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Abstract
There is an increasing interest in the clustered regularly interspaced short palindromic repeats CRISPR-associated protein
(CRISPR-Cas) system to reveal potential virus–host dynamics. The universal and most conserved Cas protein, cas1 is an
ideal marker to elucidate CRISPR-Cas ecology. We constructed eight Hidden Markov Models (HMMs) and assembled cas1
directly from metagenomes by a targeted-gene assembler, Xander, to improve detection capacity and resolve the diverse
CRISPR-Cas systems. The eight HMMs were first validated by recovering all 17 cas1 subtypes from the simulated
metagenome generated from 91 prokaryotic genomes across 11 phyla. We challenged the targeted method with
48 metagenomes from a tallgrass prairie in Central Oklahoma recovering 3394 cas1. Among those, 88 were near full
length, 5 times more than in de-novo assemblies from the Oklahoma metagenomes. To validate the host assignment by cas1,
the targeted-assembled cas1 was mapped to the de-novo assembled contigs. All the phylum assignments of those mapped
contigs were assigned independent of CRISPR-Cas genes on the same contigs and consistent with the host taxonomies
predicted by the mapped cas1. We then investigated whether 8 years of soil warming altered cas1 prevalence within the
communities. A shift in microbial abundances was observed during the year with the biggest temperature differential (mean
4.16 °C above ambient). cas1 prevalence increased and even in the phyla with decreased microbial abundances over the next
3 years, suggesting increasing virus–host interactions in response to soil warming. This targeted method provides an
alternative means to effectively mine cas1 from metagenomes and uncover the host communities.

Introduction

CRISPR-Cas system is mainly known as an adaptive
immunity that enables the bacterial and archaeal hosts to

robustly adapt to the rapidly evolving viruses by acquiring
viral sequences and storing in CRISPR arrays as immunity
memories [1]. Our knowledge of CRISPR-Cas system is
restricted to a limited number of archaeal and bacterial
genomes deposited in the public databases which cannot
well-represent environmental microbiomes. A few pilot
metagenome studies detected new CRISPR-Cas systems
and their prevalence in the environments like acid mine
drainage [2], sediments [2], marine sponge [3], and global
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oceans [4]. The CRISPR-Cas system in environmental
microbiomes, such in soil, with high microbial diversity,
and cryptic species are understudied. Some basic questions
remain unanswered such as: (i) what are the subtypes and
the host community of CRISPR-Cas system found in soil
microbiome, and (ii) how does the CRISPR-Cas preference
shift in response to environmental perturbation.

Compared with CRISPR arrays, cas genes provide more
information of subtypes and host taxonomy [5]. Current
methods of mining for cas genes in metagenome are based
on the de-novo assembled contigs and binned genomes [6].
Assembling long contigs requires high coverage of the
genomes so that the dominant microbes with low genomic
heterogeneity and less repetitive regions are often more
represented in de-novo assemblies [7]. Besides, the incom-
plete assembling of soil metagenomes generates shorter
contigs, which makes cas gene annotation more problematic.
In addition to the computational challenges, the viral load in
soil is much lower than that in marine system, 1.5 × 108 g−1,
which is approximately one soil virus for every 25 bacterial
cells [8] in contrast to 0.03–11.71 × 109 g−1 viruses found in
marine sediments [9]. Given the potentially low recovery of
CRISPR-Cas system in soil metagenomes by current
approaches, alternative methods are required.

To overcome the difficulties mentioned above, we
applied a more targeted approach to assemble cas directly
from the metagenomes by a targeted-gene assembler,
Xander [10] using profile Hidden Markov Models (HMMs)
to guide de Bruijn graph traversal. This could provide an
opportunity to more efficiently reveal CRISPR-Cas systems
in complex microbiomes such as in soil. We targeted cas1,
one of the universally conserved cas genes, to assemble as a
biomarker of CRISPR-Cas system [1]. Cas1 binds to Cas2
to form a complex to initiate the adaptive immunity at the
integration stage in the majority of CRISPR-Cas systems
[11]. An exception is putative CRISPR-Cas subtype IV,
lacking cas1, cas2, and CRISPR arrays, is carried by a
plasmid and opportunistically becomes functional only
when transferred into hosts with CRISPR available, which
is not included in the detection here. Hence, we applied this
targeted-assembly method to more robustly recover cas1
diversity and decipher CRISPR-Cas ecology.

