1 Supplementary Figures

Supplementry Figure 1 Cas9n expression system in *P. putida* KT2440. **a** Synthetic promoter P_{min}^{-1} . Right-angled arrow indicates the potential transcriptional start site. The -35 and -10 regions are in red. **b** Promoter activity test for the four constitutive promotes. The em7-2, trc and tac promoters are referenced from previous studies ^{3, 6, 7}. Each promoter drives a florescent protein-encoding gene (*gfp*). Fluorescence intensity, which was detected to determine the promoter activity, is expressed in arbitrary units normalized for 10⁶ CFU. **c** SDS-PAGE analysis of whole-cell proteins from transformants with control vector (pPROBE-GT) and pCas9n. The full-length His-tagged Cas9 is purified by Ni-NTA

16 column and denoted by the red star. **d** RT-PCR analysis of gRNA in KT2440 carrying either pBBR1MCS2 and pBgRNA, using 16S rRNA gene

17 as an internal calibrator.

Supplementry Figure 2 Cell growth and time course characterization of the plasmid-curing system. **a** Growth curves of KT2440 and KTc9n stains in LB and 15 mM glucose-M9 minimal (supplemented with 20 µg/mL uracil) medium, respectively. **b** Curing of pBBR1-3 expressing GFP is shown as an example. The black circle indicates induced cultures with vanillic acid, whereas the white circle represents non-induced. The percentage of plasmid-carrying cells was determined by the ratio between fluorescent and the total number of cells.

Supplementry Figure 3 Growth and ferulic aicd (FA) consumption of *P. putida* KT2440 mutants. **a-c** The maximum OD_{600} values and residual ferulic acid in medium of KTc9n, KTc9n6 and KTc9n8, when they were cultivated in 20 mM ferulic acid-M9 mineral medium, supplemented with 65-260 mg/L NH₄Cl. **d** Cell dry weights of mutants under 65 mg/L and 130 mg/L NH₄Cl conditions.

57 Supplementry Figure 4 Growth of KTc9n20 in 20 mM ferulic acid-M9 mineral medium, supplemented with 65-1000 mg/L NH₄Cl.

58 Supplementary Tables

59 Supplementary Table 1 Primers used in this study.

Name	Sequence 5'-3'	Application
P _{min} F	tcggGGATCCattgaaatagctgagacacaagcg	to amplify the Pmin promoter for pCas9n and
		pCas9 shuttle vectors
$P_{min} R$	gcgaccGAGCTCctcctagtgtgaaattgttatccgc	to amplify the Pmin promoter for pCas9n and
		pCas9 shuttle vectors
Cas9 F	ctcgatcggcctggATatcg	mutagenic primer for pCas9
Cas9 R	cgatATccaggccgatcgag	mutagenic primer for pCas9
RED F	atgaaccaaggagagtcgcaGGTACCatggatattaatactgaaactgagatcaag	to amplify the gam-bet-exo sequence
RED R	gtcgcGGATCCgctcctactggtattggcacaaacc	to amplify the gam-bet-exo sequence
P _{xylA} F	gacccAAGCTTgcacgtgggaacgatcttag	to amplify the P_{xylA} promoter
P _{xylA} R	GGTACCtgcgactctccttggttcat	to amplify the P _{xylA} promoter
P _{trc} F	ccgcGGATCCcgcaacgcaattaatgtgag	to amplify the P _{trc} promoter
$P_{trc}(pyrF)R$	tgtgtgacaagggcttcgaatgtgtgaaattgttatccgct	to amplify the Ptrc promoter and 20bp sgRNA
		sequence for <i>pyrF</i> gene
Scaffold(pyrF)F	ttcgaagcccttgtcacacagttttagagctagaaatagcaagtt	to amplify the gRNA scaffold sequence
scaffold R	caggtcgacgatactcgag	to amplify the gRNA scaffold sequence
<i>pyrF</i> up F1	ccggGGTACCGGATTTGGCTACAGGCACAAG	to amplify upstream region of <i>pyrF</i> gene for
		pDonor, pGRNA-donor, pBBR1-1
<i>pyrF</i> up F	ccgcGGATCCggatttggctacaggcacaag	to amplify upstream region of <i>pyrF</i> gene for
		pDonor, pGRNA-donor, pBBR1-1, pBBR1-2,
		pBBR1-2-1
<i>pyrF</i> up R	ctggacagccgcaggttaaatgccctggtatgcctgg	to amplify upstream region of pyrF gene for

