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In ecosystems, different species are interconnected via exchanges of 
materials, energy and information to form complex interactions1, 
including predation, competition, mutualism, commensalism, 

parasitism, neutralism and amensalism2, which are also affected by a 
diverse array of abiotic and biotic factors. Such complicated ecologi-
cal relationships can be represented as networks, that is, the ecological 
networks with species as nodes and their relationships as links3, which 
is fundamental for characterizing species interactions and dynamics of 
ecosystems4. One fundamental yet hotly debated question is whether 
and how the complexity of the ecological network affects ecosystem 
stability1,5–7. In the past, numerous insights have been revealed into 
the structure, function and dynamics of ecological systems on food 
web-based antagonistic networks and pollination-based mutualis-
tic networks, but the results on the relationships between network 
complexity and stability remain controversial6,8–10. Although it is well 
documented that changes in network structure affect ecosystem func-
tioning and stability11,12, little is known about whether and how the 
networks in ecology, particularly microbial ecology, will change under 
future climate change scenarios8,13.

Global climate change is one of the most profound anthropo-
genic disturbances to our planet, which arises from increased green-
house gases because of fossil fuel combustion and land use change14. 
Global surface temperature has risen 0.78 °C since industrialization 
and is predicted to increase an additional 1.5–4.5 °C by the end of 
the twenty-first century14. Climate warming can alter soil micro-
bial community diversity, structure and activities15, but it remains 
uncertain whether and how it impacts network complexity and its 
relationships to stability in microbial communities.

Because temperature affects all levels of the biological hierar-
chy16, it should have profound influences on network complexity 

and stability. On one hand, as predicted by the metabolic theory 
of ecology (MTE)16, rising temperature would stimulate various 
biotic interactions (predation, parasitism, competition and symbio-
sis) owing to more active individual metabolic processes and faster 
growth at higher temperature. As a result, we expect that experi-
mental warming would increase the complexity of species associa-
tions, resulting in more complex ecological networks. On the other 
hand, rising temperature and associated environmental changes 
(decreased moisture) would act as strong filtering factors against 
existing microbial species. Therefore, contradictory to the expecta-
tions of MTE, the microbial networks could diminish or even col-
lapse, as recently witnessed in a marine food web10.

To understand whether and how climate warming affects  
the complexity and stability of ecological networks in soil microbial 
communities, we examined temporal dynamics of soil microbial 
communities in a long-term in situ warming experiment, which  
was carried out in a tallgrass prairie ecosystem of the US Great Plains in 
Central Oklahoma (34 ° 59ʹ N, 97 ° 31ʹ W)17. Several previous studies 
from this experiment revealed that warming significantly increased 
the rain-use efficiency of net primary productivity and belowground 
net primary productivity, mainly because proportionally more plant 
biomass was allocated to roots in response to warming-induced dry 
conditions18. Warming also shifted microbial community structure 
by acting as a deterministic filtering factor, resulting in divergent 
succession with reduced stochasticity17,19. However, it is not clear 
whether warming will affect networks in microbial communities. 
Because the association networks in microbial ecology are typically 
reconstructed on the basis of molecular markers, here, we refer to 
them as molecular ecological networks (MENs)20. Our main ques-
tions are the following: (1) whether and how experimental warming 
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affects the complexity of soil MENs over time; (2) whether and how 
warming alters the relationships between the complexity and stabil-
ity of soil MENs; (3) whether and how warming-induced changes of 
soil MENs shape ecosystem functioning.

To address these questions, the composition and structure of soil 
microbial (bacterial and archaeal) communities under warming and 
ambient temperature (control) in six consecutive years from 2009 
to 2014 were determined with 16S ribosomal RNA gene (V3–V4 
region). We then constructed 11 time-series MENs (Fig. 1a) on 
the basis of Pearson correlations of log-transformed operational 
taxonomic unit (OTU) abundances, followed by a random matrix 
theory- (RMT-) based approach20, which is capable of providing a 
mathematically defined reference point as a threshold for network 
construction (see Methods for details). The empirical MENs were 
significantly different from random MENs (Supplementary Table 1).  
Similar to typical molecular biology and technology networks21, 
all empirical MENs exhibited scale-free features (Supplementary 
Table 1 and Supplementary Text A), with the distribution of net-
work links independent of network size. In addition, they exhibited 
small-world characteristics with short geodesic distances (the aver-
age shortest path between two nodes) of 3.3–8.3 (Supplementary 
Table 1), which could allow the effects of a perturbation to distri
bute rapidly through the entire network, rendering the whole  
system efficient.

Since the preceding networks were reconstructed using a 
correlation-based approach with taxa occurrence and abundance 
data, caution is needed in interpreting the mechanisms underlying 
these networks. Theoretically, species co-occurrence patterns could 
be driven mainly by three ecological processes: biotic interaction, 
environmental filtering and dispersal limitation22,23. Multiple analy-
ses, including multiple regression on distance matrices (MRM), 
Mantel test, variation portioning analysis (VPA), the link test for 

environmental filtering or dispersal limitation (Supplementary  
Fig. 1) and Goderma’s method24, all indicated that these MENs were 
less likely due to environmental filtering or dispersal limitation, 
and hence, biotic interactions could be a major driver of the recon-
structed networks (Extended Data Fig. 1, Supplementary Figs. 1  
and 2, and Supplementary Text B), though roles of unmeasured 
environmental variables could not be assessed. Due to unmeasured 
environmental variables and the nature of the correlation-based 
network approach, the occurrence-estimated links in MENs should 
at best be treated as putative interactions25, and thus, we use the 
term ‘biotic interactions’ throughout for simplicity.

The microbial MENs under warming and control followed dif-
ferent successional trajectories over time on the basis of 22 net-
work topological parameters (Supplementary Fig. 3). Although the 
numbers of OTUs used for network construction were on average 
12% fewer under warming than under control, the resulting net-
works without isolated nodes were on average 14% larger in size 
(total nodes) under warming than under control (Supplementary 
Table 1), suggesting that these microbial taxa could associate more 
closely with each other, and hence, neutral process might be less 
prevalent under warming17. In addition, the composition of the net-
worked communities (assemblages of microbial taxa detected in the 
networks) was significantly different between warming and control 
as revealed by detrended correspondence analysis (Extended Data 
Fig. 1a) and three non-parametric dissimilarity analyses (multiple 
response permutation procedure (MRPP), analysis of similarity 
(ANOSIM) and permutational multivariate analysis of variance 
(Adonis), Table 1). Although soil temperature, moisture and plant 
biomass played statistically significant roles in controlling the struc-
tures of the networked communities as revealed by canonical corre-
spondence analysis (CCA, Extended Data Fig. 1b), all measured soil 
and plant variables were able to explain only minor portions (<13%) 
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Fig. 1 | Succession of soil microbial networks over time. a, Visualization of constructed MENs in six years (Y) from 2009 (Y0) to 2014 (Y5). Large 
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of the networked community variations (Extended Data Fig. 1c). In 
addition, using the recently developed method for alleviating com-
positional data bias26, 58% of the phyla (11 out of 19) and 46% of 
the classes (22 out of 48) showed absolute values of differentials of 
larger than 0.5 in their abundances between warming and control 
(Supplementary Fig. 4 and Supplementary Table 2), with significant 
increase of some fast-growing bacteria (Actinobacteria) but decrease 
of some slow-growing bacteria (Negativicutes in Firmicutes) under 
warming (Supplementary Tables 3 and 4). Similar trends of warm-
ing’s impacts on different phyla and classes were observed with 
the Mann–Whitney U test (Supplementary Table 2). Finally, there 
were 43% more positive and 18% more negative associations under 
warming than under control (Supplementary Table 1). If these asso-
ciations do in fact indicate biological interactions, positive associa-
tions (positive correlations between nodes) could represent mostly 
cooperative behaviours such as cross-feeding, syntrophic interac-
tions, mutualistic interactions and commensalism as well as shared 
environmental requirements and common dispersal barriers. By 
contrast, negative associations (negative correlations between 
nodes) could reflect mainly competition for limiting resources as 
well as distinctive environmental niches and spatial isolation4,27, 
although the exact specific mechanisms underlying these associa-
tions are unknown with correlation-based network analyses.

