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A B S T R A C T

Revealing the generation and maintenance of biodiversity is a central goal in ecology, but how dispersal, se
lection, and regional taxon pool size shape soil microbial communities is not well understood. Here, we examined 
how dispersal and environmental selection affected soil bacterial diversity and their related metabolic functions 
by leveraging large-scale cross-biome soil surveys of ~1400 samples from diverse ecosystems across China, 
including agricultural, forest, grassland, and wetland soils. Our results showed that high dispersal increased 
α-diversity and decreased β-diversity, whereas strong selection generated the opposite pattern in various eco
systems. This is likely due to dispersal enabling species access to otherwise unreachable habitats, and environ
mental selection excluding non-adapted species from communities. The α-diversity increased with γ-diversity, 
whereas β-diversity did not covary. We also showed that bacterial phylotypes positively associated with dispersal 
and selection exhibited distinct metabolic diversity. Dispersal-induced phylotypes, which were abundant in 
agricultural soils, exhibited more metabolic diversity in fructose and mannose, starch and sucrose, and nitrogen 
metabolism. Conversely, selection-induced phylotypes, dominated in wetland soils, were primarily associated 
with sulfur and methane metabolism. In addition, the complexity of taxon associations increased when com
munities had higher selection increasing β-diversity. Our study establishes the predictive links of ecological 
processes to microbial diversity, metabolic functions, and taxon coexistence, thus facilitating a better under
standing of the mechanisms underlying biodiversity generation and conservation.

1. Introduction

Soil microbial diversity plays a critical role in maintaining ecosystem 
function and services, such as soil genesis, decomposition, nutrient 
cycling, climate regulation and water detoxification (Huang et al., 2018; 
Benkwitt et al., 2020; Loreau et al., 2021). It is crucial to understand 
how soil microbial diversity is generated and maintained, which could 
improve our ability to predict how soil biodiversity loss might affect 
human wellbeing and ecosystem sustainability (Myers and Harms, 2009; 
Morrison-Whittle and Goddard, 2015). Although various ecological 

theories have been proposed (Vellend, 2016), the metacommunity the
ory provides an adequate framework to study the generation and 
maintenance mechanisms of soil microbial diversity (Leibold et al., 
2004b). Under this theory, local communities are usually not isolated 
entities but are connected to each other by dispersal, and this process 
interacts with local selection and regional species pools (Wilson, 1992).

Disentangling the influence of dispersal, selection, and regional 
taxon pool size on soil microbial diversity is crucial for meta
communities (Leibold et al., 2004a). Variation in diversity may be 
caused by dispersal effects, as dispersal, which is defined as the 
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movement of species, can promote species to reach habitats that would 
otherwise be inaccessible (Albright and Martiny, 2018). Selection, 
including environmental filtering (e.g., pH, temperature, moisture, and 
salinity) and biological interactions (e.g., competition, facilitation, 
mutualisms, and predation), could largely control the change in biodi
versity (Chesson, 2000; Chave, 2004). For instance, when selection is 
variable, distinct taxa occupy different niches along environmental 
gradients, thereby creating diversity differences (Sunagawa et al., 2015; 
Thompson et al., 2017). Moreover, variation in diversity may also 
depend on changes in the size of regional species pools (Wang et al., 
2021). In addition, the impacts of ecological processes on microbial 
communities may lead to variation in their functional traits (Walters 
et al., 2022). Numerous previous studies devote to exploring the 
biogeographic patterns of soil microbial diversity (Fierer et al., 2009; 
Delgado-Baquerizo et al., 2018; Oliverio et al., 2020), yet few studies 
have established the predictive links of ecological processes to soil mi
crobial diversity and their related functional genes across relatively 
large spatial scales, which limits our ability to determine the mecha
nisms underpinning community formation and dynamics.

Exploring taxon coexistence can help integrate understanding of 
community structure and ecological rules (Vályi et al., 2016; Jiao et al., 
2020). Ecological network analysis is used to explore the potential 
correlation among organisms coexisting in complex environments, 
which provides new insights into the structure and assembly of complex 
microbial communities (Barberán et al., 2012). Recently, the explora
tion of the factors influencing microbial co-occurrence associations is 
rapidly increasing. For example, dispersal may increase species coexis
tence because dispersal may facilitate more species to arrive and colo
nize a habitat (Baguette et al., 2013; Jiao et al., 2020), while an 
excessively high dispersal rate can be detrimental to species coexistence 
(Cadotte, 2006). Selection may be a key factor driving changes in mi
crobial co-occurrence patterns, as selective pressure can not only 
directly affect potential associations between taxa, but also indirectly by 
stimulating changes in the relevant environment (Wang et al., 2018; 
Chen et al., 2021; Yuan et al., 2021). Alternatively, variation in regional 
species pool size can also lead to changes of taxon coexistence (Zobel, 
1997; Cornell and Harrison, 2014; Karger et al., 2015). However, the 
combined influence of dispersal, selection, and regional species pool size 
on microbial co-occurrence associations across relatively large spatial 
scales remains scarce.