		pDonor, pGRNA-donor, pBBR1-1
<i>pyrF</i> down F	ttaacctgcggctgtccag	to amplify downstream region of pyrF gene for
		pDonor, pGRNA-donor, pBBR1-1
<i>pyrF</i> down R	ccggGGTACCgtgccgagaagtgccag	to amplify downstream region of pyrF gene for
		pDonor, pGRNA-donor, pBBR1-1, pBBR1-2
pyrF down R2	cccgGAATTCgtgccgagaagtgccagta	to amplify downstream region of pyrF gene for
		pDonor, pGRNA-donor, pBBR1-1
rrnB R	ccggGGTACCaaaaggccatccgtcaggat	to amplify rrnB transcription terminator T1T2 for
		pgRNA, pBgRNA, pBBR1-1, pGRNA-donor
rrnB R2	ccgcGGATCCaaaaggccatccgtcaggat	to amplify rrnB transcription terminator T1T2 for
		pBBR1-1
pUR	cccAAGCTTatgccctggtatgcctgg	to amplify upstream region of <i>pyrF</i> gene for
		pBBR1-2, pBBR1-2-1
pDF	ccgGAATTCttaacctgcggctgtccag	to amplify downstream region of <i>pyrF</i> gene for
		pBBR1-2, pBBR1-2-1
sgRNA(icd)R	ccttcgacaccggcttgacgtgtgtgaaattgttatccgct	to amplify the Ptrc promoter and 20bp sgRNA
		sequence for <i>icd</i> gene
scaffold(icd)F	cgtcaagccggtgtcgaagggttttagagctagaaatagcaagtt	to amplify the gRNA scaffold and 20bp sgRNA
		sequence for <i>icd</i> gene
rrnB F1	ctcgagtatcgtcgacctgcaaataaaacgaaaggctcagtcg	to amplify the terminator rrnB T1T2 for
		pBBR1-3, pgRNA, pBgRNA, pBBR1-1,
		pGRNA-donor
rrnBT7 R2	CCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGGTTTTTTGGGT	the terminator rrnB T1T2 for pBBR1-3
	ACCaaaaggccatccgt	
rrnBT7 R3	cagtccagagaaatcggCTAGCATAACCCCTTGGGGGCCTCTAAAC	to amplify the terminator T7 for pBBR1-3
rrnBT7 R4	gccgGAATTCAAGCTTcatggccacgcagtccagagaaatcggCTAG	to amplify the terminator T7 and palindromic

		sequence for pBBR1-3
P _{van} F	acgggaattccatggccacgcagtccagagaaatcggCCAGGAATTGGGGGATCG	to amplify the P_{van} promoter and palindromic
	GA	sequence for pBBR1-3
P _{van} R	tctctggactgcgtggccatgcttggatccattaaattggagagtcagg	to amplify the P_{van} promoter and 20bp sgRNA
		sequence guiding palindromic sequence for
		pBBR1-3
scaffold F2	catggccacgcagtccagagaaatgttttagagctagaaatagcaagtt	to amplify the gRNA scaffold and 20bp sgRNA
		sequence guiding palindromic sequence for
		pBBR1-3
scaf t500 R	ggcctttTacaaagcccgccgaaaggcgggcttttctgtcaggtcgacgatactcgag	to amplify the gRNA scaffold and t500
		terminator for pBBR1-3
t500tR2 R	ctagTCTAGAaacaggcctgctggtaatcgcaggcctttTacaaagcccgc	to amplify the tR2 terminator for pBBR1-3
<i>icd</i> up F	ctagTCTAGAgcggatgaagtggatgatactc	to amplify upstream region of <i>icd</i> gene for
		pBBR1-3, pBBR1-4
<i>icd</i> up R	cccgatctaaggagaacgacaatcctctcggcagagatgatg	to amplify upstream region of <i>icd</i> gene for
		pBBR1-3
<i>icd pyrF</i> F	catcatctctgccgagaggattgtcgttctccttagatcggg	to amplify <i>pyrF</i> gene for pBBR1-3
<i>pyrF</i> F	tgtcgttctccttagatcggg	to amplify <i>pyrF</i> gene for pBBR1-3
		KTc9n∆vanAB
<i>pyrF</i> R	ttacccacggateteegee	to amplify <i>pyrF</i> gene for pBBR1-3
icd down F	tggcggagatccgtgggtaaacgttaagcgaatggtctg	to amplify downstream region of <i>icd</i> gene for
		pBBR1-3
icd down R	gcccAAGCTTgaattctcgtcggtgaaggtatagatgat	to amplify downstream region of <i>icd</i> gene for
		pBBR1-3, pBBR1-4
P _{tac} F	accgGAATTCAAGCTTacgttatcgactgcacgg	to amplify the P _{tac} promoter for pBBR1-3
P _{tac} R	gcgaccgagctcctccttgtgtgaaattgttatccg	to amplify the P_{tac} promoter for pBBR1-3