To determine how warming affected microbial network com-
plexity, changes of various network topological parameters were 
regressed against time under warming and control. Network size 
(total number of nodes, n) strongly increased over time under 
warming (r2 = 0.82, P = 0.009), so did network connectivity (total 
number of links, L; r2 = 0.90, P = 0.003), average connectivity (aver-
age links per node, average K, or 2 L n–1; r2 = 0.92, P = 0.002), aver-
age strength (average weighted connectivity, average S, r2 = 0.92, 
P = 0.002), average clustering coefficient (the extent to which  
nodes are clustered, average CC, r2 = 0.94, P = 0.001), connectance 
(the proportion of realized links in all possible ones, Con, r2 = 0.82, 
P = 0.008), number of nodes in the largest connected compo-
nent (r2 = 0.85, P = 0.005) and largest module (r2 = 0.96, P < 0.001,  
Fig. 1b–f and Supplementary Fig. 5a,b). By contrast, no signifi-
cant trend was observed under control across time. In addition, we 
quantified the degree of community complexity using a recently 
developed metric, named cohesion28. Positive cohesion, derived 
from positive pairwise correlations, could reflect the degree of 
cooperative behaviours in a sample, whereas negative cohesion 
could indicate the magnitude of competitive behaviours among 
community members (see Methods for details). Positive cohesion 
increased significantly over time under warming (P = 0.013) but 
not under control (Extended Data Fig. 2). Strong correlations were 
observed between positive cohesion and various network complex-
ity indices under warming (r > 0.83, P ≤ 0.05) rather than control 

(Extended Data Fig. 2c), suggesting that warming could enhance 
taxon connectedness and hence possible biotic interactions28. These 
results collectively indicated that the MENs were substantially dif-
ferent between warming and control and that warming significantly 
increased network complexity over time.

Changes in network structure could further affect network 
organizational principles, such as modularity and nestedness. The 
MENs were highly modular (Supplementary Table 1) but not nested 
(Supplementary Text A). A total of 100 large modules (modules 
with ≥5 nodes) accounted for 56–72% of the nodes in the MENs 
under control, while 98 large modules accounted for 45–86% of 
the nodes in the MENs under warming (Supplementary Table 1). If 
two modules in different networks had significantly large propor-
tions of shared nodes, they were considered as preserved module 
pairs (Supplementary Text C). There were only 15 module pairs 
(18% of all the pairs tested) preserved between warming and con-
trol networks of the same year, suggesting that warming drastically 
changed module identity (Extended Data Fig. 3, Supplementary 
Table 5 and Supplementary Text C). To visualize the changes in the 
higher-order organization of the MENs, module eigengene analy-
sis was also performed29. A module eigengene is a synthetic relative 
abundance profile, collectively representing the relative abundance 
changes of all individual OTUs within the module, and the ana
lysis based on module eigengene can provide information on the 
relationships among different modules (Supplementary Text C).  
The eigengene analysis showed that the relationships among dif-
ferent modules were substantially different between warming and 
control (Supplementary Fig. 6 and Supplementary Text C), indi-
cating that the higher-order network organization was not pre-
served under warming. In addition, the MENs had 58% higher 
relative modularity under warming than under control, although 
all of them were significantly higher than those from their cor-
responding random MENs (Supplementary Table 1). The relative 
modularity significantly increased over time under both warm-
ing (r2 = 0.84; P = 0.007) and control (r2 = 0.60, P= 0.043, Fig. 1g),  
with a larger slope under warming (slope = 0.065) than under  
control (slope = 0.021). Interestingly, the relative modularity  
(RM) under warming increased significantly with various net-
work metrics such as network size, connectivity, average con-
nectivity, average clustering coefficient and connectance, but not 
under control (Fig. 2). Altogether, those results indicated that the 
MENs between warming and control were poorly conserved at the 
higher-level organization, and that warming significantly enhanced 
relative modularity.

The altered network complexity could lead to changes in the role 
of individual members within the network. On the basis of their 
within-module connectivity (Zi) and among-module connectiv-
ity (Pi)20, a total of 128 module hubs (nodes highly connected to 
other members in a module), 39 connectors (nodes linking dif-
ferent modules) and 2 network hubs (nodes being both a module 
hub and a connector) were detected across all the MENs (Extended 
Data Fig. 4, Supplementary Table 6 and Supplementary Text D), all 
of which could be regarded as keystone nodes (Methods) that play  
key roles in shaping network structure30. Many (62 of 169) of the 
keystone nodes-affiliated taxonomic groups appeared to be impor-
tant in carbon compound degradation, nitrification, denitrification 
and phosphorus utilization, as well as adaptation to elevated tem-
peratures (Supplementary Table 6). Importantly, there were 27% 
more keystone nodes under warming than under control, and the 
number of keystone nodes increased significantly over time under 
warming (r2 = 0.94, P = 0.001, Fig. 1h) but not under control. In 
addition, phylogenetic analysis showed that only 9.8% of all the key-
stone nodes were shared between warming and control (Extended 
Data Fig. 4g and Supplementary Text D). Therefore, keystone nodes 
were also not preserved between warming and control, and warm-
ing altered network structure at the keystone node level.

Table 1 | Significance tests of the networked communities 
between warming and non-warming control

Year MRPP ANOSIM Adonis

δ P r P F P

2009–2014 0.62 0.001 0.27 0.001 25.64 0.001

2010 0.44 0.001 0.97 0.001 38.63 0.001

2011 0.42 0.001 0.91 0.001 33.21 0.001

2012 0.37 0.001 0.99 0.001 50.84 0.001

2013 0.36 0.001 1.00 0.001 62.42 0.001

2014 0.42 0.001 0.97 0.001 40.37 0.001

Three different permutation tests were performed (MRPP, ANOSIM and Adonis) on the basis of 
Bray–Curtis distance.
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All the MENs detected are scale free, modular and small world, 
which may have profound implications on microbially mediated eco-
system functions and stability21 (see Supplementary Text E for detailed 
possible reasons). Therefore, we simulated species extinction and 
calculated robustness (the resistance to node loss)9 of the MENs. On 
the basis of either random species loss or targeted removal of module 
hubs, the MENs had significantly higher (P < 0.001) robustness under 
warming than under control after 2011 (Fig. 3a,b). The network vul-
nerability (the maximum decrease in network efficiency when a single 
node is deleted from the network)30 (see Methods for details) was also 
on average lower under warming (0.10 ± 0.07) than under control 
(0.18 ± 0.13) and decreased marginally significantly over time under 
warming (r2 = 0.62, P = 0.060) but not under control (Fig. 3c), showing 
higher robustness in warming networks.

Multiple stability indices calculated from empirical data also sup-
ported that warming enhanced MEN stability. First, multi-order 
compositional stability (the temporal invariability of community 
composition)31 for microbial communities in the MENs increased sig-
nificantly over time (r2 = 0.86, P = 0.015, Fig. 3d and Supplementary 
Fig. 7a–e) under warming, indicating that microbial community com-
position became more stable under warming than under control. The 
constancy of nodes and links (the inverse of their temporal variations) 
and node persistence (the proportion of nodes persisting over time) 
of the MENs were higher under warming, revealing smaller temporal 
changes of the MENs under warming than under control (P ≤ 0.001, 
Extended Data Fig. 5 and Supplementary Fig. 7f–j). In addition, node 
persistence strongly correlated with the compositional stability under 
warming (r = 0.95, P = 0.014) rather than under control (Fig. 3e). 
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These results suggested that the MENs appeared more stable under 
warming than under control.

More important, significant correlations were observed between 
various stability measurements and network complexity. Network 
robustness, compositional stability or node persistence of the MENs 
was positively correlated with various indices of network complex-
ity under warming, such as node and link numbers, average connec-
tivity, average clustering coefficient, geodesic distance, harmonic 
geodesic distance, relative modularity and connectance (Pearson 
r = 0.83–0.99, P ≤ 0.036, Fig. 3f), but with very few under control. 
Consistently, network vulnerability significantly decreased with 
connectance and the number of keystone nodes under warming, but 
not under control (Fig. 3f). Similarly, positive cohesion was signifi-
cantly correlated with robustness and persistence under warming, 
while negative cohesion was negatively correlated with persistence 
(Extended Data Fig. 2c). No significant correlations between cohe-
sion and network stability were observed under control (Extended 
Data Fig. 2c). Collectively, the preceding results indicated that 
warming enhanced the stability of the soil MENs, probably due to 
warming-enhanced network complexity associated with connectiv-
ity and relative modularity.

