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Abstract
Microorganisms are major constituents of the total biomass in permafrost regions, 
whose underlain soils are frozen for at least two consecutive years. To understand 
potential microbial responses to climate change, here we examined microbial commu-
nity compositions and functional capacities across four soil depths in an Alaska tundra 
site. We showed that a 5- year warming treatment increased soil thaw depth by 25.7% 
(p = .011) within the deep organic layer (15– 25 cm). Concurrently, warming reduced 
37% of bacterial abundance and 64% of fungal abundances in the deep organic layer, 
while it did not affect microbial abundance in other soil layers (i.e., 0– 5, 5– 15, and 
45– 55 cm). Warming treatment altered fungal community composition and microbial 
functional structure (p < .050), but not bacterial community composition. Using a 
functional gene array, we found that the relative abundances of a variety of carbon 
(C)- decomposing, iron- reducing, and sulphate- reducing genes in the deep organic 
layer were decreased, which was not observed by the shotgun sequencing- based 
metagenomics analysis of those samples. To explain the reduced metabolic capaci-
ties, we found that warming treatment elicited higher deterministic environmental 
filtering, which could be linked to water- saturated time, soil moisture, and soil thaw 
duration. In contrast, plant factors showed little influence on microbial communities 
in subsurface soils below 15 cm, despite a 25.2% higher (p < .05) aboveground plant 
biomass by warming treatment. Collectively, we demonstrate that microbial metabolic 
capacities in subsurface soils are reduced, probably arising from enhanced thaw by 
warming.
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1  |  INTRODUC TION

Nearly half the world's soil organic carbon (C), estimated to be more 
than 3000 Pg to a depth of 3 m, is stored in the northern circumpolar 
permafrost region (Schuur et al., 2008, 2015). Climate warming might 
promote metabolic rates of soil microbial decomposers in permafrost 
regions (Schuur et al., 2008). As a result, the permafrost ecosystem 
has released a substantial amount of greenhouse gases of CO2, CH4, 
and N2O, which in turn accelerates climate warming (Mackelprang 
et al., 2016; Xue et al., 2016). In order to better understand future 
C fate, it is essential to reveal the underlying mechanisms governing 
soil C dynamics, especially the role of microorganisms.

Recent studies have shown that there is considerable variability 
in microbial biomass abundance, diversity, and community composi-
tion in permafrost regions, owing to large spatial heterogeneity both 
horizontally and vertically in soil texture, ice, and organic- matter 
contents (Deng et al., 2015; Jansson & Tas, 2014; Mackelprang et al., 
2011). Because of nutrient limitation and longer frozen duration, 
soil below 15 cm typically exhibits lower microbial biomass, diver-
sity, and metabolic capacities than its topsoil (Jansson & Tas, 2014; 
Mackelprang et al., 2016). A variety of microbial functional groups 
have been identified, including acetoclastic methanogens, hydrog-
enotrophic methanogens, sulphate reducers, and ferric reducers 
(Jansson & Tas, 2014), which are directly or indirectly related to the 
microbial decomposition of organic matter that releases greenhouse 
gases.

Soil thaw in permafrost regions can alter abiotic soil conditions, 
such as C availability, which in turn affects decomposition rates 
(Monteux et al., 2018). Atmospheric records and modeling have 
collectively shown that massive C supply arising from permafrost 
thaw could be an important source of CO2 across the vast perma-
frost regions (Tesi et al., 2016), which is supported by a multiyear 
permafrost incubation experiment showing that a large amount of 
labile C is readily mineralized after permafrost thaw (Knoblauch 
et al., 2013). Nevertheless, the organic C in mineral soils (usually in 
deep soil depths) may be more recalcitrant to decomposition than in 
organic soils (usually in shallow soil depths) because of a markedly 
more aromatic C and lower content of O- alkyl C (Slater & Lawrence, 
2013). Therefore, aerobic and anaerobic CO2 production in thawing 
permafrost might be lower than recent model estimates, wherein 
the decreased degradability of mineral soils was not considered 
(Knoblauch et al., 2013). This controversy emphasizes the need for 
research to elucidate the mechanisms of microbial degradation of 
soil C pools in permafrost regions, a prerequisite for accurate quan-
tification of the magnitude of C loss under future climatic scenarios 
(Woodcroft et al., 2018).

The recent International Panel on Climate Change (IPCC) assess-
ment reports project a continuous trend of global warming in the 
next decades, which could result in widespread permafrost thaw in 
Arctic ecosystems (Stocker et al., 2014). To understand potential mi-
crobial responses to those climate changes, we set up a study site in 
the permafrost region of Eight Mile Lake, Alaska, USA, to compare 
the winter warming treatment to its unwarmed control, as previously 

described (Natali et al., 2014). Previously, we found that warming 
treatment steadily increased both thaw depth and soil moisture over 
time (Salmon et al., 2016). When soil samples were analysed after 
1.5 years of warming treatment, we found that warming significantly 
altered the metabolic capacities of microbial communities in the top-
soil, which was measured by gene abundances related to metabolic 
pathways (Xue et al., 2016). However, the change was only detected 
by a functional gene microarray named GeoChip rather than metag-
enome sequencing (Xue et al., 2016), suggesting that choices of 
technologies could lead to conflicting observations.