<i>gfp</i> F	cacaaggaggagctcggtcgcatgagtaaaggagaagaacttttcact	to amplify <i>gfp</i> gene for pBBR1-3
<i>gfp</i> R	ccggGGTACCctatttgtatagttcatccatgccat	to amplify gfp gene for pBBR1-3
icd down F2	catcatctctgccgagaggatacgttaagcgaatggtctg	to amplify downstream region of <i>icd</i> gene for pBBR1-4
icd up R2	atcctctcggcagagatgatg	to amplify downstream region of <i>icd</i> gene for pBBR1-4
$P_{trc}(tesA)R$	ggcttggtttatgtgctgcatgtgtgaaattgttatccgct	to amplify the Ptrc promoter and 20bp sgRNA sequence guiding <i>tesA</i> gene for pBBR1-5
scaffold(tesA) F	tgcagcacataaaccaagccgttttagagctagaaatagcaagtt	to amplify the gRNA scaffold and 20bp sgRNA sequence guiding <i>tesA</i> gene for pBBR1-5
tesA up F	ctagTCTAGAggtgtggctgtcgaggtta	to amplify upstream region of <i>tesA</i> gene for pBBR1-5, pBBR1-6
tesA up R	cccgatctaaggagaacgacacgctggtatcgccactgat	to amplify upstream region of <i>tesA</i> gene for pBBR1-5
tesA down F	ggcggagatccgtgggtaacccgcacaattgcaacaaa	to amplify downstream region of <i>tesA</i> gene for pBBR1-5
tesA down R	tcgataacgtaagcttattccccgaaaggtgggtcaagagga	to amplify downstream region of <i>tesA</i> gene for pBBR1-5, pBBR1-6
tesA down F2	atcagtggcgataccagcgcccgcacaattgcaacaaa	to amplify upstream region of <i>tesA</i> gene for pBBR1-6
tesA up R2	tttgttgcaattgtgcgggcgctggtatcgccactgat	to amplify downstream region of <i>tesA</i> gene for
P_{trc} (tesB)R	cgatggattcgaggctcaactgtgtgaaattgttatccgct	to amplify the Ptrc promoter and 20bp sgRNA
sg tesB F	gttgagcctcgaatccatcggttttagagctagaaatagcaagtt	to amplify the gRNA scaffold and 20bp sgRNA sequence guiding <i>tesB</i> gene for pBBR1-7

tesB up F	ctagTCTAGAccttgcgatggcgaatcag	to amplify upstream region of <i>tesB</i> gene for pBBR1-7, pBBR1-8
<i>tesB</i> up R	cccgatctaaggagaacgacacattcgttgcacggctactt	to amplify upstream region of <i>tesB</i> gene for pBBR1-7
tesB down F	ggcggagatccgtgggtaatgactcatcggcggttctc	to amplify downstream region of <i>tesB</i> gene for pBBR1-7
tesB down R	GCCCaagettecaatggcatgacgatgactt	to amplify downstream region of <i>tesB</i> gene for pBBR1-7, pBBR1-8
tesB up R2	cattcgttgcacggctactt	to amplify upstream region of <i>tesB</i> gene for pBBR1-8
tesB down F2	aagtagccgtgcaacgaatgtgactcatcggcggttctc	To amplify downstream region of <i>tesB</i> gene for pBBR1-8
P_{trc} (<i>phaC1</i>)R	ggccgtagtcgaggtagtcgtgtgtgaaattgttatccgct	to amplify the Ptrc promoter and 20bp sgRNA sequence guiding <i>phaC1</i> gene for pBBR1-9
sg phaC1 F	cgactacctcgactacggccgttttagagctagaaatagcaagtt	to amplify the gRNA scaffold and 20bp sgRNA sequence guiding <i>phaC1</i> gene for pBBR1-9
phac1 up F	ctagtctagagctggcacagaacgaagac	to amplify upstream region of <i>phaC1</i> gene for pBBR1-9, pBBR1-10, pBBR1-11
phac1 up R	cccgatctaaggagaacgacattgtcctgagacgagtaccg	to amplify upstream region of <i>phaC1</i> gene for pBBR1-9
phac1 down F	tggcggagatccgtgggtaacagacgagggagtgttgcc	to amplify downstream region of <i>phaC1</i> gene for pBBR1-9
phac1 down R	gcccaagcttcgctgaggtcgaagatgtaga	to amplify downstream region of <i>phaC1</i> gene for pBBR1-9, pBBR1-10, pBBR1-11
xhoI C11R	cccgCTCGAGtcaacgctcgtgaacgtagg	to amplify upstream region and a copy phaC1(TphaC1) gene or for pBBR1-10

		(pBBR1-11)
xhoI C11F	cccgCTCGAGaacggagcgtcgtagatgag	to amplify downstream region and a copy phaCl
		gene or for pBBR1-10
phaC1 F kpnI	acggGGTACCGGCCTGCGGGGTTTAGAG	to amplify downstream region and a copy
		<i>TphaC1</i> gene or for pBBR1-10
TphaC1 GF	ggcgggcgtgctgggcggca	mutagenic primer for TphaC1
Tphac1G R	tgccgcccagcacgcccgcc	mutagenic primer for TphaC1
TphaC1 SF	cgacatcctgttctggTCGaa	mutagenic primer for TphaC1
TphaC1 SR	ttCGAccagaacaggatgtcg	mutagenic primer for TphaC1
SR2	ggaaggcggccggcaggcgcgtggtgtcgttCGAccagaacaggatgtcg	mutagenic primer for TphaC1
SF2	ctggTCGaacgacaccacgcgcctgccggccgccttccacggcgacctgatcg	mutagenic primer for TphaC1
SF3	ccttccacggcgacctgatcg	mutagenic primer for TphaC1
P_{trc} (fcs)R	gtgaagttgacccggcgtactgtgtgaaattgttatccgct	to amplify the Ptrc promoter and 20bp sgRNA
		sequence guiding ech-vdh-fcs genes for
		pBBR1-12
sg <i>fcs</i> F	gtacgccgggtcaacttcacgttttagagctagaaatagcaagtt	to amplify the gRNA scaffold and 20bp sgRNA
		sequence guiding ech-vdh-fcs genes for
		pBBR1-12
<i>fcs</i> up F	ctagtctagagagcttgtccacatcgagttc	to amplify upstream region of ech-vdh-fcs genes
		for pBBR1-12; To amplify upstream region and a
		copy <i>ech-vdh-fcs</i> genes for pBBR1-13,
		pBBR1-14, pBBR1-15
<i>fcs</i> up R	cccgatctaaggagaacgacaccatcgacctgggcattca	to amplify upstream region of ech-vdh-fcs genes
		for pBBR1-12
fes down F	tggcggagatccgtgggtaatagtaccgacgacgcttgc	to amplify downstream region of ech-vdh-fcs
		genes for pBBR1-12