An intriguing question is whether the warming-enhanced net-
work complexity and stability affect microbial community func-
tional structure and associated ecosystem processes. We thus 
address it with three analyses. First, the networked communities 
exhibited generally stronger correlations with various variables of 
ecosystem functioning, particularly GPP, ecosystem respiration 
(ER) and net ecosystem exchange (NEE), under warming than 
under control (Fig. 4a and Supplementary Fig. 8a). Second, micro-
bial community functional structure was assessed by using a com-
prehensive functional gene microarray, GeoChip 5. Interestingly, 
there were 57% more significant correlation pairs between network 

indices and carbon (C) degradation genes under warming than 
under control (Fig. 4b and Supplementary Fig. 8b), suggesting that 
the changes in network structure could be more tightly associated 
with the observed stimulated C degradation functional potentials 
and heterotrophic respiration under warming. CCA showed that 
GeoChip-based functional traits were tightly linked with various 
ecosystem functional processes (Supplementary Table 7). In addi-
tion, the potential metabolic functions of individual nodes were 
predicted on the basis of their 16S rRNA gene sequences using 
PICRUSt232, and warming significantly shifted the community 
structures of all PICRUSt2-derived individual metabolic path-
ways harboured in the networked communities, including carbo-
hydrate metabolism, energy metabolism, and glycan biosynthesis 
and metabolism (Supplementary Table 8). Altogether, these results 
indicate that the warming-induced network complexity and stabil-
ity might have strong effects on microbial community functional 
structure and hence ecosystem functional processes.

In summary, by examining the temporal network dynamics 
of grassland soil microbial communities in response to warm-
ing, this study provides several important insights into the roles 
of experimental warming in mediating the relationships between 
microbial network complexity and stability. First, as predicted by 
the MTE16, experimental warming significantly accelerated the 
dynamic changes of network complexity over time. This is probably 
because warming acts as a deterministic filtering factor17 to select 
for certain fast-growing bacteria, but against some slow-growing 
bacteria (Supplementary Tables 2 and 3), which could further trig-
ger a series of dynamic changes among different microorganisms. 
Consequently, new network structures that could quickly adapt to 
the increased temperature and other associated changes were estab-
lished. By contrast, neutral taxa that are less responsive to warm-
ing could prevail in the microbial communities under control17,19, 
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resulting in less complex network structures. Second, although cli-
mate warming is known to trigger complex interactive effects on 
ecosystem structure and functioning10,17,19, it is not clear whether 
and how it affects network stability. This is new documentation that 
climate warming enhances network stability over time. In addition, 
our study provides explicit evidence that network stability increases 
with network complexity, particularly relative modularity, which 
is consistent with that observed in macroecology1. These results 
also lend support to MacArthur’s argument that the complexity of 
ecosystems begets their stability33, but contradict the theoretical 
analysis showing that higher complexity destabilizes ecological sys-
tems34. Finally, several previous studies documented that long-term 
warming significantly alters microbial biodiversity, and thus vari-
ous ecosystem processes such as soil carbon fluxes and nutrient 
cycling14,35–37, but it is not clear whether warming-induced network 
changes will affect ecosystem functional processes. Our study fur-
ther suggested that the warming-enhanced network complexity and 
stability appeared to be more tightly associated with microbial com-
munity functional structure and ecosystem functional processes.

Our findings have several important implications for projecting 
ecological consequences of future climate warming and ecosystem 
management. First, similar to microbial biodiversity, which is depen-
dent on both space and time, the network features of MENs are also 
temporally dynamic, particularly under warming. Thus, future stud-
ies on microbial networks need to integrate the temporal dynamics 
along with their spatial turnovers38. Further, since the networked com-
munities have strong linkages with ecosystem functioning, preserving 
network structure is important for future ecosystem conservation39. In 
addition, on one hand, as previously demonstrated, due to accelerated 
dynamic responses, biodiversity could change more quickly under 
future climate change scenarios19, which could result in potential bio-
diversity loss. Consequently, its linked ecosystem functions and ser-
vices may become more vulnerable17,19. On the other hand, warming 
significantly stimulates the dynamic responses of network complex-
ity, particularly relative modularity, which leads to higher commu-
nity stability12, and hence, the linked ecosystem functions could be 
less vulnerable in a warmer world. Therefore, preserving microbial 
‘interactions’ could be important to mitigate the detrimental effects 
of warming-induced biodiversity loss on ecosystem functions40 if the 
warming-enhanced network complexity and stability observed in this 
study are applicable to other ecosystems.
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Methods
Field experiment description. The field experiment was conducted at the Kessler 
Atmospheric and Ecological Field Station of the US Great Plain in McClain 
County, Oklahoma, USA (34° 59ʹ N, 97 ° 31ʹ W). As described previously18, 
the average air temperature was 16.3 °C, and the average annual precipitation 
was 914 mm, according to the Oklahoma Climatological Survey, from 1948 to 
1999. Categorized by the type of photosynthesis and plant functional group, the 
experimental site was dominated by C3 forbs (Solanum carolinense, Ambrosia trifida 
and Euphorbia dentate), C3 grasses (Bromus spp) and C4 grasses (Tridens flavus 
and Sorghum halapense). The soil type was Port–Pulaski–Keokuk complex, with 
a neutral pH, a high available water-holding capacity (37%) and a deep (~70 cm), 
moderately penetrable root zone41. The soil texture is loam with 51% sand, 35% silt 
and 13% clay. The experiment used a blocked split-plot design, in which warming 
(continuous heating at a target of +3 °C above ambient) and precipitation alteration 
(targets of −50% and +100%) were primary factors nested with annual removal of 
aboveground biomass in peak growth season as the secondary factor. Altogether, 
there were 24 plots under warming and 24 plots under ambient temperature as 
control. The experimental site was initiated in the fall of 2009.

Field measurements, soil geochemistry and microbial community 
characterization. Soil temperature, moisture (volumetric water content), total 
C, total nitrogen (N), nitrate (NO3

–) and ammonia (NH4
+), plant biomass and 

richness (separated into C3 and C4 species), and ecosystem C flux were measured 
and analysed as described previously17,19. In 2009, 24 pre-warmed surface 
(0–15 cm) soil samples were collected using a soil core (2.5 cm in diameter, 15 cm 
deep). In 2010–2014, a total of 240 samples were collected, one sample per plot 
per year. Although microscale soils are highly heterogeneous42–44, centimetre-scale 
sampling is demonstrated to be appropriate to study ecosystem-level responses45,46. 
Soil microbial DNA was extracted from 1 g of well-mixed soil for each sample by 
grinding, freeze-thawing and sodium dodecyl sulfate (SDS)-based cell lysis47, and 
purified with the PowerMax Soil DNA Isolation Kit (MO BIO). The DNA quality 
was assessed on the basis of 260/230 nm and 260/280 nm absorbance ratios using 
a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies) to ensure 
that the 260/230 ratios were larger than 1.7 for all samples, and 260/280 nm were 
larger than 1.8. Although this extraction method is more labour intensive and time 
consuming, it is capable of recovering high-molecular-weight DNA with high yield 
and high quality from diverse representative soil samples47,48.

The 16S rRNA gene was PCR-amplified with the primer set 515F (5’-GTGCCA 
GCMGCCGCGGTAA-3’) and 806R (5’-GGACTACHVGGGTWTCTAAT-3’), 
targeting the V4 hypervariable regions49, using a two-step PCR protocol with 
phasing priming technique50. Briefly, the DNA (10 ng) from each sample was first 
PCR-amplified for ten cycles in triplicate in 50 μl reaction with the primers without 
adaptors to avoid potential amplification bias, due to the long tail of adaptors and 
other added components. The PCR products were purified and resolved in 50 µl 
deionized water. Then, 15 µl of the PCR products from each sample was subjected 
to second-round amplification using the primers with all adaptors, barcodes 
and spacers in triplicate an additional 15 cycles to ensure the PCR amplification 
was not saturated so that semi-quantitative information could be achieved and 
amplification artifacts could be limited. Finally, all triplicate PCR-amplified 
products were combined, purified and quantified for subsequent sequencing. 
Various control experiments demonstrated the two-step PCR method with  
phasing primers in triplicate can help to reduce sequencing errors, minimize 
amplification bias and preserve the semi-quantitative nature of PCR amplifi
cation50,51. Although amplicon sequencing has low reproducibility and poor 
quantification52,53, amplification in triplicate in two steps with lower total cycle 
numbers (25–30 cycles) will help to improve sequence representation and 
quantification. This is critical for subsequent data analysis, data interpretation  
and biological inference53.