Different soil histories or exposures to new environ-
mental conditions drive soil microbiome changes, which
could include their relationships with their viral predators.
Climate change which can result in warmer soils, as well as
new moisture regimes is one example of an environmental
driver of microbiome change of current concern. In situ
experimental soil warming studies have been conducted in
various ecosystems including temperate forest soils
[12, 13], temperate grassland soils [14, 15], high latitude
alpine meadows [16], Antarctic peninsula [17], and Alaska
tundra [18, 19], among which microbial succession and

their ecological functions have been investigated but not
potential interactions between prokaryotes and viruses. cas1
may reflect the dynamics of this interaction in response to
soil warming. This may show whether or how soil warming
affects microbial communities and also shed light on the
microbial response to environmental changes.

Materials and methods

Site description and soil property measurements

The soil warming experiment was set up at the Kessler
Atmospheric and Ecological Field Station in McClain
County, OK (34° 59′ N, 96° 31′ W). The mean annual tem-
perature is 16.3 °C and mean annual precipitation is 914mm
[20]. The experiment was a blocked split-plot design and
initiated in July, 2009. For each selected block, soil was
sampled yearly through 2016 from three randomly selected
warming replicates heated by above ground infrared radiators
and from three paired ambient control plots located 5m away.
The sampling scheme, soil properties measurements, and
DNA extraction from 48 soil samples used (2 treatments, 3
replicates over 8 years) were reported previously [15, 21].

Constructing Cas1 HMMs and Xander packages

The three files for automatically generating a Xander
package include (1) a fasta file containing seed sequences;
(2) an HMM, and (3) a fasta file containing a more diverse
collection of the targeted protein sequences (framebot.fa).
Near full length of cas1 protein sequences were retrieved
from GenBank [22] for the well-curated protein family seed
sequences in Pfam [23] (Pfam 01867), TIGERFAM [24]
(TIGRFAM00287, TIGRFAM03637, TIGRFAM03638,
TIGRFAM03639, TIGRFAM03640, TIGRFAM03641,
TIGRFAM03983, TIGRFAM04093, and TIGRFAM04329)
and the recent literature [2, 25–29]. The compiled cas1
protein sequences were aligned by MAFFT [30] in Jalview
(jalview.org, v. 2.10.2b2). The aligned cas1 protein
sequences were dereplicated to remove the identical or
substring of sequences and clustered by sequence similarity
using RDPTools (ReadSeq.jar and Clustering.jar; https://
github.com/rdpstaff/RDPTools). The dereplicated cas1
protein sequences grouped into seven complete-linkage
clusters at 50% identity cutoff. The sequences in each
cluster were used as the seed sequences to build HMMs
using modified HMMER 3.0 [31] with a patch file [10]. An
additional HMM was added specifically for archaeal Type II
cas1 considering its novelty [2]. To prepare the third file
required for a Xander package (framebot.fa), we used the
respective HMM to search against the nonredundant protein
sequence database (nr, NCBI) via hmmsearch [31] and
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collected sequences annotated as ‘Cas1’. Eight cas1 Xander
packages named as M1–M8 were automatically prepared
using a shell script (https://github.com/rdpstaff/Xander_a
ssembler/blob/master/bin/).

Evaluating and improving HMM performance

We created a reference genome set including 91 bacterial
and archaeal genomes across 11 phyla carrying 93 cas1
sequences of 17 subtypes from NCBI Genome database
(https://www.ncbi.nlm.nih.gov/genome) (Supplementary
T1) to evaluate and train the newly constructed HMMs
(Fig. 1b). The subtypes included Archaeal Type II, CasX,
CasY, IA-IF, IU, IIA-IIC, and IIIA-IIID, which are classi-
fied followed the naming standard that has been specified
by Makarova KS and Koonin EV [5]. Pairwise distances
among the 93 cas1 protein sequences were calculated
(https://github.com/rdpstaff/Clustering), and a cas1 protein
tree was built by FastTree [32]. Together with the reference
genome set, a genome of Streptomyces coelicolor
(NC_003888.3) with a gene encoding transposase, a
homolog of cas1 protein [33], was included as the outgroup
to root the cas1 protein tree and also used to detect potential
false positives in the following evaluation step.

First, we used the reference genome set to evaluate the
sensitivity and specificity of the eight HMMs. Simulated
metagenomic reads from the 91 genomes were generated by
an amplicon and shotgun sequence simulator, Grinder [34],
starting with a 2× coverage of each genome. The simulated

metagenome was then fed to Xander with the eight Xander
packages to assemble cas1. The assemblies were then
subjected to chimera check by Xander. The HMM sensi-
tivity was assessed by whether all the 17 subtypes of cas1
can be recovered from the simulated metagenome using the
targeted-assembly method. The HMM specificity was
evaluated by accurate mapping of the targeted-assembled
nucleotide sequences to the cas1 coding region of the
designated genome from the reference genome set using
Bowtie2 [35]. The respective cas1 protein sequences were
also searched against nr database (NCBI) by BLAST [36] to
check the assembly accuracy.