The aim of this study was to understand how dispersal, selection, and 
regional taxon pool size affect soil bacterial diversity, functional genes 
and taxon coexistence within the following framework (Fig. 1). A large- 
scale soil survey was conducted for bacterial community on 1379 soil 
samples across China that contain diverse ecosystems, including agri
cultural, forest, grassland, and wetland soils, which could help to detect 
generality of the findings across complex terrestrial ecosystems (e.g., 
natural and human-managed). A neutral model and an outlying mean 

index (OMI) analysis were employed to assess dispersal rate and the 
strength of environmental selection in bacterial communities, respec
tively. In this study, all references to selection specifically denote envi
ronmental selection. Given that dispersal effects promote more species 
to reach suitable habitats, selection effects filter out species that are not 
well-suited to the environment, and variation in diversity may also 
depend on regional species pool size (Zhou and Ning, 2017; Albright and 
Martiny, 2018; Wang et al., 2021), we hypothesized that (1) bacterial 
α-diversity would increase with increasing dispersal/taxon pool size and 
decreasing selection, whereas β-diversity would decrease with 
increasing dispersal and decreasing selection/taxon pool size; (2) the 
complexity of taxon associations would increase when the strength of 
selection increases, whereas high dispersal would lead to less inter
connected networks. With statistical evidence to directly examine the 
impacts of ecological processes on soil bacterial diversity, functional 
genes, and taxon coexistence, our results provide insights into the for
mation mechanisms and conservation of soil microbial diversity.

2. Methods and materials

2.1. Site and sampling

To elucidate the general rules of the biodiversity maintenance 
mechanisms, this study was conducted in four typical ecosystems 
(agricultural, forest, grassland, and wetland soils) in China, which 
extended from 19◦59′N to 47◦79′N and 86◦30′E to 129◦49′E with mean 
annual temperature from − 2 to 24.3 ◦C and mean annual precipitation 
from 72 to 1853 mm. The plant community is dominated by Zea mays 
(agriculture), Populus spp., Cunninghamia lanceolata, Casuarina equi
setifolia L. and Phyllostachys heterocycla, and shrubs (forest), Stipa spp., 
Leymus spp., Festuca ovina, and Poa poophagorum (grassland), and 
Phragmites australis, Carex lasiocarpa, and Suaeda salsa (wetland).

In total, 1379 soil samples were collected from 177 regions (50 
agricultural fields, 44 forests, 43 grasslands, and 40 wetlands) across 60 
study sites in China during July–August 2019 (Fig. S1). Among the 60 
study sites, 28 sites include agricultural fields, forests, grasslands, and 
wetlands, 4 sites include agricultural fields, forests, and grasslands, 5 
sites include agricultural fields, forests, and wetlands, 2 sites include 
forests, grasslands, and wetlands, 2 sites include agricultural fields, 
grasslands, and wetlands, 3 sites include agricultural fields and forests, 3 
sites include agricultural fields and grasslands, 1 sites include forest and 
grasslands, 5 sites only include agricultural fields, 1 sites only include 
forests, 3 sites only include grasslands, and 3 sites only include wetlands. 
In each region, 5–12 plots (each of 10 × 10 m2, adjacent plots: 100 m) 
were randomly established as described in previous study (Zhang et al., 
2020), which allowed us to investigate the influence of dispersal, se
lection, and taxon pool size on bacterial diversity at a regional scale. In 
each plot, three soil cores (0–20 cm) were collected and mixed to form 

Fig. 1. A framework for studying how taxon pool size, dispersal, and selection affect bacterial diversity, functional genes, and taxon coexistence. The influence of 
dispersal, selection, and taxon pool size on bacterial diversity, functional genes, and taxon coexistence were identified by large-scale cross-biome soil surveys.

B. Chen et al.                                                                                                                                                                                                                                    Soil Biology and Biochemistry 198 (2024) 109573 

2 



one composite sample and then transported to the laboratory in coolers.