The amplified products were then sequenced with the 2 × 250 bp kit on the 
Illumina MiSeq platform (Illumina). Amplicon sequencing data were processed 
through a pipeline (http://zhoulab5.rccc.ou.edu:8080/root) by the Institute 
for Environmental Genomics at the University of Oklahoma17,19. In brief, after 
demultiplexing, primer trimming and quality score-based cleaning, forward and 
reverse sequences were combined and clustered into OTUs at 97% similarity. We 
used OTUs at 97% similarity instead of amplicon sequence variants because the 
latter generates more taxa, and the abundance matrix is sparser, which could result 
in more bias in estimating correlation for network construction. Then, singleton 
OTUs were removed, and sequences were resampled to the same sequence depth 
(30,000 sequences per sample) across all samples.

MEN construction. All MENs were constructed on the basis of Pearson 
correlations of log-transformed OTU abundances, followed by an RMT-based 
approach that determines the correlation cut-off threshold in an automatic 
fashion20,54,55. Random matrix theory was initially proposed in the 1960s as a 
procedure to identify phase transitions associated with noise in physics and 
material science and was later adopted for studying the behaviours of many 
other complex systems, including gene co-expression network construction for 
predicting gene functions54,55 and molecular ecological network construction20,56,57. 
The core of RMT states that level (eigenvalue) fluctuations of real random matrices 

follow two different universal laws, depending on the correlation property of 
eigenvalues. The nearest-neighbour spacing distribution of eigenvalues (the 
distribution of the difference of two nearest-neighbour eigenvalues) follows 
Gaussian orthogonal ensemble (GOE) statistics if there is correlation between 
nearest-neighbour eigenvalues, while it follows Poisson statistics if there is 
no correlation58. Deviations from GOE universal predictions can be used to 
distinguish system-specific, nonrandom properties of complex systems from 
random noise59.

A RMT-based network framework20,29,56 was developed to automatically identify 
molecular ecological networks in microbial communities by assuming that the two 
RMT predictions are applicable to ecological communities as complex systems. 
We then also hypothesize that there is a transition of nearest-neighbour spacing 
distribution of eigenvalues from GOE to Poisson distributions, which can be used 
as a reference point to disentangle random noise from system-specific, nonrandom 
properties embedded in high-throughput metagenomic data. In this study, since 
correlation matrix is used, this transition point (St) is then used as the correlation 
cut-off. This RMT-based approach avoids an arbitrary St determination commonly 
used in association-based network methods. Once the adjacency matrix is selected 
with a defined St threshold, an undirected network graph can be drawn.

The RMT-based network approach has four advantages20,54–56. First, it has 
a sound theoretical foundation because it is based on the two universal laws 
of RMT55. Second, its automatic threshold detection avoids arbitrary cut-off 
determination, which is a typical serious problem and a major source of 
uncertainties in association network construction. Third, it reliably removes noises 
from nonrandom, system-specific features. Last, it applies to diverse formats of 
ecological datasets (hybridizations, sequencing, geochemistry and physiology). 
Although no method is perfect, we believe that the RMT-based network approach 
is the most appropriate choice for this study due to its mathematically defined 
non-arbitrary correlation cut-off to minimize the uncertainty in network 
construction and comparison. This RMT-based network tool is named the 
Molecular Ecological Network Analysis Pipeline (MENAP) and is available at the 
Institute for Environmental Genomics, University of Oklahoma (http://ieg4.rccc.
ou.edu/MENA/).

One MEN was constructed on the basis of the abundance profile of OTUs 
in the 24 samples collected in 2009 as the initial network. Then, an additional 
ten MENs were constructed, one for warming and one for control each year, 
using samples collected from 2010 to 2014. Each of the MENs was constructed 
independently on the basis of a unique set of biological samples, which captured 
average rather than transient effects of warming on the soil microbial communities. 
To ensure the reliability of correlation calculation, only OTUs present in 12 of 
the 24 samples were included for correlation calculation. The Pearson correlation 
coefficient was calculated for each pair of OTUs on the basis of the OTUs’ 
log-transformed relative abundances. The resulting correlation matrix was 
analysed with the RMT-based network approach to determine the correlation 
threshold for network construction. After St was determined for each correlation 
matrix, an adjacency matrix was generated, containing only the correlations whose 
absolute values of coefficient (correlation strengths) were larger or equal to St. 
Nodes in isolation after the St threshold (no correlation coefficient to other nodes 
≥St) were removed from the network.

Due to large inherent variations of the sequence output among different 
samples, relative abundance is generally used for subsequent analysis. As a 
result, the data become compositional, which could result in spurious indirect 
correlations26,60–62. To assess the potential influence of compositional data bias, 
we compared the results from the networks based on log-transformation and 
centred log-ratio transformation, which are expected to mitigate the bias induced 
by compositionality25. There were very strong correlations of various topological 
properties between the networks based on these two transformed datasets 
(r = 0.96–0.99, P < 0.001, Supplementary Fig. 9), indicating that the networks are 
very similar. We also used SparCC63,64, an algorithm that is compositionally robust 
in calculating correlations to construct networks. The topological properties of 
SparCC-based networks revealed a similar trend as the RMT-based MENs we 
presented in this study (Supplementary Fig. 10). All the preceding results suggested 
that the effects of the compositional bias on network structure of highly diverse 
microbial communities as included in this study could be negligible65.

Network characterization. We tested the potential contribution of environmental 
filtering or dispersal limitation in shaping network topology (Supplementary 
Text B). To test whether soil and plant variables and spatial distance had impacts 
on the composition of the networked communities, MRM was carried out in R 
software66 (version 3.5.3) with the MRM function in the package {ecodist} version 
2.0.167. The Mantel tests between network topological parameters and plant and 
soil variables were performed in R with the mantel function in the package {vegan} 
version 1.4-268. To detect taxon–taxon–environment co-variation links69, we 
developed a Python 3 script. To unveil links possibly caused by dispersal limitation, 
we developed an R script. We named this method the link test for environmental 
filtering or dispersal limitation (Supplementary Fig. 1), and the scripts and 
examples are publicly available on the GitHub repository70. A tool recently 
reported by Goberna et al. was further used to quantify the relative contributions 
of community assembly processes (biotic interactions, environmental filtering and 
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dispersal limitation) to the observed patterns of MENs24. Although the preceding 
analyses could reveal the relative importance of biotic interactions, particularly for 
non-trophic biotic interactions (facilitation, competition), in shaping the MENs, 
we still do not have a way to prove that the links are truly due to biotic interactions. 
Interpretation of these results thus needs to consider this point, and they should be 
best used for relative comparison across different conditions or treatments29,52,71–74. 
Thus, in this study, we are focusing mainly on the relative changes of the estimated 
network parameters between warming and control.

Various network topological indices were calculated in the MENAP interface 
to characterize the topological structure of the MENs56: n, L, power-law fitting of 
node degrees, average K, average CC, average path distance (geodesic distance), 
geodesic efficiency, Con, modularity, harmonic geodesic distance, maximal 
degree, centralization of degree, maximal stress centrality, centralization of 
stress centrality, maximal betweenness, centralization of betweenness, maximal 
eigenvector centrality, centralization of eigenvector centrality, density, transitivity 
and efficiency. In addition, two topological indices for weighted networks, average 
strength and average weighted clustering coefficient, were calculated in R package 
{igraph}75 to reflect potential effects of edge weight on the topology of the MENs. 
The correlation coefficients between pairs of nodes were used as the weights of 
edges. To test the significance of the constructed empirical MENs, 100 random 
networks were generated for each empirical network by randomly rewiring the 
links among the nodes while constraining n and L, following the Maslov–Sneppen 
procedure76. With each randomization, the same suite of network topological 
properties was calculated. The means and standard deviations of these properties 
from the 100 randomizations were calculated and compared with those from the 
corresponding empirical MENs. Network randomization was performed in the 
MENAP.

