Brookes, 2008; Geisseler and Horwath, 2008). This feedback loop sug-
gests that slight pH adjustments could have cascading effects on 
ecosystem productivity and stability (Shi et al., 2021). Given the close 
relationships between various changes in microbial community 
composition and soil functions (e.g., C cycling (Fierer and Jackson, 
2006; Rousk et al., 2010)), as well as multifunctionality (Zhao et al., 
2024; Zheng et al., 2019), the results of previous reports showing that 
biomes and acidity regulate the community-level thermal response 
(MCTR) of microbes (i.e., bacteria and fungi) (Hijmans et al., 2005) are 
similar to those of this study. These results confirmed that in acidic 
environments, the total abundance of biological cells in a region, at the 
highest levels of ecological organization, ultimately leads to essential 
restrictions on the SMF (Fierer and Jackson, 2006). Our results under-
score the importance of understanding how bacteria and fungi collab-
oratively influence soil multifunctionality, particularly when the pH is 
below 5, in response to the impacts of global environmental changes on 
ecosystem services. Therefore, we suggest that the threshold effect not 
only supports scientific theory but also provides practical references for 
global environmental policies and sustainable agricultural practices.

Numerous studies have demonstrated that N deposition and fertil-
ization decrease the pH and thus reduce microbial biomass (Jia et al., 
2020; Li et al., 2024). Here, we highlight the necessity of considering the 
role of microbes in ecological multifunctionality when predicting the 
ecological consequences of nitrogen deposition and agricultural activ-
ities such as N fertilization. This implies that the SMF will decrease with 
acidification, as the SMF is positively correlated with biomass in most 
regions (Supplementary Fig. 4). Moreover, the stronger dependence of 
multifunctionality on biomass in regions with pH < 5 implies that these 
regions will suffer a greater risk of reduced multifunctionality in soil 
acidification situations. Overall, these results demonstrated that a soil 
pH of 5 should be considered a critical threshold at which microbial 
biomass becomes a key determinant of SMF based on a large-scale field 
study and global dataset. Our study highlights the valuable concern that 

in acidic soils, SMFs may be more vulnerable to environmental distur-
bances, potentially posing a threat to ecosystem sustainability.

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.apsoil.2024.105623.
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