After five years of warming treatment, here we examined mi-
crobial community compositions and functional capacities across 
four soil depths (i.e., 0– 5 cm, 5– 15 cm, 15– 25 cm, and 45– 55 cm) 
in the active layer, which are hereafter referred to as the surface 
organic layer, the middle organic layer, the deep organic layer, and 
the mineral layer. In the previous study adopting a metagenomics 
analysis based on shotgun sequencing, we showed that the relative 
abundances of functional genes associated with C decomposition 
and methanogenesis in subsurface soils below 15 cm (referred here 
as to the deep organic layer and the mineral layer) increased with 
warming treatment (Johnston et al., 2019). To verify the reliability 
of the results and extend the research to other soil layers, here we 
adopted the amplicon sequencing technology of marker genes to an-
alyze the bacterial and fungal communities and quantify their abun-
dances. We also adopted GeoChip to analyse microbial metabolic 
capacity. Since warming- induced soil thaw creates vertical water 
flow among different soil layers, our overarching hypothesis is that 
5- year warming treatment would significantly alter soil microbial 
community composition and increase metabolic capacities in sub-
surface soils, as observed in the metagenomics analysis (Johnston 
et al., 2019). We also hypothesized that microbial responses varied 
by soil depths. In addition, recent studies to examine warming ef-
fects on soil microbial diversity (Guo et al., 2019), community com-
position (Guo et al., 2018), and activities (Metcalfe, 2017; Xue et al., 
2016) have only occasionally considered the community assembly 
processes classified into deterministic (e.g., environmental selection 
and competition) and stochastic (e.g., random colonization and drift) 
processes. Therefore, it remains unknown how warming in Alaska 
tundra affects the relative importance of ecological processes un-
derlying soil microbial community assembly. We also hypothesize 
that warming imposes selective pressure, thus decreasing the overall 
stochasticity.

2  |  MATERIAL S AND METHODS

2.1  |  Site description

Established in 2008, The CiPEHR project, acronym for the Carbon 
in Permafrost Experimental Heating Research project, is situated 
in the northern foothills of the Alaska Range (~670 m elevation, 
63°52'59'' N, 149°13'32'' W) highlighted with discontinuous perma-
frost and acidic soil that settle on a gentle northeast- facing slope. 
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The monthly mean temperature of the study site ranges widely from 
a low of – 6°C in December to a high of +15°C in July. In 1977– 2013, 
the mean annual air temperature was – 1.45 ± 0.25°C. The average 
annual precipitation was 216 ± 24 mm from 2004 to 2013. The soil 
is classified as a Gelisol, which comprises a 45– 65 cm thick organic 
horizon above a mineral layer composing of a cryoturbated mixture 
of loess and glacial till. The dominant vegetation is a deciduous shrub 
Vaccinium uliginosum and a tussock- forming sedge Eriophorum vagi-
natum. Permafrost thaw and thermokarst forming have been occur-
ring over recent decades.

2.2  |  Soil sampling

The soil has been warmed since October 2008 by the aboveground 
snow layer, which serves as a thermal insulator. To increase the depth 
of the snow layer, six 1.5- m tall and 8- m long snow fences were in-
stalled at the CiPEHR site between the winter warming and control 
plots in the last week of every September (Figure S1a). Each fence 
represents a warming- control plot pair. Three blocks, each consist-
ing of two plot pairs, were approximately 100 m from each other 
with fences placed 5 m apart (Natali et al., 2014). The warmed plot 
of each snow fence was distributed at the leeward side for 5 m from 
the fence, while the paired control plot was distributed at the wind-
ward side for 8– 14 m from the fence. The snow thickness increased 
from an average of 26 cm in control plots to 104 cm in the warming 
plots (Natali et al., 2014). To maintain the same soil hydrological and 
light conditions, the removal of both extra snow and snow fences 
occurred during March 8– 15, which is within early spring before 
the growing season (May– September). This manipulation prevents 
additional snow from affecting the moisture as an undesirable side 
effect.

After five years of winter warming treatment, soil samples were 
taken from each plot in May 2013 with electric drills, as previously 
described (Xue et al., 2016). The cores were sliced at depths of 
0– 5 cm, 5– 15 cm, 15– 25 cm, and 45– 55 cm (Figure S1b). In total, we 
took three blocks × 2 plots × 2 treatments × 4 depths = 48 samples. 
Those soil samples were used for analysing microbial community and 
environmental factors.

2.3  |  Environmental factors

Soil temperature was automatically measured using CR1000 data 
loggers with Type- T thermocouples (Campbell Scientific Inc.) at each 
depth of 5, 10, 20, and 50 cm for every 30 min in each plot. Soil mois-
ture was measured by oven- drying the sampled soil at 60°C until 
reaching constant weights. Soil thaw depths were measured weekly 
using a metal probe by pushing through the soil until it reaches the 
ice. Since aboveground vegetation could affect belowground ecosys-
tem, we measured aboveground plant biomass with a nondestructive 
point- frame method using a 60 × 60 cm frame with a grid size of 8 × 
8 cm to construct 49 grid points, as previously described (Natali et al., 

2012). While the species identity and tissue type were recorded, a 
rod with 1 mm diameter was placed upright through the grid until 
it touched the plants at each grid point. After drying at 60°C, soil 
samples were assembled into combustion tins; C and N content was 
measured using an ECS 4010 Elemental Analyser (Costech Analytical 
Technologies). Ecosystem respiration (Reco) and growing season net 
ecosystem exchange (NEE) were measured by an LI- 820 infrared gas 
analyser (LI- COR Biosciences) coupled to flux chambers as previously 
described (Natali et al., 2011). For Reco measurements, the flux cham-
ber was covered by a dark tarp to exclude photosynthesis. Gross pri-
mary productivity (GPP) was calculated as the difference between 
NEE (positive values defined as C sink) and Reco.

2.4  |  Soil DNA extraction

Soil DNA was extracted via intensive grinding with liquid N and puri-
fied with a PowerMax Soil DNA Isolation Kit (MO BIO Laboratories 
Inc.). DNA quality was assessed by a NanoDrop ND- 1000 
Spectrophotometer (Thermo Fisher Scientific Inc.) using absorb-
ance ratios of 260/280 and 260/230 nm. DNA was then quantified 
by Pico Green using a FLUOstar OPTIMA fluorescence plate reader 
(BMG LabTech Inc.).