Modularity measures the degree to which a network is compartmentalized into 
different modules, in which the nodes within a module are highly connected but 
have very few connections with nodes from other modules. Since the network size 
and connectivity varied substantially among the different MENs (Supplementary 
Table 1), RM, which measures how modular a network is as compared with 
the mean expected modularity12, is more meaningful for comparing modular 
structure across different networks. In this study, RM was calculated as the ratio 
of the difference between the modularity of an empirical network and the mean 
of modularity from the random networks over the mean of modularity from the 
random networks12:

RM ¼ M �Mr

Mr

where M is the modularity of the empirical MEN, and Mr
I

 is the mean of 
modularity from the random networks.

Nestedness describes the level to which the species interacting with specialists 
are subsets of those interacting with generalists. Nestedness ranges from zero 
to one77. Zero means that the network is not nested (species interacting with 
specialists are not subsets of those interacting with generalists), and one means that 
the network is perfectly nested (species interacting with specialists are subsets of 
those interacting with generalists). As nestedness also depends on network size and 
connectivity, relative nestedness (RN) was calculated as

RN ¼ N � Nr

Nr

where N is the nestedness of the empirical MEN, and Nr
I

 is the mean of nestedness 
values from the random networks.

For each node, its within-module connectivity (Zi) and among-module 
connectivity (Pi)78 were calculated and used for classification of its topological roles 
in the network. We adopted criteria used in previous studies29,57,79 and identified 
module hubs (Zi ≥ 2.5, Pi < 0.62), connectors (Zi < 2.5, Pi ≥ 0.62) and network 
hubs (Zi ≥ 2.5, Pi ≥ 0.62). Module hubs, connectors and network hubs are referred 
to as keystone nodes80,81. All other nodes were categorized as peripherals. The 
calculations of Zi and Pi were performed in the MENAP.

The relationships among different modules in a network represent the 
higher-order organization of the network. Based on the abundances of the 
nodes in these modules, a single-dimensional standardized relative abundance 
vector, termed ‘module eigengene’56,82, was calculated for each module through 
single-value decomposition. Those module eigengenes were used to visualize the 
organization of modules in the MENs through a hierarchical clustering analysis. 
The eigengene analysis was performed in the MENAP.

To verify the findings from the network analysis, we also calculated a different 
metric named cohesion, which is an abundance-weighted, null model-corrected 
metric based on pairwise correlations across taxa28:

cohesion ¼
Xm

i¼1

abundancei ´ connectednessi

where m is the total number of taxa in a community. Briefly, pairwise correlations 
are first obtained between all taxa on the basis of the data matrix of taxa relative 
abundance x samples, followed by subtracting the pairwise correlations based on 

multiple null model iterations to generate the null model-corrected correlations 
for individual taxa. For each sample, all positive and negative null model-corrected 
correlations are averaged, respectively, to obtain a connectedness matrix with 
average positive and negative correlations for different samples. Finally, positive 
and negative cohesions are calculated on the basis of the preceding formula for 
each sample. Thus, because positive and negative cohesions in a sample are the sum 
of abundance-weighted, null model-corrected positive and negative correlations, 
respectively, they could reflect the degree of cooperative behaviours or competitive 
interactions. It is argued that cohesion can be used as a measure of the strengths 
of biotic interactions if taxa are influenced to the same degree by environmental 
drivers, but differentially affected by species interactions28. To be consistent with all 
other network analyses, we focused on the taxa present in the network. We used the 
author-recommended ‘taxa shuffle’ null model with provided R code to calculate 
both positive and negative cohesions for each microbial community over time. 
Then, the community’s cohesions were used for correlation analyses with various 
network complexity indices and stability measurements.

Network comparison. To evaluate the overall difference of MENs, 22 
topological indices calculated for each empirical MEN were used as input for a 
principal component analysis, carried out in R with the function prcomp in the 
package {stats}. To understand how each network topological property changed 
over time, we fit a linear model between each individual property and time  
(in years). The linear models were constructed using R with the lm function in 
the package {stats}.

Since the node composition differed considerably among modules, Fisher’s 
exact test was performed to identify preserved module pairs in networks  
(1) under warming or control over time and (2) between warming and control 
in the same year56. A total of 12,363 pairs of modules were tested. For each pair 
of modules to be tested, the pool of all the nodes in the corresponding two 
networks was divided into four categories: (1) nodes belonging to both modules, 
(2) nodes present only in one of the two modules, (3) nodes present only in 
the other one of the two modules and (4) nodes absent from both modules 
but present in the two networks. Frequency of observations in each of these 
four categories was placed in each of the four cells of a contingency table for a 
one-sided exact test, which determined whether members in the two modules 
were independent or exclusive. P values from the exact tests were adjusted 
through the Bonferroni procedure within each network. If these two modules 
consisted of a significant portion of the same nodes (OTUs) by Fisher’s exact test 
(adjusted P ≤ 0.05), they were considered as preserved modules from different 
networks. The exact tests were performed in R with the fisher.test function 
(alternative = ‘greater’) in the package {stats}. P-value adjustment was done with 
the p.adjust function in the package {stats}.

Stability analyses. To understand whether and how warming affects the stability  
of the constructed MENs, multiple indices were used to characterize the 
stability of the networks and their embedded members, including robustness, 
vulnerability, node and link constancies, node persistence and compositional 
stability. We assessed the stability of the networks and the microbial 
communities in the networks on the basis of both simulations of extinction  
and empirical observations.

Network stability on the basis of simulation. Robustness. Robustness of an MEN is 
defined as the proportion of the remaining species in this network after random 
or targeted node removal9,11. For simulations of random species removal, a certain 
proportion of nodes was randomly removed. For simulations of targeted removal, 
certain numbers of module hubs were removed. To test the effects of species 
removal on the remaining species, we calculated the abundance-weighted mean 
interaction strength (wMIS) of node i as

wMISi ¼
P

j≠i bjsijP
j≠i bj

where bj is the relative abundance of species j and sij is the association strength 
between species i and j, which is measured by Pearson correlation coefficient. 
Thus, in this study, sij = sji. After removing the selected nodes from the MEN, if 
wMISi = 0 (all the links to species i have been removed) or wMISi < 0 (not enough 
mutualistic association between species i and other species for its survival), node i 
was considered extinct/isolated and thus removed from the network. This process 
continued until all species had positive wMISs. The proportion of the remaining 
nodes was reported as the network robustness. We measured the robustness when 
50% of random nodes or five module hubs were removed.

Vulnerability. The vulnerability of each node measures the relative contribution of 
the node to the global efficiency. The vulnerability of a network is indicated by the 
maximal vulnerability of nodes in the network as

max
E � Ei

E

� �
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where E is the global efficiency and Ei is the global efficiency after removing node i 
and its entire links56. The global efficiency of a graph was calculated as the average 
of the efficiencies over all pairs of nodes:

E ¼ 1
n n� 1ð Þ

X

i≠j

1
d i; jð Þ

where d(i,j) is the number of edges in the shortest path between node i and j. 
Efficiency describes how fast information spread within the network. In ecological 
networks, it can provide information on how fast the consequence of biological/
ecological events traverse to parts or the entire network.

Network stability on the basis of empirical data. Node constancy and overlap. 
Constancy measures temporal stability of species and is defined as μ/σ, where μ 
is the mean of abundance over time and σ is the standard deviation83. Here, we 
calculated the constancy of node i as

μi
σi

where μi is the mean and σi is the standard deviation of abundances of species 
i in the networks from different time points. The abundance of species i at a 
certain time point was positive only if species i was in the MEN at that time point. 
Otherwise, the abundance of species i was considered zero for that time point. For 
σi = 0, the constancy was not finite and thus removed from subsequent analyses. 
Finally, the average of all the constancy values was reported as the constancy 
of network nodes under warming or control. The difference of link constancy 
between treatments was tested using a Mann–Whitney U test (R package {stats}).

Then we followed the method introduced by Hui et al.84 and calculated the 
number of overlapping nodes among multiple networks. The time points included 
were referred to as ‘order’. Higher numbers of overlapping nodes among networks 
indicate slower turnover of species composition in the networks.