2.2. Environmental factors measurement

Soil pH, moisture (SM), organic matter (SOM), nitrate-nitrogen 
(NO3

− ), ammonium-nitrogen (NH4
+), and available phosphorus (AP) 

were measured as previously described (Ma et al., 2016; Shi et al., 
2018). The mean annual temperature (MAT), mean annual precipitation 
(MAP), mean diurnal range (MDR), temperature seasonality (TS), tem
perature annual range (TAR), and precipitation seasonality (PS) of each 
site were extracted from the WorldClim database (www.worldclim.org). 
The aridity index (AI) of each site was extracted from the Global Po
tential Evapotranspiration database (Zomer et al., 2008).

2.3. DNA extraction and sequencing

DNA was extracted from 0.5 g of well homogenized soil using the MP 
FastDNA spin kit (MP Biomedicals, Solon, OH, USA). The V4 – V5 re
gions of bacterial 16S rRNA genes were amplified by primer pairs 515F 
(5′-GTGCCAGCMGCCGCGGTAA-3′) and 907R (5′-CCGTCAATTCMTT
TRAGTTT-3′) (Jiao et al., 2018). Sequencing was conducted on the 
Illumina NovaSeq PE 250 platform (Illumina Inc., San Diego, CA, USA). 
DADA2 pipeline was used to filter out low quality sequences, denoising, 
and removing chimeras (Callahan et al., 2016; Maver et al., 2021). 
Taxonomic assignment was conducted with a naïve Bayesian classifier 
using the Silva 138 database (Quast et al., 2012; Yilmaz et al., 2014). 
The sequences matching the mitochondria and chloroplast were also 
removed, and the remaining effective sequences were used to generate 
amplicon sequence variants (ASVs). In the end, 15,082 ASVs were 
eventually obtained. The representative sequences for 16S rRNA gene 
were aligned using Muscle (Edgar, 2022) and phylogenetic trees were 
constructed with FastTree (Price et al., 2009). Furthermore, samples 
were subsampled to an equal sampling depth, and the rarefaction curve 
reached saturation (Fig. S2).

To examine the influence of dispersal and selection-induced bacterial 
phylotypes on their related functional genes, we selected 10 regions 
covering the national country in each ecosystem (including agriculture, 
forest, grassland and wetland soils), and then mixed all soil samples from 
each region into one composite sample. 40 DNA samples (4 ecosystems 
× 10 regions) were used for shotgun metagenomic sequencing on an 
Illumina Novaseq 6000 platform (150-bp paired-end reads) at Guang
dong Magigene Biotechnology Co., Ltd, but in total, only 39 DNA sam
ples were used. Raw data were quality checked with FastQC (v0.11.9) 
and processed using Trimmomatic v.0.39 (leading: 3, trailing: 3, sli
dingwindow: 4:15, minlen:36) to trim adapters and discard bases with a 
quality score <15 and length <36 bp. After that, 12.2 Gbp clean data per 
sample were obtained. Clean reads were annotated for functional anal
ysis of the microbiome using HUMAnN v3.7 (based on DIAMOND 
(version 2.1.6) 81 and Bowtie2 (version 2.5.1) 82) with ChocoPhlAn 
database (version “mpa_vJan21_CHOCOPhlAnSGB_202103”) and Uni
Ref90 (version“uniref90_201901b”) protein database to quantify rela
tive abundance of functional genes and metabolic pathways (Beghini 
et al., 2021). The annotation results were organized according to Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database. According to the 
KEGG database, we identified amino acid metabolism, lipid metabolism, 
amino acid metabolism, lipid metabolism, nitrogen metabolism, phos
phonate and phosphinate metabolism, sulfur metabolism, methane 
metabolism, xenobiotics biodegradation/metabolism and terpenoids 
polyketides metabolism, and carbohydrates metabolism (i.e., glyco
lysis/gluconeogenesis, TCA cycle, pentose phosphate pathway, fructose 
and Mannose metabolism, galactose metabolism, starch and sucrose 
metabolism, pyruvate metabolism, glyoxylate and dicarboxylate meta
bolism, butanoate metabolism, propanoate metabolism) (Xun et al., 
2021).