2.5  |  Quantitative PCR

Quantitative PCR (qPCR) was performed to determine the abso-
lute abundance of 16S rRNA gene and fungal Internal transcribed 
spacer (ITS) region. Universal primers 515F and 806R (Caporaso 
et al., 2011) were used for targeting the V4 region of the 16S rRNA 
gene, and universal primers ITS7F and ITS4R (Ihrmark et al., 2012) 
were used for targeting the fungal ITS region. Triplicate 25- μl reac-
tions were used, which contained 12.5 μl of SsoAdvanced Universal 
SYBR Green Supermix (Bio- Rad, Hercules), 350 nM of the forward 
primer, 350 nM of the reverse primer, and 1 μl of DNA template. A 
thermocycler program of 35 cycles of 95°C for 20 s, 53°C (16S rRNA 
gene) or 52°C (fungal ITS region) for 25 s, and 72°C for 30 s was 
performed on an IQ5 Multicolor Real- time PCR Detection System 
(Bio- Rad). Gene copy numbers were determined by a standard curve 
constructed either with 16S rRNA gene segment of E. coli JM109 
competent cells (Agilent Technologies Inc.) (R2 of the standard curve 
= 0.9999) or fungal ITS segment of Saccharomyces cerevisiae strain 
18824 (Leibniz Institute DSMZ) (R2 of the standard curve = 0.9835) 
in a TA cloning vector (Promega). For each soil sample, three techni-
cal replicates were included for qPCR.

2.6  |  High- throughput amplicon sequencing and 
raw data processing

For amplicon sequencing library preparation, primer pairs 515F 
and 806R (Caporaso et al., 2011) were applied to amplify the 
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V4 hypervariable region of 16S rRNA gene, and primer pairs ITS7F 
and ITS4R (Ihrmark et al., 2012) were applied to amplify the fungal 
ITS region. To avoid bias introduced by long sequencing primers, we 
used a two- step PCR protocol as previously described (Wu et al., 
2017). Both steps used 25 μl reactions consisting of 0.25 U of high 
fidelity AccuPrime Taq DNA polymerase (Life Technologies), 2.5 μl 
of 10 × PCR buffer II including dNTPs (Life Technologies), 0.4 μM 
of both forward and reverse primers, and 10 ng of DNA template 
(only for the first PCR step). After the first PCR step, the triplicate 
products were combined, purified with an Agencourt AMPure XP 
kit (Beckman Coulter), eluted in 50 μl water, and aliquoted into 
three new PCR tubes (15 μl each) as the template for the second 
PCR step. Because all samples were sequenced together, we used 
reverse primers linking to a unique barcode sequence for each 
sample in the second PCR step to differentiate samples. Thermal 
cycling conditions of PCR were denaturation at 94°C for 1 min, 
then 10 cycles (the first step) or 20 cycles (the second step) of 
amplification at 94°C for 20 s, 53°C (16S rRNA genes) or 52°C (ITS) 
for 25 s, and 68°C for 45 s, followed by a final 10- min extension 
at 68°C.

Sequencing libraries were prepared according to the MiSeq 
Reagent Kit Preparation Guide (Illumina), with all samples pooled at 
equal molarity for 16S rRNA gene or ITS. The combined sample li-
brary was diluted to 2 nM, denatured with 0.2 N fresh NaOH, diluted 
to 300 µl and 20 pM by Illumina HT1 buffer, and then mixed with 
90 µl of 12 pM PhiX, and 210 µl of prechilled HT1 buffer. The library 
(600 µl) was then loaded with read 1, read 2, and index sequencing 
primers on a 500- cycle (2 × 250 paired ends) reagent cartridge and 
run on a MiSeq benchtop sequencer (Illumina).

Sequences were processed on IEG Sequencing Analysis 
Pipeline (the Sequencing Analysis Pipeline in (www.ou.edu/ieg/
tools/ data- analy sis- pipeline). Sequences were trimmed using 
BTRIM with a minimum threshold quality score of 20, a minimum 
length of 100 bp, and within a 5- bp window size. Forward and 
reverse reads with at least a 50- bp overlap, and ≤5% mismatches 
were joined using FLASH (Magoč & Salzberg, 2011). After se-
quences with ambiguous N bases were removed, joined sequences 
with lengths 245– 260 bp for the 16S rRNA gene and 100– 450 bp 
for the ITS region were submitted for chimera removal by U- Chime 
(Edgar et al., 2011). OTUs were clustered through Uclust at a 97% 
similarity level (Edgar et al., 2011) and assigned for taxonomies 
through the RDP classifier (Wang et al., 2007) with a confidence 
cutoff of 0.5. Singleton sequences were removed. The remaining 
sequences were randomly resampled to a depth of 34,673 reads 
per sample for the bacterial 16S rRNA gene and 9,255 reads per 
sample for the fungal ITS region.

2.7  |  GeoChip 5.0 analyses and raw data processing

Microbial functional genes were analysed using a microarray- based 
tool –  the 180 K version of GeoChip 5.0 (Agilent Technologies 
Inc.). This microarray contains 161,961 probes targeting 1447 gene 

families, including genes associated with 12 major functional cat-
egories, biogeochemical processes of C, N, P, S, and metal cycling 
(Shi et al., 2019). It also contains 5282 probes targeting 16S rRNA 
gene sequences as positive controls and 3390 Agilent- Standard 
negative controls. Before hybridization, 1 µg of template DNA was 
labeled with Cy3 for each sample using random primers, dNTP so-
lution, and Klenow, as previously described (Ma et al., 2019). DNA 
was then purified with Qiagen QIAquick Kit (Qiagen Inc) and dried 
using a SpeedVac (ThermoFisher Scientific Inc.). After denaturing, 
labeled samples were hybridized with GeoChip 5.0 M microarrays 
at 67°C in the presence of 10% formamide for 24 h. Subsequently, 
microarrays were washed, dried, and scanned at 100% laser power 
and photomultiplier tube on an MS200 Nimblegen microarray 
scanner (Roche Nimblegen Inc.). Scanned images were quantified 
into signal intensities with Agilent's Data Extraction software. 
Raw signal intensities were uploaded onto an online pipeline 
(www.ou.edu/ieg/tools/ data- analy sis- pipeline) for quality control, 
normalization, and analyses. We normalized the signal intensity of 
each detected probe by adjusting relative abundance, removing 
spots with <2 signal- to- noise ratio or <1.3 signal intensity of back-
ground, and removing outliers based on judgments of 2 standard 
deviations.