Link constancy. We adapted the concept of node constancy and calculated the link 
constancy in a similar way. We let lij+ = 1 if nodes i and j were positively linked in a 
network, lij– = 1 if nodes i and j were negatively linked in a network. Let lij+ = lij– = 0 
if there was no link between i and j. The constancy of a link, for example, lij+ or 
lij- was calculated as

lijþ ¼
μlijþ
σlijþ

lij� ¼
μlij�
σlij�

where μlijþ
I

 is the mean and σlijþ
I

is the standard deviation of lij+ in all the networks 
from different time points, and μlij�

I
 and σlij�

I
are the mean and standard deviation 

of lij– in all the networks from different time points. For σlijþ ¼ 0
I

, the constancy of 
lij+ was not finite and thus removed from subsequent analyses, and similarly for lij-. 
Finally, the average of all the constancy values was calculated as the constancy of 
network links under warming or control. The difference of link constancy between 
treatments was tested using a Mann–Whitney U test (R package {stats}).

Node persistence. The node persistence is defined as the proportion of coexisting 
species (over the total number of species) at an ecological regime6. We thus 
calculated the persistence of a node as the percentage of nodes present in the 
network in multiple consecutive years, measured by

PS
k¼1

Qv
i¼1 δi;k

S

where v is the number of samples taken from the same field plot at multiple 
consecutive time points. S is the total OTU number in the networks, and δi,k is a 
Dirac delta function with δi,k = 1 if the abundance of OTU k in sample i is larger 
than 0 and δi,k = 0 if OTU k is not present in sample i.

Compositional stability. The compositional stability evaluates the change in 
community structure over time31. We calculated the compositional stability for 
microbial community in the networks, using the sample × OTU matrix as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS

k¼1 v min
i

yi;k

 

PS
k¼1

Pv
i¼1 yi;k

vuuut

where v is the number of samples taken from the same field plot at multiple 
consecutive time points. S is the total OTU number in the networks. yi,k is the 
abundance of OTU k in sample i. If community structure has no change, that 
is,yi;k ¼ min

i
yi;k

I

, this stability index is equal to 1; If community structure is totally 
different among time points, that is, min

i
yi;k ¼ 0

I

, this stability index is 0. When 

v = 2, it is equal to the square root of the Bray–Curtis similarity between two 
adjacent time points. Different v (the number of time points) enables it to assess 
stability at different timescales, so it is called the multi-order stability index.

When v = 2,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

PS
k¼1 jyi;k � yi�1;kjPS
k¼1 jyi;k þ yi�1;kj

s

where yi,k and yi – 1,k are abundances of OTU k in samples from Year i and Year i – 1, 
respectively.

Microbial functional potential assessment. We used two methods to assess 
functional potentials harboured in the networks. First, microbial community 
DNAs were hybridized with a comprehensive functional gene array named 
GeoChip 5.0 M19,85. GeoChip 5.0M enables detection and quantification of the 
abundance of >365,000 functional genes from 1,447 gene families involved in 
biogeochemical cycling of C, N, sulfur, phosphorus and other functional categories. 
The hybridization signal intensities can provide quantitative measurements of the 
absolute abundance of the corresponding genes in the community. GeoChip has 
been widely used in various studies15,20,52 to understand the functional potentials of 
complex microbial communities across different environments. Second, we used 
PICRUSt232 software, which predicts metabolic pathways on the basis of taxonomy 
annotation from 16 S rRNA gene sequences, in its default settings to calculate 
the abundances of metabolic pathways. Since this information is predicted but 
not directly measured86, we focused only on the overall change of the pathways 
between warming and control, but did not rely on detailed functions in these 
predicted genomes to interpret their specific influence on the ecosystem processes. 
To assess the warming effect on the functional potentials predicted by PICRUSt2, 
we used a general linear model with R package {stats} ‘Pathway abundance ~ 
Warming*Year + Block’ to assess warming and sampling year’s effect on the 
predicted pathway abundances.

Differences of the networked community composition under warming 
and control. To assess whether the networked communities are different 
under warming and control, we performed three non-parametric multivariate 
analyses of dissimilarity, including MRPP, ANOSIM and Adonis, on the basis of 
Bray–Curtis distance (R package {vegan}68). Mantel tests were also performed 
between networked community structures and time, plant and soil variables, 
and ecosystem C fluxes in R with the mantel function in the package {vegan} 
version 1.4-268. We further used detrended correspondence analysis to visualize 
the differences of the networked communities across time and treatment 
conditions in a two-dimensional ordination space (R package {vegan}68). To 
assess how the soil, plant variables and spatial distance might have shaped the 
structure of the networked communities, a CCA model was used, followed by 
a VPA to discern the contributions of these variables to the overall variations 
of the networked communities (R package {vegan}68). In addition, we analysed 
the taxonomic composition of the networked communities under warming and 
control conditions at the phylum and class levels, used Mann–Whitney U tests to 
evaluate the abundance change of each taxa under warming (R package {stats}) and 
calculated the differentials of their relative abundances under warming compared 
with control using a method proposed to avoid compositional data bias with the 
proposed Songbird software26.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data accessibility
16S rRNA gene sequences were deposited to the National Center for Biotechnology 
Information (NCBI) under the project accession number PRJNA331185. The OTU 
table and OTU representative sequences, soil physical and chemical attributes, 
and plant biomass and richness are downloadable online at http://www.ou.edu/
ieg/publications/datasets. GeoChip signal intensity data can be accessed through 
the URL (https://www.ou.edu/ieg/publications/datasets). Source data are provided 
with this paper.

Code availability
The R scripts and Python 3 scripts are publicly available on GitHub at https://
github.com/Mengting-Maggie-Yuan/warming-network-complexity-stability with 
the identifier https://doi.org/10.5281/zenodo.4383469.

References
	41.	Li, D., Zhou, X., Wu, L., Zhou, J. & Luo, Y. Contrasting responses of 

heterotrophic and autotrophic respiration to experimental warming in a 
winter annual-dominated prairie. Glob. Change Biol. 19, 3553–3564 (2013).

	42.	Treves, D. S., Xia, B., Zhou, J. & Tiedje, J. M. A two-species test of the 
hypothesis that spatial isolation influences microbial diversity in soil. Microb. 
Ecol. 45, 20–28 (2003).

Nature Climate Change | www.nature.com/natureclimatechange

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA331185
http://www.ou.edu/ieg/publications/datasets
http://www.ou.edu/ieg/publications/datasets
https://www.ou.edu/ieg/publications/datasets
https://github.com/Mengting-Maggie-Yuan/warming-network-complexity-stability
https://github.com/Mengting-Maggie-Yuan/warming-network-complexity-stability
https://doi.org/10.5281/zenodo.4383469
http://www.nature.com/natureclimatechange


Articles NaTUrE CliMaTE CHangE

	43.	Zhou, J., Xia, B., Huang, H., Palumbo, A. V. & Tiedje, J. M. Microbial 
diversity and heterogeneity in sandy subsurface soils. Appl. Environ. 
Microbiol. 70, 1723–1734 (2004).

	44.	Zhou, J. et al. Spatial and resource factors influencing high microbial diversity 
in soil. Appl. Environ. Microbiol. 68, 326–334 (2002).

	45.	O’Brien, S. L. et al. Spatial scale drives patterns in soil bacterial diversity. 
Environ. Microbiol. 18, 2039–2051 (2016).

	46.	Penton, C. R., Gupta, V. V. S. R., Yu, J. & Tiedje, J. M. Size matters: assessing 
optimum soil sample size for fungal and bacterial community structure 
analyses using high throughput sequencing of rRNA gene amplicons. Front. 
Microbiol. 7, 824 (2016).

	47.	Zhou, J., Bruns, M. A. & Tiedje, J. M. DNA recovery from soils of diverse 
composition. Appl. Environ. Microbiol. 62, 316–322 (1996).

	48.	Hurt, R. A. et al. Simultaneous recovery of RNA and DNA from soils and 
sediments. Appl. Environ. Microbiol. 67, 4495–4503 (2001).

	49.	Peiffer, J. A. et al. Diversity and heritability of the maize rhizosphere 
microbiome under field conditions. Proc. Natl Acad. Sci. USA 110,  
6548–6553 (2013).