2.4. Assessment of community dispersal rate

A neutral model was used to determine the importance of passive 
dispersal on community assembly via predicting the relationship be
tween the frequency with which taxa occur in a set of local communities 
and their abundance across the wider metacommunity (Sloan et al., 
2006). In the model, the dispersal rate is a parameter used to estimate 
the probability of a random loss of an individual in a local community to 
be displaced by an immigrant from the metacommunity (Jiao et al., 
2020). It is calculated as follows: Freqi = 1- I(1÷ N|N × m × pi, N × m ×
(1- pi)) where Freqi is the occurrence frequency of taxon i across com
munities; N is the number of individuals per community; m is the esti
mated dispersal rate; pi is the average relative abundance of taxon i 
across communities; and I is the probability density function of beta 
distribution. This analysis was conducted as nonlinear least squares 
fitting in the “minpack.lm” package (Elzhov et al., 2010). The overall fit 
of the model to observed data by comparing the sum of squares of re
siduals, SSerr, with the total sum of squares, SStotal: model fit =
1–SSerr/SStotal (generalized R-squared) (Jiao et al., 2020). To determine 
whether the model was based on only the random sampling of the source 
metacommunity, the fit of the neutral model with the fit of a binomial 
distribution model was compared (Burns et al., 2016). Sampling from a 
binomial distribution represents the case where local communities are 
random subsets of the metacommunity in the absence of drift and 
dispersal limitation processes (Burns et al., 2016). The Akaike infor
mation criterion of each model was examined based on 1000 bootstrap 
replicates. Our result showed the neutral models were superior to the 
binomial distribution model in various ecosystems, indicating that 
dispersal had an influence beyond the random sampling of the source 
community (Fig. S3). In addition, the number of the shared taxon 
number across plots in each region was calculated, and the proportion of 
the number of the shared taxon divided by regional taxon pool size was 
used to estimate dispersal. A higher ratio indicates stronger dispersal 
(Mei and Liu, 2019).

2.5. Assessment of environmental selection

Outlying mean index (OMI) analysis was used to estimate the effects 
of environmental selection on bacterial communities (Luan et al., 2020). 
The OMI could determine phylotypes’ niche positions via measuring the 
distance between the mean environmental conditions used by each 
phylotype and the mean environmental conditions of the study area 
(Dolédec et al., 2000; Thuiller et al., 2005). The OMI makes no hy
pothesis on the shape of species response curves to the environment and 
gives equal weight to species-poor and species-rich sites (Luan et al., 
2020). This analysis was ran using “niche” function in the “ade4” 
package (Dolédec et al., 2000; Thuiller et al., 2005). Specifically, we 
conducted principal component analysis to reduce the dimensions of all 
environmental variables. Each phylotype was correlated with the row 
profiles of the resulting environmental data, and the average position of 
each phylotype was then calculated along the ordination axes in each 
region. A high OMI value indicates that each phylotype has a narrow 
niche breadth, thus suggesting that each phylotype is subjected to higher 
environmental selection (Luan et al., 2020). In addition, environmental 
heterogeneity was estimated by the average environmental dissimilarity 
among sites using the Gower distance based on the combination of 13 
variables related to soil properties (pH, SM, SOM, NO3

− , NH4
+, and AP) 

and climatic conditions (MAT, MAP, MDR, TS, TAR, PS, and AI) 
(Albrecht et al., 2021). A high environmental dissimilarity value in
dicates high environmental heterogeneity.

2.6. Statistical analyses

We calculated the variation in (γ, α, and β) diversity in different 
ecosystems. Here, α-diversity was measured as ASV richness of a single 
plot, and the γ-diversity (taxon pool size) was measured as the total ASVs 
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richness in each sampling region (Wang et al., 2021; Xu et al., 2021). 
β-diversity was measured based on the Bray–Curtis dissimilarity in 
bacterial composition for each region. To visualize the sample re
lationships of bacterial communities among different ecosystems, NMDS 
analysis was performed based on Bray-Curtis dissimilarity by using the 
“metaMDS” function of the “vegan” package (Oksanen et al., 2015). To 
determine the significance in bacterial community composition based 
on Bray–Curtis dissimilarity matrices in different ecosystems, similarity 
analysis (Anosim) and permutational multivariate analysis of variance 
(Adonis) were performed using the anosim and adonis function, 
respectively, in “vegan” package in R (Oksanen et al., 2015). To assess 
the distance-decay relationship of community similarity, we calculated 
the slopes of ordinary least-squares regressions for the relationships 
between geographic distances and community similarities 
(1—dissimilarity of the Bray–Curtis metric) (Martiny et al., 2006). The 
geographical distances among the sampling sites were calculated from 
the sampling coordinates. Differences in the diversity (α, β, and γ), 
dispersal rate, outlying mean index (OMI), and environmental hetero
geneity were examined using Kruskal–Wallis tests in the “agricolae” 
package (De Mendiburu, 2014). Differences in the number of metabolic 
pathways were examined between dispersal and OMI-induced bacterial 
phylotypes using Wilcoxon rank sum test. All statistical analyses were 
conducted using R (v3.4.1) for Windows (http://www.r-project.org/).