2.8  |  Statistical analyses

Various statistical analyses were performed and carried out via pack-
age vegan (v.2.3- 2) (Oksanen et al., 2013) in R software version 3.2.2 
(R Core Team, 2014). Microbial α- diversity was represented by OTU 
or functional gene richness. β- diversity was calculated by a dissimi-
larity matrix using the Bray- Curtis index. Permutational multivariate 
analysis of variance using distance matrices (PERMANOVA) was used 
to determine the effects of warming, soil depth, and their interactions 
on microbial community structure dissimilarity represented by the 
Bray- Curtis dissimilarity index, using function adonis of the vegan R 
package (Dixon, 2003). Partial Mantel tests and canonical correspond-
ence analysis (CCA) were used to link major environmental factors to 
microbial community structure, using functions mantel.partial and cca 
of the vegan R package (Dixon, 2003). Pearson's correlation analysis 
was used to examine the correlation between microbial abundance 
and environmental factors such as soil moisture and winter soil tem-
perature. To examine the effects of experimental warming on micro-
bial communities and environmental factors, we performed linear 
mixed models, in which the block was used as a random intercept ef-
fect. The lme4 R package was used to implement linear mixed models 
(Bates et al., 2014). Wald type II χ² tests were used to calculate the 
p- values from the LMMs using the car R package (Fox & Weisberg, 
2018). p- values were adjusted based on false discovery rate according 
to multiple comparisons among sites. Unless otherwise stated, values 
of p ≤ .05 are regarded as statistically significant. To disentangle the 
relative importance of deterministic and stochastic mechanisms un-
derlying community assembly, a null model analysis based on Bray- 
Curtis metrics was used as previously described (Guo et al., 2018). In 

http://www.ou.edu/ieg/tools/data-analysis-pipeline
http://www.ou.edu/ieg/tools/data-analysis-pipeline
http://www.ou.edu/ieg/tools/data-analysis-pipeline
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brief, the stochastic ratio was calculated as one minus the proportion 
of the difference between the observed Bray- Curtis similarity and the 
null expected similarity divided by the observed similarity, as previ-
ously described (Zhou et al., 2014). The stochastic ratio was calculated 
for warming and control samples in each depth, using the web- based 
pipeline (http://ieg3.rccc.ou.edu:8080; NST method). This index quan-
tifies the relative importance of stochastic processes (e.g., random 
dispersal and ecological drift) compared to that of deterministic pro-
cesses (e.g., abiotic filtering and biotic competition).

3  |  RESULTS

3.1  |  Environmental factors

Winter warming treatment significantly (p < .05) increased soil tem-
perature by 0.4– 0.8°C across four layers, with narrower effects in the 
deep organic layer and the mineral layer (Table S1). However, warming 
treatment increased soil temperature of the growing season signifi-
cantly by 1.0– 1.1°C only in the deep organic layer and the mineral layer. 
Accordingly, warming treatment increased soil thaw depth in May 2013 
from 18.3 ± 0.4 to 23.0 ± 1.5 cm (linear mixed model, p = .001), which 
was within the deep organic layer. Duration of annual soil thaw was ex-
tended from 104 days to 112 days in the deep organic layer, and from 
46 days to 79 days in the mineral layer. Warming treatment also consider-
ably increased aboveground plant biomass and gross primary productiv-
ity (GPP). Ecosystem respiration (Reco) was increased for 72.9% (p < .05).

3.2  |  Microbial abundance

Quantitative PCR (qPCR) was performed to determine the absolute 
abundance of bacterial 16S rRNA gene and fungal Internal transcribed 
spacer (ITS) region per dry soil weight. Bacterial abundance was simi-
lar across all four depths, with an average of 3.8 × 107 copies/g soil 
(Figure 1). In contrast, fungal abundance steadily decreased with soil 
depths from 2.7 × 107 copies/g dry soil in the surface organic layer to 
1.9 × 106 copies/g soil in the mineral layer, suggesting that fungal abun-
dance was more affected by soil depths. Warming treatment affected 
bacterial and fungal abundance for the deep organic layer, in which bac-
terial abundance was 37% lower, and fungal abundance was 64% lower 
in the warmed plots than those in the control plots (Figure 1). Therefore, 
soil thaw with warming treatment imposed an adverse effect on the 
microbial abundance in the deep organic layer at the time when we col-
lected samples (i.e., May 2013). In contrast, warming increased fungal 
abundance in the surface organic layer (Figure 1b).

3.3  |  Bacterial diversity and composition

A total of 18,722 bacterial OTUs were generated from 3,264,397 
raw sequences of 16S rRNA gene amplicons. Among them, 9299 
(49.7%) OTUs closely matched to identified taxa at the genus 

level, suggesting that current database coverage of bacterial taxa 
remains limited in the tundra soil environment. The taxa distribu-
tion of bacterial communities fit a lognormal model (Figure S2), 
showing a long- tail pattern in which the top 167 abundant OTUs 
(0.89% of the total OTU richness) accounted for 50% of the total 
sequences. The most abundant phyla included Acidobacteria, 
Proteobacteria, and Actinobacteria (Table S2). The most abundant 
OTU was from the Janibacter genus, accounting for 1.72% of total 
sequences. The next four abundant OTUs were related to genera 
Bradyrhizobium (1.54% of total sequences), Gp3 (1.47% of total se-
quences), Pseudolabrys (1.03% of total sequences), or Conexibacter 
(0.96% of total sequences). Those abundant taxa substantially var-
ied by soil layers. For instance, a Pseudolabrys OTU accounted for 
3.27% of relative abundance in the mineral layer but dramatically 
decreased to 0.002% of relative abundance in the surface organic 
layer.

F I G U R E  1  Soil bacterial and fungal abundances measured 
by qPCR analyses. (a) Bacterial abundance measured by the 16S 
rRNA gene. (b) Fungal abundance measured by ITS. The difference 
between warming treatment and control in each layer was 
examined by the linear mixed model, and statistical significance 
is based on Wald type II χ² tests, denoting as ***p < .001, **p 
< .01, and *p < .05. Lines represent the mean values, and error 
bars represent the standard error 
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Notably, the phylum Dormibacteraeota accounted for only 0.44% of 
the sequence abundance in the surface organic layer; however, it in-
creased to 1.61% in the middle organic layer, further increased to 3.28% 
in the deep organic layer, and decreased to 2.69% in the mineral layer 
(Table S2). Mantel test and Pearson correlation analysis showed that the 
top environmental factor linking to Dormibacteraeota community com-
position or abundance was the growing season temperature (Mantel r = 
0.60, adjust p = .002; Pearson r = – 0.51, adjust p = .001), followed by 
soil thaw duration, water- saturated time, and soil C/N ratio (Table S3).