fes down R	cgataacgtaagcttattcccacaggtcgccaaggatattct	to amplify downstream region of <i>ech-vdh-fcs</i> genes for pBBR1-12; To amplify downstream region and the second copy of <i>ech-vdh-fcs</i> genes for pBBR1-13
3359 up R	cccgGAATTCTGACGAAAGGACTGAACTGTTG	to amplify downstream region of <i>ech-vdh-fcs</i> genes for pBBR1-14
3359 up R smaI	atccCCCGGGTGACGAAAGGACTGAACTGTTG	to amplify downstream region of <i>ech-vdh-fcs</i> genes for pBBR1-15
2 fes up R	gccgGAATTCTGCTCCTCGATCATGGGTAAT	to amplify upstream region and a copy ech-vdh-fcs genes for pBBR1-13, pBBR1-14, pBBR1-15
2 fes down F	tccgGAATTCtgtcctcgaagacggtgc	to amplify downstream region and the second copy of <i>ech-vdh-fcs</i> genes for pBBR1-13, pBBR1-15
3359 down R	cgataacgtaagcttattcccacaggtcgccaaggatattct	to amplify downstream region of <i>ech-vdh-fcs</i> genes for pBBR1-14, pBBR1-15
Ptrc (vanAB)R	cattgatcgatctcgccggttgtgtgaaattgttatccgct	to amplify the Ptrc promoter and 20bp sgRNA sequence guiding <i>vanAB</i> gene for pBBR1-16
sg vanAB F	accggcgagatcgatcaatggttttagagctagaaatagcaagtt	to amplify the gRNA scaffold and 20bp sgRNA sequence guiding <i>vanAB</i> gene for pBBR1-16
<i>vanAB</i> up F	ctagTCTAGAGCCAGTGAAGATGCTGAAGC	to amplify upstream region of <i>vanAB</i> gene for pBBR1-16, pBBR1-17, pBBR1-18
vanAB up R2	cccgatctaaggagaacgacagccgaacctgctatgccta	to amplify upstream region of <i>vanAB</i> gene for pBBR1-16
vanAB down F2	ggcggagatccgtgggtaagaggcgaatggcaggtgat	to amplify downstream region of <i>vanAB</i> gene for pBBR1-16

vanAB down R	accotocaotcoataacotaaocttattcccocaocaatoocaaooaotoo	to amplify downstream region of <i>vanAB</i> gene for
	aceBiBeuBieBunneBunnBetratteeeBeuBenatBBeuBBBuBiBB	pBBR1-16, pBBR1-17, pBBR1-18
vanB R2	ccggGGTACCgtcagatgtccagcaccagc	to amplify upstream region and a copy vanAB
		gene for pBBR1-17
van F kpnI	ccggGGTACCTTGTAGAGTTGTTCGATGGCTAG	to amplify downstream region and a copy vanAB
		gene for pBBR1-17
vanB EcoRI	cccgGAATTCtcagatgtccagcaccagc	to amplify a copy <i>vanAB</i> gene for pBBR1-18
van F EcoRIGA	CCCGgaattcTTGTAGAGTTGTTCGATGGCTAG	to amplify downstream region and a copy <i>vanAB</i> gene for pBBR1-18
P _{trc} (<i>tesBII</i>) R	ATCCGCTTCGAGGTGGAGGTtgtgtgaaattgttatccgct	to amplify the P _{trc} promoter and 20bp sgRNA sequence guiding <i>tesB II</i> gene for pBBR1-19
sg <i>tesB II</i> F	ACCTCCACCTCGAAGCGGATgttttagagctagaaatagcaagtt	To amplify the gRNA scaffold and 20bp sgRNA
		sequence guiding tesB II gene for pBBR1-19
tesB II up F	ctagTCTAGAGCGGTTCTACATTCGTGAATCT	to amplify upstream region of <i>tesB II</i> gene for
		pBBR1-19, pBBR1-20
tesB up R2	cccgatctaaggagaacgacagcggaatgctgacggaatc	to amplify upstream region of <i>tesB II</i> gene for
		pBBR1-19
tesB II down F2	ggcggagatccgtgggtaagtggtggaagaacaggtgaac	to amplify downstream region of <i>tesB II</i> gene for
		pBBR1-19
tesB II down R	ccgtgcagtcgataacgtaagctttgatcgctgtgccgttgt	to amplify downstream region of <i>tesB II</i> gene for
		pBBR1-19, pBBR1-20
tesB II up R3	gttcacctgttcttccaccacgcggaatgctgacggaatc	to amplify upstream region of <i>tesB II</i> gene for
		pBBR1-20
tesB II down F3	gattccgtcagcattccgcgtggtggaagaacaggtgaac	to amplify downstream region of <i>tesB II</i> gene for
		pBBR1-20
<i>pyrF</i> seq F	gcacggcagtgatcctctt	to sequence $KT\Delta pyrF$