Second, the curated reference genome set can better
improve the performance of the eight HMMs within the
Xander packages. We first confirmed that the cas1 sequences
of the reference genomes were covered in the simulated
metagenome by checking if at least two 45-mer of the refer-
ence cas1 was in the kmer set of simulated reads (Fig. 1b).
For the reference cas1 that contributed to the simulated reads
but was not captured by any of the preliminary models, we
aligned the corresponding protein sequence of the reference
cas1 to the eight HMMs and added it to the seeds and fra-
mebot.fa of the best aligned HMM to enhance the sensitivity
and the recovery of cas1 diversity (Fig. 1b).

Similar to the simulated metagenomes, the preliminary
assemblies of cas1 proteins from the Oklahoma soil meta-
genomes mentioned below were also used to improve the
performance of HMMs for targeted assembly. We searched
the preliminary cas1 assemblies (though short and below

Fig. 1 The procedures of HMM construction and model optimi-
zation. HMM construction (a): near full length of cas1 protein
sequences previously used in Cas1 TIGRFAM, Pfam and mentioned in
the literature were retrieved from NCBI and were cluster at 50%
sequence identity after aligned by MAFFT and dereplicated by
RDPTools. Eight HMMs were constructed based on the seed

sequences in each cluster. Model optimization (b): the HMM perfor-
mance was evaluated by the simulated reads generated from a set of
reference genomes carrying 17 subtypes of CRISPR-Cas systems. We
optimized the HMMs by updating the coverage of the corresponding
seed sequences and Framebot files.
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the length threshold) against nr database (NCBI) by BLAST
[36] and added the near full-length best hits into the cor-
responding seeds and framebot files to optimize the models.

After the iteration by updating the coverage of the seeds and
framebot files (Fig. 1a) and reconstructing the HMMs, the eight
final Xander packages contain more robust models, which are
available at https://github.com/Ruonan0101/Targeted_Cas1_a
ssembly. The processing steps are summarized in Fig. 1a.

Sequence trimming and targeted cas1 assembly
from Oklahoma soil metagenomes

The Illumina adapters were removed from the paired-end
reads using Trimmomatic v0.33 [37] (ILUMINACLIP). The
trimmed reads were filtered for contiguous segments longer
than 45 bases (same as the kmer length used in assembling)
with the average quality score higher than 20 (SolexaQA+
+ v3.1.5 [38] dynamictrim and lengthsort). The trimmed
sequences were fed to Xander [10] for targeted cas1
assembly. All eight cas1 HMMs, together with bacterial and
archaeal ribosomal protein L2 (rplB) HMMs, were run
simultaneously on each sample from the same bloom filter
with the same kmer size of 45 since this larger kmer size
can result in better assemblies with lower chimera occur-
rence. The length cutoff for cas1 protein sequences was set
to 60 amino acids based on the lowest length coverage of
cas1 subtype, which was IIID at 30.8% (Table 1). We kept
rplB sequences longer than 150 amino acids. RplB was used
rather than the 16S rRNA gene because it is a single copy
ribosomal protein in all microbes and is well tested for
assembly by Xander and taxonomic placement [39].

Contigs validation and host assignment to
phylum level

Because the eight HMMs have overlapping specificity, we
first dereplicated the combined assemblies from all eight
models before predicting host taxonomy. All contigs from

one sample were pooled together and searched against NCBI
nr database. The top five hits with the descending bit scores
of each contig were recorded together with the information
of percent identity, coverage, accession number, and lineage.
The best hit was selected only if the percent identity of the
top hit was greater than the second one by 3% or it has the
same host taxonomy with the remaining hits (phyla level
used in the following data analysis), otherwise the contig
was unclassified. The unclassified contigs kept the infor-
mation of the best hit but with lineage noted as “unclassi-
fied.” All the classified and unclassified contigs were sorted
based on accession numbers of the best hit to check the
potential overlap between models. Contigs assembled by
different models but with the same accession number of the
best hit were re-examined and the ones with (1) classified
lineage, (2) higher bit score, and (3) longer length were
selected. The host of cas1 assemblies was assigned based on
the taxonomy annotation of the screened hits.