Soil depth was a strong factor in determining bacterial commu-
nity structure, while warming treatment showed no influence (Table 1). 
Bacterial OTU richness, one of the α- diversity indices, differed between 
the middle and deep organic layers, which were largely similar to the results 
of α- diversity analyses using indices (Figure S3a). Those diversity indices 
were highly intercorrelated, suggesting that choices of α- diversity indices 
did not affect the results substantially (Figure S4; Pearson r = 0.83– 0.95, p 
< .001). In addition, the α- diversity analysis was not affected by sequence 
depths, as similar results were obtained with a lower sequence depth 
(Figure S5). Warming treatment also increased the within- treatment bac-
terial β- diversity in the surface organic layer, the middle organic layer, and 
the mineral layer (Figure S6a), that is, warming treatment increased com-
munity dissimilarity within biological replicates in those three layers.

3.4  |  Fungal diversity and composition

A total of 2331 fungal OTUs were generated from 1,084,585 raw se-
quences of the ITS region amplicons. The most abundant phyla were 
Ascomycota and Basidiomycota. The most abundant OTU was identified 
to the family level of Herpotrichiellaceae, accounting for 7.7% of total se-
quences. Although soil depth remained to be the major determinant of 
fungal community composition, the warming treatment exerted a weaker 
but significant effect on fungal community composition, suggesting that 
fungi were more sensitive to warming treatment than bacteria (Table 1). 
Warming treatment reduced fungal α- diversity for 55.7% in the mineral 
layer (p = .026, Figure S3b) and increased within- treatment fungal β- 
diversity in the middle and deep organic layers (Figure S6b).

3.5  |  Microbial functional diversity and 
composition

We analysed a wide variety of functional genes by GeoChip. In 
agreement with qPCR, GeoChip analysis revealed that warming 

treatment significantly decreased relative abundances of functional 
genes derived from fungi in the deep organic layer (Figure S7). 
Functional composition showed a general consistency with the com-
munity composition variations derived from the 16S rRNA gene am-
plicon sequencing data (Mantel test's r = 0.46, p = .001) and the ITS 
sequencing data (Mantel test's r = 0.53, p = .001). Both soil depth (F 
= 13.94, p = .001) and the warming treatment (F = 3.42, p = .009) 
significantly affected functional community compositions (Table 1). 
However, functional α- diversity, calculated by functional gene rich-
ness, was similar across all layers (Figure S3c).

3.6  |  C metabolism genes

The breakdown of high molecular- weight polysaccharides, in-
cluding starch, cellulose, hemicellulose, lignin, and chitin, is 
the first stage of C decomposition pertinent to soil C storage 
(Woodcroft et al., 2018). A total of 9386 GeoChip probes detect-
ing polysaccharide- decomposing genes had positive signals, sug-
gesting that a wide range of microorganisms were responsible for 
the functionality of C decomposition. Substantially more gene 
probes were decreased in signal intensity (p < .05) than those in-
creased by warming treatment (Figure S8), especially in the mid-
dle organic layer and the deep organic layer. Those genes are 
responsible for decomposing both labile and recalcitrant C. For 
example, the total signal intensity of genes encoding phenol oxi-
dase for aromatic component decomposition decreased 10.0% in 
the deep organic layer by warming treatment (Figure 2 and Table 
S4). Functional genes encoding phospholipase also decreased by 
11.0% in the deep organic layer. These results of C metabolism 
genes were contradictory with what results of the metagenom-
ics analysis (Johnston et al., 2019), which showed that warming 
treatment increased the relative abundances of genes involved in 
C decomposition in the deep organic layer.

Fermentation and methanogenesis are of critical concern in 
thawing permafrost, in which CH4 release by monosaccharide 
decomposition is increasing rapidly (Christensen et al., 2004). 
Fermentation of ethanol, propionate, acetate, and lactate by reduc-
tive tricarboxylic acid cycle is a common metabolism encoded by 
Actinobacteria and Acidobacteria, which are particularly abundant in 
the deep organic layer and the mineral layer (Table S2). We also ob-
served increased relative abundances of fermentative members of 
Chloroflexi (Anaerolineae) and Firmicutes (Clostridia) with increased 
soil depth, indicating higher fermentation potential in subsurface 

Effects df

Bacteria Fungi Functional genes

F p- value F p- value F p- value

W 1 1.60 .12 1.90 .02 3.42 .009

D 3 20.29 .001 3.68 .001 13.94 .001

W × D 3 1.13 .29 0.90 .71 2.37 .003

Abbreviations: D, depth; df, degree of freedom; F, F- statistic value; W, warming.

TA B L E  1  Effects of warming and 
soil depth on microbial community 
compositions by PERMANOVA
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soils. For methanogenesis, we examined mcrA probes encoding the 
α- subunit of methyl coenzyme M reductase, a biomarker of obli-
gate anaerobic methanogenesis, to catalyze the final step in bio-
genic CH4 production. A total of 50 mcrA probes measuring the 
metabolic potential for hydrogenotrophic and acetoclastic metha-
nogens showed positive signals, suggesting this community could 
utilize both pathways for methanogenesis (Table S5).

3.7  |  Iron reduction and sulphate reduction

In anoxic permafrost region, iron and sulphate reduction is im-
portant for accepting electrons that necessitate fermentation 
(Mackelprang et al., 2016). However, Fe(III)- reducing genes, such 
as those encoding c- type cytochromes, were decreased substan-
tially (p < .05) by warming treatment (Table S6). Cytochromes 
are iron- containing hemeproteins that play a crucial role in metal 
reduction and electron transfer reactions. This observation coin-
cided with the decreasing trend of C- decomposing genes (Figure 2 
and S8), suggesting a potential coupling between Fe(III) reduction 
and C decomposition.