<i>pyrF</i> seq F	gaacgaaggcaagtcctacatc	to sequence $KT\Delta pyrF$
cas9-7	ggctacaaggaagtgaagaagg	to sequence KTc9n
icd seq R	gatgttcggcagcttgatgat	to sequence KTc9n [△] <i>icd</i>
fcs seq F	ctgccgaacagcatctcttg	to sequence KTc9n1 KTc9n2 KTc9n3 KTc9n7 KTc9n8
fcs seq R	aagttgatcgcctgctgaatg	to sequence KTc9n1 KTc9n2 KTc9n3 KTc9n7 KTc9n8 KTc9n Δfcs -ech-vdh KTc9n1
vanAB seq F	gtgttcagttgacgcaaggt	to sequence KTc9n4 KTc9n5 KTc9n6 KTc9n7 KTc9n8
vanAB seq R	ggtgaggtccatgaggttgt	to sequence KTc9n4 KTc9n5 KTc9n6 KTc9n7 KTc9n8 KTc9n∆ <i>vanAB</i>
tesA seq F	ggtgtggctgtcgaggtta	to sequence KTc9n10
tesA seq R	gccaggttgatgacgatgc	to sequence KTc9n10
tesB seq F	ccttgcgatggcgaatcag	to sequence KTc9n11 KTc9n15 KTc9n16
		KTc9n17 KTc9n18 KTc9n19 KTc9n20
tesB seq R	gtcactcagttgttgctcgtt	to sequence KTc9n11 KTc9n15 KTc9n16
		KTc9n17 KTc9n18 KTc9n19 KTc9n20
tesB IIseq F	tcggatgtgacgctggatg	to sequence KTc9n12 KTc9n15 KTc9n16
		KTc9n17 KTc9n18 KTc9n19 KTc9n20
tesB IIseq R	acagtattgccgaacaga	to sequence KTc9n12 KTc9n15 KTc9n16
		KTc9n17 KTc9n18 KTc9n19 KTc9n20
phaCl seq F	gcaccgctgttccttatcac	to sequence KTc9n13 KTc9n14 KTc9n16
		KTc9n18 KTc9n20
phaC1 seq R	gtccagcaagctgaccaga	to sequence KTc9n13 KTc9n14 KTc9n16

	GFP-R2	ccggGGTACCctatttgtatagttcatccatgccat	KTc9n18 KTc9n20 to sequence KTpGT
60			
61			
62			

Target gene	System	Plasmid	Component	The concentration of xylose (mM)	Efficiency
		-	λ -Red recombinase	2	1/2146
F	CRISPR/Cas9n-λ pCas9n-Red, Red pBBR1-1	pCas9n-Red, pBBR1-1	Cas9n gRNA	4	1/108
pyrF				8	1/171
		homologous arms	16	1/10	

63 Supplementary Table 2 Mutation efficiency of the CRISPR/Cas9n-λ-Red system at different xylose inducer concentrations.

Location (GenBank: AE015451.2)	Deletion	Insertion	Size (bp)	Mutation efficie (mutants/colonies)	ncy Mutant
2040441-2041327	<i>pyrF</i> (PP_1815)	P _{min} ::cas9n	885 (deletion)	20/20	KTc9n
		P _{xylA} :: gam-bet-exo	7738 (insertion)		
4520663-4521664	<i>icd</i> (PP_4011)	\backslash	1000	15/15	KTc9n9
2648226-2648435	tesA (PP_2318)	Ì	98	8/8	KTc9n10
5422549-5422711	tesB (PP_4762)	Ì	163	16/16	KTc9n11
37799087-3799516	ferR (PP_3359)	Ì	428	8/8	KTc9n3
3799087-3799516	ferR (PP_3359)	fcs-ech-vdh	428 (deletion)	8/8	KTc9n4
			4617 (insertion)		
2637955-2638411	tesBII (PP_2308)	\backslash	455	16/16	KTc9n12
4263475-4265971	vanAB (PP_3736	5-\	2495	8/8	KTc9n∆vanAB
	3737)				
3794470-3799114	fcs-ech-vdh		4643	8/8	KTc9n∆ <i>fcs-ech-vdh</i>
	(PP_3356- 3358)				
5422549-5422711	tesB (PP_2308)		163 (tesB)	20/20 for <i>tesB</i>	KTc9n15
2637955-2638411	tesBII (PP_4762)		455 (<i>tesB</i> II)	20/20 for tesBII	
5699249-5699250		mutated phaC1	1959	8/8	KTc9n14
4265970-4265971		vanAB	2459	8/8	KTc9n5
3794470-3794471		fcs-ech-vdh	4617	8/8	KTc9n1

Supplementary Table 3 Application of CRP genome editing system in *P. putida* KT2440.