Validation of assembly accuracy by comparing to
the traditional annotation method

We leveraged de-novo assembled contigs obtained from
Oklahoma grassland metagenomes to validate the assembly
accuracy and evaluate the performance of the targeted method.
The quality-filtered metagenomic reads were assembled by
MegaHit [40] using kmer from 31 to 131 with step size of 20.
The option of -kmin-1pass was used to recover low coverage
species. There were 1,488,684 contigs with length longer than
1000 bp used for the following analysis.

We then applied the traditional cas1 annotation method
by searching the ORFs predicted from all the de-novo
assembled contigs using the eight HMMs. The ORFs
annotated as putative cas1 via hmmsearch (HMMER,
v3.1b2, http://hmmer.org/) were further validated by NCBI
nr database. As both targeted and de-novo assembly
methods can generate gene fragments, we only compared
the numbers of cas1 sequences with near full length

Table 1 cas1 subtypes included in the training set, and subtype coverage and length recovered by each model.

Subtype covered No. of Cas1 included Model Average coverage (length) Coverage (subtype)

IF 8 M1 92.3% 100.0%

IE 20 M2 86.2% 100.0%

CasY 3 M3 99.6% 100.0%

IIC/IIA/IIIA 3/5/2 M4 94.9% 100.0%

IA/IIB/IIIB/CasX 5/2/2/1 M5 59.0% 100.0%

Archaeal II 1 M6 99.4% 100.0%

IC/ID/IU/IIIC/IIID 17/2/3/3/2 M7 82.7% 100.0%

IB 14 M8 86.9% 100.0%

Cas1 subtypes Archaeal II CasX CasY IA IB IC ID IE IF IU IIA IIB IIC IIIA IIIB IIIC IIID

Average coverage
(length)

99.4% 40.4% 99.6% 31.5% 85.5% 97.1% 98.2% 86.2% 92.3% 60.4% 95.7% 91.1% 95.4% 96.4% 99.4% 72.7% 30.8%

Coverage (subtype) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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(>300 aa) from both methods to make a fair and con-
servative estimate of the performance.

Validation of host assignment method by
comparing to the cas1-mapped de-novo assemblies

The reliability of cas1-based host assignment was tested by
searching the targeted-assembled cas1 sequences against the
de-novo assembled contigs using BLASTn. A qualified match
was defined as a hit with (1) the highest bit score, (2) the
percent identity greater than 95%, and (3) the length coverage
higher than 50%. We predicted the taxonomies of de-novo
assembled contigs via the Contig Annotation Tool (CAT) [41]
with modifications. CAT assigned a de-novo assembled
contigs with NCBI lineage based on multiple open reading
frames (ORFs) predicted by Prodigal [42]. As cas1 is nor-
mally grouped with other CRISPR-Cas genes, which are more
prone to horizontal transfer [1], we removed ORFs with
NCBI annotations as CRISPR-Cas related proteins and fed
CAT with filtered ORFs for taxonomy assignment. To check
the sequence redundancy of cas1-mapped de-novo assembled
contigs, we used the single linkage clustering to cluster the
de-novo assembled contigs [43]. The detailed clustering
method and results were in Supplementary File 1.

cas1 subtype assignment and prevalence estimation

As cas1 protein sequences were mostly grouped by subtype,
we assigned the subtypes by placing the assemblies on the
cas1 protein tree. The tree was built with the 93 cas1 protein
sequences of 17 subtypes from the reference genome set using
FastTree [32]. The cas1 assemblies filtered from the valida-
tion step were aligned to a reference HMM and the modeled
positions were used to map to the branches of the cas1 protein
tree via pplacer [44]. The cas1 contigs then adopt the subtype
assignment of the mapped references.

cas1 abundance was adjusted by subtracting the abun-
dance of the contigs assembled from the potentially over-
lapped models. The adjusted cas1 abundance detected in a
microbial phylum was further normalized by the corre-
sponding rplB abundance and noted as cas1 prevalence of a
particular phylum in the following discussion.

Statistical analysis

Sequence distance matrix was calculated using RDPTools
(Clustering) and plotted in R (v3.3.3, Vegan, pheatmap
[45]). Canonical correspondence analysis including the cas1
host composition with environmental attributes was con-
ducted by R (v3.3.3) with packages of Vegan [46] and
ggplot2 [47].