Dispersal and selection-induced phylotypes. To examine the ef
fect of dispersal and selection-induced bacterial phylotypes on their 
related metabolic diversity, we first determined the ASVs that occurred 
in more than 3% of all soil samples when all four ecosystems were 
considered together. Then, 349 ASVs and 222 ASVs with significant 
positive responses to dispersal or outlying mean index (OMI) were 
identified, respectively. Three different phylogenetic trees for these 571 
ASVs with clear annotation at phylum/class-level were constructed 
using MEGA6 by maximum likelihood method, neighbor joining 
method, and unweighted pair group method using arithmetic average, 
respectively, and visualized using “ggtree” package in R (Yu et al., 
2017).

Random forest (RF) analysis. We performed RF model to predict 
the relative importance of dispersal, selection, and taxa pool size for 
bacterial diversity in the “rfPermute” package (Bento et al., 2002). The 
cross-validated R2 and significance were calculated in the “A3” package 
(Fortmann-Roe, 2015).

Co-occurrence networks. To estimate taxon coexistence in different 
ecosystems, co-occurrence networks were constructed in each 
ecosystem, respectively. To reduce rare ASVs in each ecosystem dataset, 
we removed ASVs with a relative abundance <0.01% (Jiao et al., 2020). 
Therefore, the correlation networks were constructed using 2151 ASVs 
in 390 agricultural samples, 2174 ASVs in 337 forest samples, 2190 
ASVs in 347 grassland samples and 2214 ASVs in 305 wetland samples, 
respectively. Robust correlations with Spearman’s correlation co
efficients (r) > 0.6 and false discovery rate-corrected p-values <0.01 
were used to construct networks in package “fdrtool” (Klaus and 
Strimmer, 2012). Each region networks (5–12 samples) were also 
generated in different ecosystem by the same method as above. Net
works were visualized using the interactive Gephi platform (Bastian 
et al., 2009). To describe the complexity of taxon associations, five 
network-level topological features were calculated in the package 
“igraph” (Csardi and Nepusz, 2006), including the number of nodes and 
edges, average degree (the average connections of each node with 
another particular node in the network), clustering coefficient (the de
gree to which the nodes tend to cluster together) and network density 
(the intensity of connections among nodes) (Newman, 2003, 2006). 
Average degree was used to represent the complexity of taxon associa
tions because these topological features were tightly associated (Xiong 
et al., 2021).

3. Results

3.1. Effects of dispersal, selection, and taxon pool size on soil bacterial 
diversity

The NMDS results showed that soil samples formed clear groupings 
according to different ecosystems in the ordination space (Fig. S4). 
Significant differences in bacterial community composition were found 
among different ecosystems (Adonis R2 = 0.079, p < 0.001; and Anosim 
tests, R = 0.252, p < 0.001, Fig. S4). Distance-decay curves for all four 
typical ecosystems were significant. The slope was the steepest in 
wetland soils (slope = - 0.297, R2 = 0.102) and the flattest in agricul
tural soils (slope = − 0.192, R2 = 0.022; Fig. 2a). The ecological pro
cesses behind the distance-decay curves were then estimated, and the 
variations of taxon pool size (γ-diversity), dispersal rate (DR－m value of 
Sloan neutral models), and outlying mean index (OMI－selection) were 
compared in agricultural, forest, grassland, and wetland soils. The 
γ-diversity was the highest in forest, grassland, and wetland soils, and 
lowest in agricultural soils (Fig. 2b). Effect of DR was significantly 
higher in agricultural than other soils (Fig. 2c), while OMI was the 
highest in wetlands and lowest in agricultural fields (Fig. 2d). This result 
was further supported by the proportion of shared taxon (potential 
dispersal) and the environmental heterogeneity (Figs. S5a and b). 
Moreover, bacterial α-diversity was the highest in agricultural fields and 
lowest in wetlands, while β-diversity had a reversed pattern (Fig. 2e and 
f).

To further disentangle how taxon pool size and ecosystems processes 
affect bacterial diversity, we examined the relationship between bacte
rial (α and β) diversity and γ-diversity, dispersal rate, and OMI. Bacterial 
α-diversity increased with increasing γ-diversity in agricultural, forest, 
and wetland soils and when all four ecosystems were considered 
together (Fig. 2g). No significant correlations were found between 
γ-diversity and bacterial β-diversity in various ecosystems, although 
γ-diversity slightly promoted bacterial β-diversity when all four eco
systems were considered together (Fig. 2g). In addition, the DR and 
proportion of the shared taxon had a significant positive influence on 
bacterial α-diversity in all four ecosystems, but a negative effect on 
bacterial β-diversity (Figs. 2h and S5c). In contrast, bacterial α-diversity 
decreased with increasing OMI or environmental heterogeneity, but 
β-diversity increased (Figs. 2i and S5d).