3794470-3794471		fcs-ech-vdh	4617	8/8	KTc9n6
4265970-4265971		vanAB gene	2459		
3799087-3799516	ferR (PP_3359)	fcs-ech-vdh	428 (deletion)	8/8	KTc9n7
			4617 (insertion)		
4265970-4265971		vanAB	2459 (insertion)		
3799087-3799516	ferR (PP_3359)	fcs-ech-vdh 428 (deletion)		8/8	KTc9n8
4265970-4265971		two copies of	4617 (insertion)		
		vanAB	4918 (insertion)		
3794470-3794471	/	two copies of	9124	20/20	KTc9n2
		fcs-ech-vdh			
2040441-2041327		pPROBE-GT	15000	15/15	KTpGT
		DNA sequence			
5701202-5702147 (deletion) 5701202-5701203 (insertion)	<i>phaZ</i> (PP_5004)	phaC1 (PP_5003)	944 (deletion) 1701 (insertion)	12/12	KTc9n13

	Concentration	of Concentration	of	PHA composition (mol%) ^a			
Strain	ferulic acid (mM)	NH4Cl (mg/L)		3HHx (C ₆)	3HO (C ₈)	3HD (C ₁₀)	3HDD (C ₁₂)
KT2440	20	65		4.80±0.36	28.07±2.27	60.94±3.09	6.19±0.46
KTc9n	20	65		4.21±0.71	25.88 ± 2.57	64.82±4.63	5.09 ± 1.36
KTc9n1	20	65		4.09±0.19	23.47±0.44	67.38±0.59	5.06±0.19
KTc9n6	20	65		3.63±0.19	21.24±0.92	69.30±1.18	5.83±0.15
KTc9n8	20	65		3.81±0.03	23.21±0.93	67.44±0.79	5.54±0.11
KTc9n9	20	65		3.77±0.17	21.07±0.70	69.72±0.48	5.44±0.25
KTc9n10	20	65		3.74±0.12	21.64 ±0.06	69.12±0.09	5.50±0.12
KTc9n11	20	65		3.66±0.07	21.90±0.13	68.96±0.12	5.48 ± 0.04
KTc9n12	20	65		2.93±0.45	20.29 ± 1.04	70.62±1.15	6.16±0.34
KTc9n13	20	65		3.71±0.07	22.68±0.35	68.55±0.50	5.06±0.28
KTc9n14	20	65		3.49±0.03	22.13±0.16	68.21±0.16	6.17±0.01
KTc9n15	20	65		3.46±0.67	21.28 ± 1.30	69.37±1.71	5.89±0.26
KTc9n16	20	65		3.31±0.02	22.07±0.17	68.50±0.23	6.12±0.10
KTc9n17	20	65		3.74±0.05	21.67±0.24	68.85 ± 0.25	5.74±0.07
KTc9n18	20	65		3.23±0.10	21.58±0.43	68.79±0.45	6.40±0.07
KTc9n19	20	65		3.93±0.11	22.49±0.45	68.24±0.19	5.34±0.47
KTc9n20	20	65		3.90±0.13	22.40±0.57	67.90±0.28	5.80±0.87
KTc9n	20	130		3.33±0.56	21.30±1.44	69.63±1.89	5.74±0.12
KTc9n17	20	130		3.42±0.20	23.75 ± 1.12	67.66±0.77	5.17±0.18
KTc9n18	20	130		3.30±0.03	23.07±0.50	67.72±0.42	5.91±0.13
KTc9n19	20	130		3.71±0.15	23.50±0.89	66.68±1.29	6.11±0.26

Supplementary Table 4 *mcl*-PHA composition of the engineered *P. putida* KT2440 strains.

	KTc9n20	20	130	3.88±0.04	24.29±0.50	65.59±0.74	6.24±0.28
79 80	^a 3HHx, 3-hydr	roxyhexanoate; 3HC), 3-hydroxyoctanoate; 3H	D, 3-hydroxydecanoate;	3HDD, 3-hydroxyd	odecanoate	
81							
82							
83							
84							
85							
86							
87							
88							
89							
90							

91 Supplementary Notes

92 Deletion of *pyrF* by the CRISPR/Cas9- λ -Red system.

To investigate the system, the pCas9 plasmid was first constructed, which 93 expresses Cas9 protein under the control of the constitutive P_{min} promoter ⁴². 94 Subsequently, the λ -Red expression cassette (P_{xylA} ::gam-bet-exo) was introduced into 95 pCas9 to improve repairing efficiency and thus alleviate the toxicity of Cas9 caused 96 97 DSB. It generated the construct pCas9-Red (Table 1). Meanwhile, the other vector, **pBBR1-1** 43 , was constructed to express the customized sgRNA for *pyrF* under 98 99 control of the P_{trc} promoter and contain 0.5 kb homologous repairing arms, providing homology-directed repair to fix DNA lesions (Table 1). The pCas9 and pBBR1-1 100 were co-transformed into KT2440. Consistent with previous reports ^{30, 41, 44}, the 101 co-expression vectors produced cells with neither antibiotic resistance nor 5-FOA 102 resistance, whereas two controls (KT2440 carrying either pCas9 or pBBR1-1) 103 generated antibiotic-resistant transformants (Table 2). Together, 104 this suggested Cas9-induced chromosomal cleavage is indeed toxic in *P. putida* KT2440, at least at 105 the selected gene locus. In contrast, when pCas9-Red and pBBR1-1 were 106 co-transformed into KT2440, dozens of colonies were observed on 5-FOA+Gm^r+Km^r 107 LB selection plates. This indicated *pyrF* was knocked-out, and was further confirmed 108 by colony PCR screening and DNA sequencing. Hence, this CRISPR/Cas9-\lambda-Red 109 system works in KT2440, consistent with the previous study 30 . 110