	50.	Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust 
environmental microbial community analysis. BMC Microbiol. 15, 125 (2015).

	51.	Wen, C. et al. Evaluation of the reproducibility of amplicon sequencing with 
Illumina MiSeq platform. PLoS ONE 12, e0176716 (2017).

	52.	Zhou, J. et al. High-throughput metagenomic technologies for complex 
microbial community analysis: open and closed formats. mBio 6, e02288–14 
(2015).

	53.	Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based 
detection. ISME J. 5, 1303–1313 (2011).

	54.	Luo, F. et al. Constructing gene co-expression networks and predicting 
functions of unknown genes by random matrix theory. BMC Bioinformatics 8, 
299 (2007).

	55.	Luo, F., Zhong, J., Yang, Y., Scheuermann, R. H. & Zhou, J. Application of 
random matrix theory to biological networks. Phys. Lett. A 357, 420–423 
(2006).

	56.	Deng, Y. et al. Molecular ecological network analyses. BMC Bioinformatics 13, 
113 (2012).

	57.	Shi, S. et al. The interconnected rhizosphere: high network complexity 
dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).

	58.	Mehta, M. L. Random Matrices 2nd edn (Elsevier, 2004).
	59.	Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N. & Stanley, H. E. 

Universal and non-universal properties of cross-correlations in financial time 
series. Phys. Rev. Lett. 83, 1471–1474 (1999).

	60.	Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. B 
44, 139–160 (1982).

	61.	Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. 
Microbiome datasets are compositional: and this is not optional. Front. 
Microbiol. 8, 2224 (2017).

	62.	Pawlowsky-Glahn, V. & Egozcue, J. J. Compositional data and their analysis: 
an introduction. Geol. Soc. Spec. Publ. 264, 1–10 (2006).

	63.	Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey 
data. PLoS Comput. Biol. 8, e1002687 (2012).

	64.	Watts, S. C., Ritchie, S. C., Inouye, M. & Holt, K. E. FastSpar: rapid and 
scalable correlation estimation for compositional data. Bioinformatics 35, 
1064–1066 (2019).

	65.	Weiss, S. et al. Correlation detection strategies in microbial data sets vary 
widely in sensitivity and precision. ISME J. 10, 1669–1681 (2016).

	66.	R: a language and environment for statistical computing (R Foundation for 
Statistical Computing, 2019).

	67.	Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based 
analysis of ecological data. J. Stat. Softw. 22, 1–19 (2007).

	68.	Oksanen, J. et al. vegan: Community Ecology Package. Version 2.5-6 (2019).
	69.	Lima-Mendez, G. et al. Determinants of community structure in the global 

plankton interactome. Science 348, 1262073 (2015).
	70.	Yuan, M.M. et al. Mengting-Maggie-Yuan/

warming-network-complexity-stability: 
warming-network-complexity-stability-v1.0. Version 1.0 (Zenodo, 2021); 
https://doi.org/10.5281/zenodo.4383469

	71.	He, Z. et al. GeoChip 3.0 as a high-throughput tool for analyzing microbial 
community composition, structure and functional activity. ISME J. 4, 
1167–1179 (2010).

	72.	He, Z. et al. GeoChip: a comprehensive microarray for investigating 
biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 
(2007).

	73.	Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for 
quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA 116, 
16892–16898 (2019).

	74.	Zhou, J. & Ning, D. Stochastic community assembly: does it matter in 
microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–e00017 (2017).

	75.	Csárdi, G. & Nepusz, T. The igraph software package for complex network 
research. InterJ. Complex Syst. 1695, 1–9 (2006).

	76.	Maslov, S. & Sneppen, K. Specificity and stability in topology of protein 
networks. Science 296, 910–913 (2002).

	77.	Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. &  
Ulrich, W. A consistent metric for nestedness analysis in ecological systems: 
reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

	78.	Guimerà, R. & Nunes Amaral, L. A. Functional cartography of complex 
metabolic networks. Nature 433, 895–900 (2005).

	79.	Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of 
pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

	80.	Banerjee, S., Schlaeppi, K. & van der Heijden, M. G. A. Reply to ‘can we 
predict microbial keystones?’. Nat. Rev. Microbiol. 17, 194 (2019).

	81.	Röttjers, L. & Faust, K. Can we predict keystones? Nat. Rev. Microbiol. 17, 
193 (2019).

	82.	Langfelder, P. & Horvath, S. Eigengene networks for studying the 
relationships between co-expression modules. BMC Syst. Biol. 1, 54 (2007).

	83.	Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in 
natural grasslands. Nature 508, 521–525 (2014).

	84.	Hui, C., McGeoch, M. A., Harrison, A. E. S. & Bronstein, E. J. L. Zeta 
diversity as a concept and metric that unifies incidence-based biodiversity 
patterns. Am. Nat. 184, 684–694 (2014).

	85.	Shi, Z. et al. Functional gene array-based ultrasensitive and quantitative 
detection of microbial populations in complex communities. mSystems 4, 
e00296–19 (2019).

	86.	Sun, S., Jones, R. B. & Fodor, A. A. Inference-based accuracy of metagenome 
prediction tools varies across sample types and functional categories. 
Microbiome 8, 46 (2020).

Acknowledgements
We thank numerous former and current members in the Institute for Environmental 
Genomics for their help in maintaining the long-term field experiment. This work was 
supported by the US Department of Energy, Office of Science, Genomic Science Program 
under award numbers DE-SC0004601 and DE-SC0010715, and the Office of the Vice 
President for Research at the University of Oklahoma. X.G. and X.Z. were generously 
supported by China Scholarship Council (CSC) to visit the University of Oklahoma. The 
statistical analyses performed by X.G. were also supported by the China Postdoctoral 
Science Foundation (2018M641327 and 2019T120101).

Author contributions
All authors contributed intellectual input and assistance to this study. The original 
concepts were conceived by J.Z. and J.M.T. Field management was carried out by M.M.Y., 
X.G., Linwei W., Y.Z., Z.S., D.N. and Liyou W. Sampling collection, soil chemical and 
microbial characterization were carried out by M.M.Y., X.G. and X.Z. Data analyses were 
done by M.Y., X.G., Linwei W., Z.S. and N.X. with the assistance provided by D.N. and 
J.Z. All data analysis and integration were guided by J.Z. The manuscript was prepared 
by J.Z, M.M.Y., X.G., Linwei W. and Y.Z. with substantial input from J.M.T. and Y.Y. 
Considering their contributions in terms of site management, data collection, analyses 
and/or integration, M.Y., X.G., Linwei W. and Y.Z. were listed as co-first authors.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41558-021-00989-9.

Supplementary information The online version contains supplementary material 
available at https://doi.org/10.1038/s41558-021-00989-9.

Correspondence and requests for materials should be addressed to J.Z.

Peer review information Nature Climate Change thanks Johannes Bjork,  
Dongmei Xue and the other, anonymous, reviewer(s) for their contribution to the peer 
review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Nature Climate Change | www.nature.com/natureclimatechange

https://doi.org/10.5281/zenodo.4383469
https://doi.org/10.1038/s41558-021-00989-9
https://doi.org/10.1038/s41558-021-00989-9
http://www.nature.com/reprints
http://www.nature.com/natureclimatechange