Many iron cycling and uptake genes were also susceptible to 
warming treatment (Tables S6 and S7). Those genes included iuc en-
coding an aerobactin siderophore biosynthesis protein from Vibrio 
coralliilyticus ATCC BAA- 450 and Yersinia intermedia ATCC 29909, 
which were decreased by warming treatment in both the middle or-
ganic layer and the mineral layer (p < .03, Table S7). Additionally, 
the heme receptor- encoding gene hxuC associated with Haemophilus 
influenzae 86- 028NP and Mannheimia haemolytica serotype A2 str. 
OVINE also substantially decreased in the deep organic layer (p 
<  .03).

Multiple genes involved in sulphate reduction were decreased 
by warming treatment, especially for the deep organic layer 
(Tables S6 and S7). For instance, the total signal intensity of AprA 
genes encoding the adenylylsulphate reductase decreased by 
18.7% in the deep organic layer. The most susceptible AprA genes 
were those associated with Desulfobulbus propionicus DSM 2032, 
Thiobacillus plumbophilus, and an uncultured α- Proteobacterium 
(Table S7). The PAPS reductase gene, which encodes the phos-
phoadenosine phosphosulphate reductase from Ustilago maydis 
521, was also decreased in the deep organic layer by warming 
treatment.

F I G U R E  2  Warming effects on C degradation genes in the deep organic layer. The relative changes in the average signal intensity of 
functional genes by warming treatment are shown. Warming effects were examined by two- tailed t- test, and the significance levels are 
denoted by the asterisks: ***p < .001, **p < .01, and *p < .05. Bars represent the mean values, and error bars represent the standard error 
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3.8  |  Ecological processes underlying soil microbial 
communities

To discern the relative importance of stochastic and deterministic 
processes in shaping soil community structure, we calculated sto-
chastic ratios based on taxonomic metrics, as previously described 
(Zhou et al., 2014). For bacterial, fungal, and functional gene compo-
sitions, stochastic ratios were consistently <50% (Figure 3), suggest-
ing that deterministic processes could play more important roles in 
shaping microbial community in the permafrost region. Interestingly, 
warming treatment significantly (p  < .05) decreased the relative 
importance of stochastic processes in shaping bacterial and fungal 
communities as well as functional gene compositions in the middle 
organic layer (Figure 3). Warming treatment also decreased the rela-
tive importance of stochastic processes in bacterial community as-
sembly in the surface organic layer and fungal community assembly 
in the deep organic layer. These results indicated that warming treat-
ment could impose significant deterministic effects such as selection 
on microorganisms.

To unveil the major environmental factors contributing to 
the deterministic process, we examined linkages between envi-
ronmental factors and microbial community composition. Water 
saturated time, soil moisture, and soil thaw duration were the top 
three environmental factors correlating with both bacterial and 
fungal community composition (partial Mantel tests, Table 2), 
followed by soil bulk density, C content, and N content. Those 
six environmental factors, except for soil bulk density, were also 
strongly and significantly correlated with functional gene com-
position. Together with growing season temperature and winter 
temperature, they explained 34.4% of the variation in the bacte-
rial community composition, 21.4% of the variation in the fun-
gal community composition, and 38.4% of the variation in the 
functional community composition (p < .005, CCA, Figure S9). In 
contrast, plant factors showed little influence on microbial com-
munities in subsurface soils below 15 cm (partial Mantel test, 
Table S8). For example, plant biomass and GPP were correlated 
(p < .05) with bacterial community composition in the surface or-
ganic layer or the middle organic layer, but were not correlated 
with microbial communities in the deep organic layer or the min-
eral layer.

4  |  DISCUSSION

Although research interest in soil microorganisms of permafrost re-
gions has existed for a long time, only over the past decades have 
we been able to uncover the enormous taxonomic and functional 
microbial diversity of active layer soils of permafrost regions, pav-
ing the road to reveal microbial responses to climate changes. 
Unexpectedly, our overarching hypothesis that 5- year warming 
treatment would significantly alter soil microbial community com-
position and increase metabolic capacities in subsurface soils is only 
partially supported in this study, since we showed that metabolic ca-
pacities in deep organic layer were decreased (Figure 2). Therefore, 
higher in situ CO2 fluxes were unlikely caused by changes in sub-
surface soil microbial communities, as proposed by Johnston et al. 
(2019). Rather, microbial biomass (Figure 1) and functional capacity 
associated with C metabolism in topsoils (Figure S8 and Feng et al., 
2020) were increased under warming, which could contribute to the 
increased CO2 fluxes.

4.1  |  Microbial community composition

Soil depth, rather than warming treatment, significantly affected 
overall bacterial community composition (Table 1). For example, 
Anaerolinea were abundant across several permafrost regions 
(Mackelprang et al., 2011). Here, our data of 16S rRNA gene se-
quences showed that Anaerolinea steadily increased from 0.001% 
in the surface organic layer to 0.009% in the middle organic layer, 
0.011% in the deep organic layer, and 1.162% in the mineral layer, 
despite the insignificant difference between warmed and con-
trol plots in this study. Interestingly, the phylum Dormibacteraeota, 
which has no cultured representatives so far (Brewer et al., 2019), 
was abundant in subsurface soils. As Dormibacteraeota appears to 
adapt to cold and C- depleted environments (Costello, 2007), it might 
be used as a bioindicator of cold soils because it is highly abundant 
in much permafrost of Alaska (Tas et al., 2014). Here, we found that 
the relative abundance of Dormibacteraeota showed a very strong 
negative correlation with soil temperature but not soil C content, 
suggesting that it might serve as a coldness bioindicator (Table S3). 
Consistently, the deep organic layer, wherein Dormibacteraeota had 

F I G U R E  3  Overall community 
stochasticity. The significances of the 
community difference between warming 
treatment and control are indicated as 
***p < .001, **p < .01, and *p < .05, based 
on two- tailed t- test. Bars represent the 
mean values, and error bars represent 
the standard error 
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a peak abundance, was only slightly lower in soil C content compared 
to topsoil. Thus, it is more likely to be a microbial taxon adapted to 
coldness instead of C limitation.