To disentangle the main predictors of soil bacterial diversity in 
various ecosystems, we evaluated the relative importance of γ-diversity, 
dispersal rate, and OMI for bacterial (α and β) diversity by random forest 
analysis. Dispersal rate was the primary factor affecting bacterial α-di
versity in agricultural fields, forests, grasslands, wetlands, and when all 
four ecosystems were considered together (Fig. S6). Moreover, dispersal 
rate was the most important variable for predicting bacterial β-diversity 
in agricultural, forest, and grassland soils, while the β-diversity was 
highly structured by OMI in wetland soils and when all four ecosystems 
were considered together (Fig. S6).

3.2. Effects of dispersal and selection-induced bacterial phylotypes on 
their related functional genes

To further examine the relative importance of dispersal and selection 
for the finer individual taxa levels, we first identified the bacterial 
phylotypes that were positively affected by dispersal and OMI, respec
tively. A total of 349 ASVs and 222 ASVs were mainly structured by 
dispersal and selection, respectively. Specifically, the relative abun
dance of Bacteroidota, Chloroflexi, Actinobacteriota, Acidobacteriota, 
Gemmatimonadota, Planctomycetota, Methylomirabilota, and Alphap
roteobacteria was primarily increased by dispersal, whereas the relative 
abundance of Firmicutes and Desulfobacterota was mainly increased by 
selection (Fig. 3a and Fig. S7). Then, we compared the functional genes 
of the dispersal and selection-induced bacterial phylotypes via meta
genomic sequencing. Our results showed that dispersal-induced 
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bacterial phylotypes, which had the highest relative abundance in 
agricultural soils (Fig. S8a), exhibited more metabolic diversity, 
particularly in the metabolism of fructose and mannose, starch and su
crose, nitrogen, terpenoids and polyketides. Conversely, OMI-induced 
bacterial phylotypes, prevailed in wetland soils (Fig. S8b), primarily 
associated with the sulfur, methane, and xenobiotics biodegradation/ 
metabolism (Fig. 3b). However, there was no significant difference of 
the metabolic diversity between dispersal and selection-induced bacte
rial phylotypes in butanoate metabolism, galactose metabolism, 
glycolysis/gluconeogenesis, glyoxylate and dicarboxylate metabolism, 
propanoate metabolism, TCA cycle, lipid metabolism, and phosphonate 
and phosphinate metabolism (Fig. S9).

3.3. Relationships between ecological processes and taxon associations

To examine how the ecological processes affect soil bacterial co- 
occurrence patterns, we established co-occurrence networks among 
bacterial taxa (Fig. 4). The differences of network-level topological 
features between agricultural, forest, grassland, and wetland soils were 
compared. The number of nodes and edges, average degree, clustering 
coefficient, and density were the highest in wetland, followed by 
grassland, forest and agricultural ecosystems (Fig. 4a and b), which 
indicated wetland network was more complex. In addition, OMI and 
β-diversity was primarily and positively correlated with the complexity 
of taxon associations in all four ecosystems (Fig. 4c-g), indicating 
increasing selection promoted more potential associations between taxa 
increasing β-diversity. However, DR was negatively correlated with 
network complexity except for grassland ecosystems (Fig. 4c, d, f, and 
g). Negative relationship were observed between network complexity 

and γ-diversity in grassland soils and when all four ecosystems were 
considered together (Fig. 4e and g). There was no significant correlation 
between network complexity and α-diversity in diverse ecosystems 
(Fig. 4c–f).

4. Discussion

Understanding the mechanisms underpinning the generation and 
maintenance of soil microbial diversity is a key focus of ecology (Zhou 
and Ning, 2017). Here, based on a national-scale soil survey, we 
demonstrated that: (i) dispersal significantly increased α-diversity and 
decreased β-diversity, whereas strong selection generated the opposite 
pattern; (ii) dispersal and selection structured distinct metabolic di
versity by shaping specific bacterial phylotypes; and (iii) the complexity 
of taxon associations increased when communities had higher selection 
increasing β-diversity.