- 111
- 112
- 113
- 114
- 115

116 Effect of isocitrate dehydrogenase deletion on *mcl*-PHA biosynthesis.

mcl-PHA is produced from fatty acid biosynthesis pathway, when P. putida utilizes 117 lignin-derived substrates (non-fatty acid feedstock) as carbon sources ⁴⁸ (Figure 4a). 118 Under this condition, acetyl-CoA is a key intermediate of the PHA biosynthesis 119 pathway, as it plays an essential role in replenishing both the citric acid cycle and the 120 fatty acid synthesis pathway (Figure 4a-b). Previous studies reported that inactivation 121 122 of isocitrate dehydrogenase (icd) reduced the intracellular concentration of oxaloacetate, and consequently increased the flux of acetyl-CoA into the fatty acid 123 biosynthesis pathway⁴⁹. The *icd* gene was therefore knocked-out in KTc9n, 124 generating the mutant KTc9n9 (Table 1 and Supplementary Table 3). However, the 125 expected positive effect was not observed. It produced slightly less mcl-PHA than 126 127 KTc9n, even though cell growth for these two strains were similar (Figure 4c-d and Supplementary Table 4). This revealed isocitrate dehydrogenase did not contribute to 128 mcl-PHA synthesis in P. putida KT2440 under FA substrate conditions, even though it 129 130 was proposed to be one of the genetic engineering targets towards improved PHA production via omics approaches ⁵⁰. 131

Previous transcriptomic study revealed that *icd* was significantly downregulated under nitrogen limitation (PHA accumulation condition) ⁴⁶, and deletion of *icd* was validated to stimulate the *mcl*-PHA biosynthesis via the fatty acid synthesis pathway in *P. putida* KT2442 with gluconate as carbon source ⁴⁵. However, in this study, inactivation of *icd* did not enhance the PHA titer when FA was utilized as the carbon source under nitrogen limiting condition, indicating the effect is variable either in different strains or under different growth conditions.

139 The three components in one plasmid are incompatible in *P. putida*.

140 Three components, cas9n, sgRNA, and homologous repairing arms were

introduced into the plasmid, pPROBE-GT, generating an all-in-one pCas9n1 (Table
1). Transformation and three serial transfers test showed that pCas9n1 wasn't stable
in *P. putida*, although the controls pROBE-GT, pCas9n, pgRNA, pDonor, and
pgRNA-donor, which carry none, one, or two of the three components can stably
replicate in *P. putida* (Table 1). It indicated that, unlike *E.coli* and *Clostridium cellulolyticum*^{34, 41}, the three components in one plasmid are incompatible in *P. putida*to perform genome editing.

148 Supplementary Methods.

149 Bioinformatic analysis of target N20NGG sites.

All N20NGG sites near the target genes were extracted from both strands. Next,

ideal sgRNAs were selected to meet the following criteria: (i) a string of five or less

152 T's in the 23-mer sequence, (ii) two or less T in the 6-mer region upstream of NGG,

(iii) appropriate GC content (30%-75%) and (iv) unique in the genome if up to two

154 base-pair mismatches were allowed.

155 Plasmid construction.

The synthetic codon adapted cas9n gene was mutated from cas9 via site-directed 156 mutagenesis using mutatgenic primers Cas9F and Cas9R. The adapted *cas9n* (or *cas9*) 157 fragment and the P_{min} promoter DNA fragment, amplified by PCR from pGP_{min}¹, were 158 ligated into the plasmid **pPROBE-GT** (empty vector) to generate **pCas9n** and **pCas9** 159 plasmids, respectively. In addition, the gam-bet-exo genes were amplified from 160 lambda phage DNA (TakaRa) with primers RedF and RedR, and fused with P_{xvlA} 161 promoter DNA fragment via gene splicing by overlap extension PCR². The generated 162 P_{xvlA}:: gam-bet-exo expression cassette was ligated into plasmids pCas9n and pCas9 163 through *Hind*III and *BamH*I, to construct the pCas9n-Red and pCas9-Red plasmid, 164 respectively. The **pBBR1-1** plasmid was constructed by inserting the P_{trc}:: *pyrF* gRNA 165

cassette and 0.5 kb pyrF homologous arms into pBBR1MCS2 which was cut with 166 BamHI and KpnI. The pyrF gRNA cassette was amplified and fused with the 167 RBS-free P_{trc} promoter that was amplified from **pTrc99A**³. 0.5 kb length upstream 168 and downstream of *pyrF* homologous repairing arms were amplified from the genome 169 of KT2440 using primers pyrFupF/pyrFupR and pyrFdownF/ pyrFdownR, 170 respectively, and subsequently were spliced to produce the 1-kb donor. Next, the Ptrc:: 171 pyrF gRNA and 1-kb pyrF donor were inserted into pPROBE-GT which was cut with 172 BamHI and KpnI to yield the plasmid pGRNA-donor, while each of the two fragments 173 174 was ligated to **pPROBE-GT** to construct the plasmids **pgRNA** and **pDonor**, respectively, as the control. Similarly, the two fragments were also ligated into 175 pCas9n, digested by *HindII*I and *BamH*I, to construct pCas9n1 (Table 1). 176