4.2  |  Microbial functional capacity

A recent study in a Tibetan alpine grassland showed that five- year 
in situ warming treatment reduced both soil organic carbon and lit-
ter decomposition in the subsurface soil (30−40 cm), as evidenced 
by lower hydrolase activity and microbial C use efficiency defined as 
the C partitioning between microbial biomass and respiration (Zhu 
et al., 2021). However, none of these effects was observed in the 
topsoil (0– 10 cm) of Tibetan grassland (Zhu et al., 2021). Despite the 
use of completely different technologies, we observed a substantial 
reduction of bacterial and fungal abundance by warming treatment 
in the deep organic layer (Figure 1), suggesting that microbial func-
tional capacity, in its absolute value, might be reduced. Additionally, 
microbial C use efficiency was also decreased by warming (Manzoni 
et al., 2012). Bacteria have lower biomass C/N ratios than fungi 
(Keiblinger et al., 2010). When N is limited, bacterial C use efficiency 
is lower than fungal C use efficiency. Our results showed that fungi 
abundance was substantially more reduced than bacterial abundance 
in the deep organic layer by warming treatment (Figure 1), resulting 
in a smaller fungal/bacterial ratio that was positively correlated with 
measurements of C use efficiency along with incremental permafrost 
thaw (Chen et al., 2018). Consequently, warming would result in a 
high energy cost by restructuring microbial community composition, 
in addition to elevated metabolic rates (Schuur et al., 2008). The find-
ings of reduced microbial biomass and C- microbial degrading capacity 
in deep organic layer could alleviate energy spent in respiration.

Although vertical soil profiles are often depicted by dividing 
into anaerobic zones overlain by aerobic zones, soil systems are 
more complex in reality, with anaerobic niches found within what 
would typically be characterized as aerobic zones, and vice versa 
(Mackelprang et al., 2016). Interestingly, effective indicators of this 
niche heterogeneity may be given most informatively by microbial 
data. A diversity of key genes involved in starch, hemicellulose, 
lignocellulose, and chitin decomposition has been detected in both 
the active layer and permafrost (Yergeau et al., 2007). We showed 
that substantially more gene probes associated with C decompo-
sition were decreased in relative abundance than those increased 
in warming samples (Figure S8), especially in the middle organic 
layer and the deep organic layer. Unlike our recent metagenomics 
study showing that relative abundance of genes associated with C 
decomposition was increased in the deep organic layer (Johnston 
et al., 2019), our results showed that microbial metabolic capacity 
could be reduced by warming treatment in the deep organic layer. 
The distinct results could arise from different methodologies. 
Although GeoChip has a drawback of only detecting known mi-
croorganisms in the sequencing databases (Zhou et al., 2015), the 
reduction of microbial metabolic capacity revealed by GeoChip 
was consistent with the qPCR result that warming treatment de-
creased bacterial abundance by 37% and fungal abundances by 
64% lower in the deep organic layer (Figure 1). As discussed in 
our previous review article (Zhou et al., 2015), differences of 
GeoChip and metagenomics technologies could result in inconsis-
tent results. For example, our earlier study of 1.5 years warming 
treatment at the CiPEHR site revealed a significant difference in 
microbial metabolic capacity between warming and control sam-
ples as detected by GeoChip, but not detected by shotgun metag-
enome sequencing (Xue et al., 2016).

Environmental factors

Bacteria Fungi Functional genes

rm p- value rm p- value rm p- value

Water saturated time 0.76 .002 0.27 0.007 0.47 .004

Moisture 0.73 .002 0.29 0.007 0.40 .034

Soil thaw duration 0.71 .002 0.28 0.026 0.43 .037

Total C 0.71 .002 0.21 0.039 0.40 .037

Soil bulk density 0.60 .002 0.22 0.056 0.31 .034

Growing season 
temperature

0.55 .002 0.10 0.115 0.29 .004

Total N 0.51 .002 0.19 0.056 0.31 .004

Winter temperature 0.22 .007 0.12 0.157 0.20 .049

C/N ratio 0.14 .025 0.05 0.364 0.14 .072

Plant biomass 0.25 1 - 0.12 0.999 – 0.23 1

Reco – 0.27 1 - 0.19 0.999 – 0.22 1

GPP – 0.31 1 - 0.16 0.999 – 0.23 1

NEE – 0.27 1 - 0.01 0.722 – 0.16 1

Abbreviations: GPP, average gross primary productivity of the growing season; NEE, average net 
ecosystem exchange of the growing season; Reco, average ecosystem respiration of the growing 
season.

TA B L E  2  Partial Mantel tests showing 
the correlations of dissimilarities of 
bacterial community composition and 
those of environmental factors
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Fermentation was also identified as a prevalent microbial pro-
cess in an Alaskan permafrost metagenome study (Lipson et al., 
2013). Revealed by metagenomics profiling, methanotrophs in a 
laboratory incubation experiment of permafrost thaw were shown 
to consume much of CH4 despite anaerobic headspace, reflecting 
aerobic niches from permafrost water or soils (Mackelprang et al., 
2011). Here, we detected many mcrA genes (Table S5) and metha-
nogen OTUs, suggesting that there was a substantial methanogen-
esis capacity. The total relative abundance of mcrA genes remained 
unchanged by warming treatment across all soil layers (Table S4), 
which was similar to a recent study showing that mcrA gene cop-
ies through quantitative PCR were not changed by warming treat-
ment (Mackelprang et al., 2011). In sharp contrast, another study 
of mcrA gene copies showed a methanogen bloom after thawing in 
permafrost regions (Wei et al., 2018). Those contradictory results 
might arise from differences in short- term versus long- term warm-
ing effects or high niches heterogeneity in soils. For example, water 
inundation of microsites creates various C- rich anoxic/anaerobic 
environments. A high moisture content limits oxygen availability, 
which stimulates CH4 production while suppresses CH4 oxidation. 
Although anaerobic conditions may attenuate total C loss, emission 
of highly potent CH4 in permafrost regions may contribute more to 
the greenhouse effect than CO2 emissions could under aerobic con-
ditions (Mackelprang et al., 2016).