ArticlesNaTUrE CliMaTE CHangE

Extended Data Fig. 1 | Succession and environmental drivers of the networked community structure. a, Detrended correspondence analysis (DCA) of the 
structure of networked communities. The community structure is significantly different by both treatment and year. b, Canonical correspondence analysis 
(CCA) of the links between networked community structure and environmental drivers. The ordination plot shows the CCA model with each networked 
microbial community and constraining variables, including spatial distance (Distance), soil temperature (Temp.), soil moisture (Moisture), soil pH (pH), 
soil total N (TN), soil nitrate (NO3−N) and ammonia (NH4-N) contents, plant biomass and richness. The model is significant with p = 0.001 tested by 
ANOVA. c, Variation partitioning analysis (VPA) separating the variation of community structure explained by the CCA model. Soil category includes 
soil temperature (Temp.), soil moisture (Moisture), soil pH (pH), soil total N (TN), soil nitrate (NO3-N) and ammonia (NH4-N) contents; plant category 
includes plant biomass and richness.
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Extended Data Fig. 2 | Cohesion of bacterial communities and its relationships with network complexity and stability indices. a, Changes in positive 
cohesion of bactera community over time. b, Changes in negative cohesion of the commuity over time. In (a) and (b), filled red circles with solid line 
represent communities under warming, and open blue circles with dashed line represent communities under control condition. Each error bar corresponds 
to the standard deviation of cohesion in 24 plots. The slopes (b from Y=a+bX), adjusted r2 and p values of the linear model fittings are shown. c, Pearson 
correlations of cohesion with various network complexity and stability indices under warming (framed in red) or control (framed in blue) condition.  
The cells highlighted in red indicate significant positive correlations (p ≤ 0.05) and those in blue indicate significant negative correlations. Numbers inside 
of the cells are correlation coefficients. Correlations with p > 0.05 are in gray.
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Extended Data Fig. 3 | Modules preserved across time and treatments. a, Large modules (that is, those with ≥ 5 nodes) shown in circular layout for  
the 11 networks. Colors of nodes indicate major taxa. Red links indicate positive correlations between nodes. Blue links indicate negative correlations 
between nodes. The bar underneath each network shows the proportions of positive and negative links. The label nearby each module represents its ID.  
b, Preserved module pairs highlighted and connected in the same module layout as (a). Modules are in the same color if they are in the same module 
cluster (that is, a cluster of modules consisting all the directly paired and indirectly linked modules). Note that two clusters of modules (the red and the 
blue clusters) were preserved over time consistently between Year 1 (2010) and Year 5 (2014). More details are in Supplementary text C.
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Extended Data Fig. 4 | Keystone taxa and their relative abundances in bacterial communities. a,b, Putative keystone taxa identified based on the node 
topological roles in networks under control (a) and warming (b). Each symbol represents a node in one of the networks. A node was identified as a module 
hub if its Zi ≥ 2.5, as a connector if its Pi ≥ 0.62, and as a network hub if it had Zi ≥ 2.5 and Pi ≥ 0.62. Detailed taxonomic information for module hubs, 
connectors and network hubs is listed in Supplementary Table 6. c–f, The relative abundances of module hubs (c, d) and connectors (e, f) in the networks 
under control (c, e) and warming (d, f). The relative abundance of an OTU was estimated as the percentage of its number of sequences in the total number 
of squences detected for the community. g, A maximum likelihood phylogenetic tree of keystone nodes in all networks. Green, red, and blue dots represent 
the taxa of keystone nodes that occurred in both warming and control networks, only under warming, and only in control, respectively. Branches are 
colored based on bacterial phyla identified using RDP classifier.
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Extended Data Fig. 5 | Temporal variations (that is, constancy) of network nodes and links. a, Network node constancy. Each box shows the constancy 
distribution of all the nodes, averaged across experimental plots, present in the networks under warming (n = 603) or control (n = 601). Mann-Whitney 
U test results are shown. b, The number of overlapping nodes under warming and control among different numbers of networks (that is, orders). For 
example, for order=2, the overlapping nodes were between any two pairs of networks; for order=3, they were among any three networks. The nodes 
consistently present in all the time points are listed in Supplementary Table 3. c, The number of overlapping nodes among multiple networks from different 
gap times. The datapoints include orders 2 to 6. Linear regression results are shown. d, Unweighted network link constancy. Each box shows the constancy 
distribution of the links in the networks under warming (n = 4,661) or control (n = 3,526). Mann-Whitney U test results are shown here.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used to collect the data in this study.

Data analysis Amplicon sequencing data processing was done using the Galaxy-based pipeline published and developed by the Institute for 
Environmental Genomics, University of Oklahoma accessible by public at http://zhoulab5.rccc.ou.edu:8080/root.  
Network construction and comparison were done using the published MENAP pipeline, accessible by public at http://ieg4.rccc.ou.edu/
MENA/.  
Statistical analyses were done using R software 3.5.3 and Python 3. R and Python scripts are available on GitHub at https://github.com/
Mengting-Maggie-Yuan/warming-network-complexity-stability with the identifier https://doi.org/10.5281/zenodo.4383469.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

16S rRNA gene sequences were deposited to the National Center for Biotechnology Information (NCBI) under the project accession number PRJNA331185. The OTU 
table and OTU representative sequences, soil physical and chemical attributes, and plant biomass and richness are downloadable online at http://www.ou.edu/ieg/
publications/datasets. GeoChip signal intensity data can be accessed through the URL (https://www.ou.edu/ieg/publications/datasets).
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description The field experiment was conducted at the Kessler Atmospheric and Ecological Field Station (KAEFS) of the US Great Plain in McClain 
County, Oklahoma, USA (34̊ 59ʹ N, 97̊ 31ʹW). This experiment used a blocked split-plot design, in which warming (continuous heating 
at a target of  +3 °C above ambient) and precipitation alteration (target of -50% and +100%) were primary factors nested with annual 
removal of aboveground biomass in peak growth season as the secondary factor. Altogether, there were 24 plots under warming, 
and 24 plots under ambient temperature as control.

Research sample In 2009, 24 pre-warmed surface (0 - 15 cm) soil samples were collected using a soil core. From 2010 to 2014, a total of 240 samples 
were collected, one sample per plot per year. Soil microbial DNA was extracted from 1 g of well-mixed soil for each sample in order 
to investigate microbial community composition.

Sampling strategy The surface (0 - 15cm) soil samples were taken using a standard soil corer (2.5 cm in diameter). About 50 g of soil sampled were 
mixed well before 1 g of soil was weighed for DNA extraction from each plot/timepoint.

Data collection Soil temperature, moisture (volumetric water content), total carbon (C), total nitrogen (N), nitrate (NO3-) and ammonia (NH4+), plant 
biomass and richness (separated into C3 and C4 species), and ecosystem C flux were measured and analyzed as described previously 
in Guo 2018 and Guo 2019. 16S amplicon sequencing was performed following a published protocol (Wu 2015) on Illumina MiSeq 
platform. 
References:  
Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nature Climate Change 8, 813 
(2018).  
Guo, X. et al. Climate warming accelerates temporal scaling of grassland soil microbial biodiversity. Nature Ecology & Evolution 3, 
612-619 (2019). 
Wu, L. et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC 
microbiology 15, 125 (2015).

Timing and spatial scale The experimental site was initiated in the fall of 2009. Data and samples for this study were collected during 2009 to 2014. One soil 
sample were collected in each plot once every year. Soil chemistry feature were determined for each soil sample collected. Soil 
temperature data were recorded continuously using sensors installed in the plots. Soil moisture, and ecosystem C flux were 
measured roughly every month, except for extreme weather conditions. Plant biomass and richness were surveyed once every year 
at peak biomass season.

Data exclusions No data were excluded.

Reproducibility Our data are from multiple biological replicates and multiple time points.

Randomization The plots within each block were assigned to different treatment randomly.

Blinding All the soil sample processing and field measurements were done following the same way,  and without signs/labels noting the 
relavant treatment.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions The field experiment was conducted at the Kessler Atmospheric and Ecological Field Station (KAEFS) of the US Great Plain in 

McClain County, Oklahoma, USA (34̊ 59ʹ N, 97̊ 31ʹW). The average air temperature was 16.3 °C and the average annual 
precipitation was 914 mm, based on Oklahoma Climatological Survey from 1948 to 1999. The experimental site was dominated 
by C3 forbs (Solanum carolinense, Ambrosia trifida and Euphorbia dentate), C3 grasses (Bromus sps) and C4 grasses (Tridens 
flavus and Sorghum halapense). The soil type was Port-Pulaski-Keokuk complex, with a neutral pH, a high available water holding 
capacity (37%) and a deep (ca. 70 cm), moderately penetrable root zone. 

Location The field experiment was conducted at the Kessler Atmospheric and Ecological Field Station (KAEFS) of the US Great Plain in 
McClain County, Oklahoma, USA (34̊ 59ʹ N, 97̊ 31ʹW). 

Access and import/export The property on which the field experiment were built belongs to the University of Oklahoma. The authors have full access to the 
field site to conduct research. All the research activities conducted on site complies to national and local laws and regulations, 
and rules imposed by the University of Oklahoma in terms of ecological conservation and work safety.
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Disturbance The field experimental site were fenced with a buffer area without significant disturbance to the tall grass prairie around.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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