177 To integrate cas9n and Red expression cassettes and replace the pyrF gene in P. putida KT2440 strain, pBBR1-2 was constructed through ligation of a 1 kb DNA 178 fragment containing the upstream and downstream of pyrF homologous repairing 179 arms, P_{min}:: cas9n as well as P_{xylA}:: gam-bet-exo expression cassettes to 180 **pBBR1MCS2**. To inactivate the *icd* gene, plasmid **pBBR1-3** was constructed, which 181 contains the P_{trc}:: *icd* sgRNA, a *pyrF* gene flanked by 0.5 kb *icd* homologous arms, a 182 66 bp palindromic sequence, a P_{tac}::gfp expression cassette and a P_{van}::sgRNAps 183 expression cassette⁴ that guides the palindromic sequence in the plasmids for plasmid 184 185 curing. In addition, pBBR1-4, harboring Ptrc:: gRNA for pyrF, 0.5 kb homologous arms for *icd*, P_{tac}::*gfp*, P_{van}:: sgRNAps and palindromic sequence, was constructed to 186 remove the selection marker pyrF in the KTc9n Δicd strain. Similarly, **pBBR1-5** and 187 pBBR1-6 to delete *tesA* gene, pBBR1-7 and pBBR1-8 to delete *tesB* gene, pBBR1-9, 188 pBBR1-10 and pBBR1-11 to delete phaZ, insert phaCl gene, and integrate mutated 189 phaCl⁵, pBBR1-2-1 and pBBR1-2-2 to insert pPROBE-GT vector sequence, 190

pBBR1-12, **pBBR1-13** and **pBBR1-13-2** to insert either one or two copies of *ech-vdh-fcs* genes, **pBBR1-12**, **pBBR1-14** and **pBBR1-15** to delete *ferR* and insert *ech-vdh-fcs* genes, **pBBR1-16**, **pBBR1-17** and **pBBR1-18** to optimize the gene copy
ratio of *ech-vdh-fcs* and *vanAB*, as well as **pBBR1-19** and **pBBR1-20** to remove *tesBII* gene were all constructed via the standard molecular cloning protocols (Table
1).

197 CRISPR/Cas9(n) based genome editing procedures

For the two-plasmid CRISPR/Cas9 system, the pCas9 and pBBR1-1 plasmids were co-transformed into KT2440 to delete the *pyrF* gene (Table 1). After 18 h of incubation at 30 $^{\circ}$ on LB medium (Ura⁺+Km+Gm), appropriately diluted cells were subsequently plated on LB selective medium (Ura⁺+5-FOA+Km+Gm). Meanwhile. either **pCas9** or **pBBR1-1** plasmid was transformed into KT2440 as a control. Cells were then plated on LB selective medium (Ura⁺+5-FOA) with corresponding antibiotic (Km or Gm).

For the two-plasmid CRISPR/Cas9- λ -Red system, the **pCas9-Red** and **pBBR1-1** were co-transformed into KT2440 via electroporation. The strain was incubated at 30 °C in LB medium (Ura⁺+Km+Gm) for 18 h. 4 mM xylose was added to LB medium to induce the expression of λ -Red recombinase. Next, appropriately diluted cells were plated on LB selective agar plate (Ura+5-FOA+Km+Gm) to select the mutant strain.

Similarly, the two plasmid CRISPR/Cas9n system and CRISPR/Cas9n-λ-Red
system were also tested according to the above described genome editing procedures
(Table 2).

214

216 **References**

- Lin L, Wang X, Cao L, Xu M. Lignin catabolic pathways reveal unique
 characteristics of Dye-decolorizing peroxidases in *Pseudomonas putida*.
 Environ Microbiol, (2019).
- 220 2. Wang X, *et al.* Simultaneous improvements of *Pseudomonas* cell growth and
 221 polyhydroxyalkanoate production from a lignin derivative for
 222 lignin-consolidated bioprocessing. *Appl Environ Microbiol* 84, 01469-01418
 223 (2018).
- Wang Q, Tappel RC, Zhu C, Nomura CT. Development of a new strategy for
 production of medium-chain-length polyhydroxyalkanoates by recombinant
 Escherichia coli via inexpensive non-fatty acid feedstocks. *Appl Environ Microbiol* 78, 519-527 (2012).
- Lin L, *et al.* Systems biology-guided biodesign of consolidated lignin
 conversion. *Green Chem* 18, 5536-5547 (2016).
- 5. Hiroe A, Watanabe S, Kobayashi M, Nomura CT, Tsuge T. Increased synthesis
 of poly(3-hydroxydodecanoate) by random mutagenesis of
 polyhydroxyalkanoate synthase. *Appl Microbiol Biotechnol* 102, 7927-7934
 (2018).
- Kohlstedt M, *et al.* From lignin to nylon: Cascaded chemical and biochemical
 conversion using metabolically engineered *Pseudomonas putida*. *Metab Eng*47, 279-293 (2018).
- 237 7. Trudel P, Provost S, Massie B, Chartrand P, Wall L. pGATA: a positive

238	selection vector based on the toxicity of the transcription factor GATA-1 to
239	bacteria. Biotechniques 20, 684-693 (1996).
240	
241	
242	
243	
244	
245	
246	
247	
248	
249	
250	