Iron and sulphate reduction capacities have been detected in the 
active layer and permafrost (Hultman et al., 2015). Concurrently, a 
large number of genes associated with iron reduction have been de-
tected by metagenomics analysis, suggesting that these processes 
may be widespread (Lipson et al., 2013). The frequent detection of 
functional genes associated with iron reduction in our study (Tables 
S6 and S7) implied that it was an important anaerobic pathway in 
permafrost regions, though microbial activities related to iron re-
duction have not been assessed. The sulphate reduction rate at 
Alaska tundra soil was negligible; it is thus only tractable to evalu-
ate sulphate reduction potentials by functional gene profiling. Based 
on 16S rRNA gene sequence annotation, sulphate- reducing and 
sulphur- oxidizing bacteria have been detected in permafrost soils 
(Mackelprang et al., 2016). Furthermore, functional genes associated 
with sulphate reduction were more abundant in thawed subsurface 
soils at depths of 60– 100 cm than in undisturbed permafrost soils 
(Tas et al., 2014). However, our results showed that relative abun-
dances of sulphate reduction genes, as well as iron reduction and 
C- decomposing genes, were decreased (Table S6), providing further 
support for high heterogeneity in permafrost regions.

4.3  |  The ecological drivers underlying soil 
microbial communities

Quantifying the relative importance of deterministic and stochastic 
processes in governing community assembly is an important goal in 
microbial ecology. A previous study showed that metabolites from 
the permafrost microbiome were reduced by warming, probably as 

microbial responses for surviving warming environments (Messan 
et al., 2020). Using a mathematical framework as statistical proxi-
mate (Ning et al., 2019; Zhou et al., 2014), we showed that ecological 
stochasticity of bacteria, fungi, and functional genes in the organic 
layer was decreased by warming treatment (Figure 3), suggesting a 
higher deterministic environmental filtering contributed by intricate 
abiotic and biotic factors. The deterministic processes could drive 
the communities to be more similar or dissimilar than random pat-
terns. For example, competition could eliminate more different and 
less related species that lack certain competitive traits, thus caus-
ing communities to be more similar (HilleRisLambers et al., 2012; 
Mayfield & Levine, 2010). However, competition could also drive 
the communities to be more dissimilar when closely related spe-
cies co- occur less than randomly expected due to competitive ex-
clusion (Mayfield & Levine, 2010; Pontarp & Petchey, 2016). The 
environmental filtering process could also drive communities to be 
more similar under homogeneous environmental conditions or more 
dissimilar if the environment is heterogeneous (Ning et al., 2019). 
We observed increased within- treatment bacterial and fungal β- 
diversity by warming treatment (Figure S6), which might result from 
competitive exclusion or heterogeneous environment selection. 
Consistent with our finding, warming also induced environmen-
tal filtering in a tallgrass prairie site of Oklahoma, USA (Guo et al., 
2018). Further, we found that warming had different effects on the 
stochasticity of bacterial, fungal, and functional gene communities 
in different layers (Figure 3), which might be due to their difference 
in sensitivity to environmental changes. Microbial functional gene 
composition (i.e., functional β- diversity) is decoupled from the tax-
onomy (Louca et al., 2016; Yang, 2021), which explains that warming 
decreased the stochasticity of bacterial or fungal communities in the 
surface or deep organic layer, but did not change the stochasticity of 
functional genes.

Several studies showed that Arctic soil microbial communi-
ties responded slowly to warming treatments (Geml et al., 2015; 
Morgado et al., 2015). Both the composition and functional ca-
pacity of bacterial and fungal communities were changed by 
warming treatment, but only after more than a decade. The most 
pronounced effects of warming treatment were recorded in water- 
saturated field sites, underlining the importance of water in deter-
mining microbial responses to warming treatment (Walker et al., 
2008). Such water- dependent responses were also observed in the 
fungal community of Arctic soils (Geml et al., 2015). In accordance, 
we found that water- saturated time, soil moisture, and soil thaw 
duration were the most important environmental factors correlat-
ing with both bacterial and fungal community composition, while 
GPP appeared not to be important (Table 2). Consequently, water 
table dynamics may explain summer CO2 flux variations across 
treatments at our study site (Mauritz et al., 2017). In a changing 
Arctic climate with both warmer air temperatures and greater 
snowfall, water can become increasingly important in regulating 
warming effects on microbial communities and C- decomposing 
rates (Christiansen et al., 2017). Contradictory to model prediction 
that increased GPP in Arctic ecosystems by climate warming may 
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offset C loss (Oberbauer et al., 2007), landscape trends toward 
greater Arctic C loss have been observed (Belshe et al., 2013). The 
underestimation of C balance may arise from failure to account for 
continued exposure of organic soil C to microbial communities as 
permafrost thaws. Additionally, warming- induced soil thaw affects 
soil moisture and vegetation (Jansson & Tas, 2014), which have not 
yet been firmly linked to microbial responses (Mackelprang et al., 
2016; Monteux et al., 2018).

5  |  CONCLUSIONS

C decomposition and greenhouse gas emission in thawing perma-
frost regions operate primarily through microbial functions such as 
enzyme production, electron transfer, C and nutrient assimilation, 
and growth. Therefore, functional traits can be used to understand 
the community- level responses of microorganisms by measur-
ing community composition and metabolic potential (Green et al., 
2008). Increasing global efforts have recognized the urgent need to 
understand the microbial ecology of permafrost. However, our abil-
ity to predict responses of permafrost regions to a warming world is 
limited, partially owing to lack of a clear understanding of microbe- 
environment interaction and dynamics. As a consequence, the fu-
ture fate of permafrost C depends critically on microbial abundance, 
diversity, metabolic capacity, and activities for C decomposition, 
which are highly uncertain to which extent that climate warming in-
duces greenhouse gas emission. By applying cutting- edge environ-
mental genomics techniques, here we fill the important knowledge 
gap by uncovering how key members of the permafrost microbial 
community and their metabolic capacities could potentially respond 
to climate changes.
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