In the present study, we observed that bacterial α-diversity signifi
cantly increased with increasing dispersal rate. This may be attributed to 
that increasing dispersal increases the opportunities for soil microor
ganisms reaching the habitats by different dispersal strategies (Walters 
et al., 2022), resulting in increased α-diversity. This could also be that 
local communities are not necessarily saturated─current biomass was 
far below carrying capacity of the environment (Cadotte, 2006), causing 
local α-diversity to increase as dispersal rate increase. Our results 
showed that bacterial β-diversity significantly decreased with increasing 
dispersal. This may be due to the fact that dispersal can homogenize 
communities directly via the immigration of individuals, leading to a 
decrease in β-diversity (Evans et al., 2017; Fodelianakis et al., 2019). We 
also found that bacterial α-diversity significantly decreased with 

Fig. 2. Relation between bacterial diversity and taxon pool size, dispersal, and selection. Distance–decay relationships between geographic distances and 
bacterial similarities (1—dissimilarity of the Bray–Curtis metric, a). Changes in γ-diversity (b), dispersal rate (c), outlying mean index (OMI, d), α-diversity (e), 
β-diversity (f) across different ecosystems. The lowercase suggests significant difference between ecosystems by Kruskal-Wallis tests. Linear correlation between 
bacterial diversity and γ-diversity (g), dispersal rate (h), and outlying mean index (OMI, i) was estimated by regression analysis in agricultural fields, forests, 
grasslands, wetlands, and when all four ecosystems were considered together, respectively. Solid and dashed lines represent the significant and nonsignificant 
correlation, respectively. Significance levels were as follows: *p < 0.05, **p < 0.01, ***p < 0.001.
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increasing environmental selection. One possible explanation is that 
increased environmental selection allows only those microbes that can 
adapt to the environment to survive, while those unable to adapt are 
eliminated (Rillig et al., 2019; Yang et al., 2022). Moreover, our results 
showed that bacterial β-diversity significantly increased with rising 
environmental selection. This increase may be due to environmental 
selection filtering out some species from local communities, leading 
different species to occupy distinct and optimal niches along environ
mental gradients. Consequently, the variation in microbial β-diversity 
increases as species disappear and are replaced by others (Vellend, 2010; 
Dini-Andreote et al., 2015; Fodelianakis et al., 2019). In addition, we 
also identified positive effect of γ-diversity on α-diversity, suggesting 
local species richness depends upon the regional species pool in a 
manner consistent with proportional sampling (Cornell, 1993). How
ever, our results are not in line with previous findings, suggesting that 
α-diversity begins to decline at intermediate dispersal rate (Loreau and 
Mouquet, 1999; Mouquet and Loreau, 2002), and β-diversity increases 
with increasing dispersal rate (Vannette and Fukami, 2017). Moreover, 
besides the positive relationships between (α and β) diversity selection, 
negative and unimodal relationships have also been reported (Ronen 
Kadmon and Omri Allouche, 2007; Bar-Massada and Wood, 2014; 
Barczyk et al., 2023). These inconsistent results may be attributed to that 
the effects of dispersal and selection on α- and β-diversity are 
scale-dependent (Tamme et al., 2010; Barczyk et al., 2023). Overall, our 
findings provided statistical evidence on the predictable relationships 
between ecological processes and soil microbial diversity, suggesting 
that the relative variation in soil microbial diversity would count on 
which processes show a greater response at the larger spatial scales 
(Cadotte, 2006).

The second important finding of our study was that dispersal and 
selection had a significant differential influence on bacterial metabolic 
diversity. We found that dispersal-induced bacterial phylotypes, which 
dominated the agricultural soils, exhibited a pronounced metabolic di
versity, particularly in the metabolism of fructose and mannose, starch 
and sucrose, nitrogen, terpenoids and polyketides. This could be that 
agricultural ecosystems are frequently subjected to intensive anthropo
genic management, such as soil tillage and crop transplantation (Ponisio 
et al., 2016), which may facilitate microbial passive dispersal and allow 
more species to reach diverse habitats (Vannette and Fukami, 2017; 
Zhou and Ning, 2017). In turn, this enhances the fundamental metabolic 
functions of living microorganisms, including fructose and mannose 
metabolism, starch and sucrose metabolism, as well as nitrogen meta
bolism, which are all intracellular metabolic processes involving car
bohydrates and nitrogen (Xun et al., 2021). Furthermore, bacterial 
phylotypes induced by strong selection were prevalent in wetland soils, 
and exhibited a higher metabolic diversity, particularly in the sulfur 
metabolism, methane metabolism, and xenobiotics bio
degradation/metabolism. This could be that strong selection could 
screen the specialized species to perform specific metabolic functions. 
For example, our result showed that Desulfobacterota was mainly 
affected by selection. Previous studies have indicated that the sulfur and 
xenobiotics biodegradation/metabolism function were restricted to 
specialized microorganisms (Kumar et al., 2017; Hausmann et al., 
2018). Moreover, several investigations have suggested that anaerobic 
environments (e.g., wetland ecosystems) might introduce specific spe
cies involved in methane metabolism, such as methanogens and 
methane-oxidizing species (Zhu et al., 2015; Lever, 2016). Our study 
illustrates the importance of ecological processes in driving bacterial 

Fig. 3. Effects of dispersal and selection-induced bacterial phylotypes on their related functional genes. The phylogenetic tree was constructed with 571 species with 
clear taxonomic affiliations using maximum likelihood method (a). Only ASVs with significant positive response (Spearman’s correlations, p < 0.05) to dispersal or 
outlying mean index (OMI) and occurring in more than 3% of all soil samples when all four ecosystems were considered together were included in the tree. The 
outside and inside bars of the second ring represent the positive effect r value (Spearman’s correlation) of dispersal and outlying mean index on bacterial taxon 
relative abundances, respectively. Colors for both the branch and the outermost ring represent different Phyla or classes, and the gray color in the tree indicates 
unclassified or other minor phyla. Colors for the third ring represent ASVs primarily affected by dispersal (Brown) and outlying mean index (Blue), respectively. The 
pies represent the proportions of the primarily affected by dispersal (Brown) and outlying mean index (Blue) in different phyla/classes. Differences in the number of 
metabolic pathways were estimated between dispersal and OMI-induced bacterial phylotypes (b). The number of metabolic pathways was counted by Spearman 
correlation between dispersal/OMI-induced bacterial phylotypes and different metabolic pathways. Brown asterisks indicate significantly higher values in taxa 
increased by dispersal; Blue asterisks indicate significantly higher values in taxa increased by OMI (*p < 0.05, **p < 0.01, ***p < 0.001, ns = not significant, 
Wilcoxon rank sum test).
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communities to perform different soil functions and metabolic functions 
across terrestrial ecosystems.

The third notable finding from our study showed that as environ
mental selection intensified across diverse ecosystems, the complexity of 
soil bacterial correlation networks correspondingly increased. Our 
finding is consistent with the notion that intensified environmental se
lection, such as climate warming and increasing precipitation, has the 
potential to enhance the complexity of species associations (Yuan et al., 
2021; Wang et al., 2018). Rising temperature might stimulate various 
biotic potential association owing to more active individual metabolic 
processes and faster growth at higher temperature (Yuan et al., 2021). 
Higher network associations under a higher level of precipitation might 
be explained, in part, by the increasing biomass stimulated by a greater 
supply of water and nutrients, providing more opportunities for 
different species to associations with each other (Wang et al., 2018). 
Moreover, previous studies show that environmental heterogeneity fa
cilitates more interconnected networks with increasing in β-diversity 
(Barberán et al., 2012; Huber et al., 2020) because higher heterogeneity 
lead to taxa occupying multiple different niches (Banerjee et al., 2019). 
In line with these previous researches (Barberán et al., 2012; Huber 
et al., 2020), our results showed that there was more complexity of 
bacterial correlation network in wetland soils, which might be associ
ated with their higher environmental heterogeneity and β-diversity. In 
addition, when environmental selection is strong, microbes are able to 
resist harsh environmental stress by increasing huge number of 
connection with other taxa (Chen et al., 2021; Yuan et al., 2021). We 
also found that the complexity of bacterial association network 
decreased with increasing dispersal. This observation was supported by 
the notion that dispersal might decrease microbial interconnected net
works with the declining in β-diversity (Huber et al., 2020), and too high 
dispersal could reduce species coexistence (Kneitel and Miller, 2003). 
Additionally, since dispersal homogenizes communities, species would 
compete for similar sources, reducing local species coexistence rate 
(Chesson and Neuhauser, 2002; De Cáceres et al., 2012). Overall, our 

findings facilitated the understanding of the maintaining mechanism of 
soil bacterial coexistence.

5. Conclusions

We proposed a conceptual framework describing how dispersal and 
selection affect soil bacterial diversity, functional genes, and taxon 
coexistence (Fig. 5). First, soil bacterial α-diversity increased with 
increasing dispersal, but decreased with increasing selection. In 
contrast, soil bacterial β-diversity decreased when dispersal was high, 
but increased when selection was strong. Second, dispersal and 
selection-induced bacterial phylotypes exhibited significantly different 
metabolic diversity. Third, selection increased the number of interspe
cies interactions increasing β-diversity. Given the importance of biodi
versity for maintaining ecosystem functions, understanding the 
mechanisms that maintain diversity is vital. By revealing the linkages 
between ecological processes and bacterial diversity, functional genes, 
taxon coexistence, our study provides an insightful understanding of the 
mechanisms underlying diversity formation and functional genes of soil 
bacterial communities.
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