Results

Targeted-assembly method provides a high
coverage of cas1 diversity

To assess cas1 diversity, the pairwise distance of the 93
cas1 protein sequences belonging to 17 subtypes in the
curated reference genome set (Fig. 2) was analyzed. The
same subtype showed higher similarities but the distances
within subtype can be up to 50–60%. The distance between
different subtypes can be up to 80%. These revealed a high
cas1 protein sequence diversity. Although HMMs are
known to robustly detect remote protein homology [48],
multiple HMMs were need to cover cas1 diversity. A lim-
ited (but sufficient) number of HMMs is preferred to avoid
the potential coverage overlaps among models.

To test the coverages of the eight optimized HMMs
implemented in Xander, we first assembled all the 17 sub-
types of cas1 from the simulated metagenomes (Table 1).

0.8

0.6

0.4

0.2

0

Fig. 2 Pairwise distances among cas1 protein sequences in the reference set of 91 genomes. The designation of the 17 subtypes is shown. The
scale of dissimilarity is from 0 to 1. The hotter color indicates a higher dissimilarity.
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Generally, the eight HMMs have high average length cov-
erages of targeted cas1 protein sequences (59–99% length
coverage). Owing to the high diversity of some cas1
sequences, subtypes like CasX, IA, and IIID could be
recovered by 30–40% of their length.

We built a cas1 protein tree (Fig. 3) to visualize the
clustering of the different subtypes and potential coverage

overlap among the eight models. cas1 protein sequences
were clustered by subtypes and within each subtype, those
from the same phylum generally clustered together (Fig. 3).
Most of the models covered one clade except M5 and M7
(Fig. 3). cas1 protein sequences covered by M5 and M7
were both developed a deep subclade, which intersected
with each other, implying potential overlap between models

Fig. 3 Rooted phylogenetic tree of cas1 protein sequences from the
reference genomes. Clades formed by 17 subtypes are colored dif-
ferently. Model (M1–M8) coverages on different subtypes are shown

in the inner circle and the taxonomy (phylum) of the host is displayed
in the outer circle.
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(Fig. 3). The Bowtie results (Supplementary T2) of the
assemblies from the simulated metagenome generated from
the reference genomes indeed showed some M7-assembled
contigs were also captured by M5 but not the opposite. In
this case, M7 always gave longer contigs. Length sorting
was therefore incorporated in the contig validation step to
remove the replicated assemblies resulting from the models
with overlapping coverage.

Targeted method increased the detection capacity
and reliably resolved cas1 host community

To evaluate the performance of the targeted method and
validate host assignment using the targeted-assembled cas1,
we cross-checked cas1 annotated from contigs that were de-
novo assembled from the Oklahoma soil metagenomes
analyzed below.

Compared with 88 dereplicated near full length (greater
than 300 amino acids) targeted cas1 assemblies, there were
17 near full length dereplicated cas1 genes from the de-
novo assembled contigs (Supplementary T3). Nine of these
matched targeted cas1 assemblies at greater than 99%
nucleotide sequence identity. The other eight were distant to
the known cas1 sequences, with between 45% and 83%
amino acid identity to their closest cas1 BLAST matches. In
comparison with the traditional method, the targeted
method increased the detection capacity of recovering near
full-length cas1 by five times (88 in targeted method versus
17 in traditional method). In addition, ~3300 targeted-
assembled cas1 shorter than 300 amino acids were not
included in this comparison but also contribute to cas1
diversity that can only be recovered by the targeted method.

The de-novo assemblies were also used to test the
reliability of cas1 host assignment. We used BLAST to find
contigs matching the targeted cas1 assemblies and found
147 de-novo assembled contigs with BLAST matches to 27
different targeted-assembled cas1. All but three of these
have a match with greater than 99% nucleotide identity
(Supplementary T4). These de-novo contigs could be
dereplicated into 25 clusters with 100% amino acid pairwise
identity between the shared ORFs, but for host assignment
each contig was assessed individually. Among the 147
cas1-mapped de-novo assembled contigs, 110 (74%) could
be assigned to host phyla using the CAT program after
removing putative CRISPR-Cas genes. All the assignments
agreed with the matching targeted-assembled cas1 assign-
ment (Supplementary T4).

cas1 host community and subtypes in Oklahoma
grassland microbiomes

The 8-year continuous soil warming significantly increased
the annual soil temperature above ambient by a mean of

2.38 °C with the largest increase of 4.16 °C, which occurred
in the 4th year, 2012 (Fig. 4a). We targeted-assembled rplB
and cas1 from 48 Oklahoma soil metagenomes with the
average reads count of 1.0 × 108. The single copy core gene,
rplB was used as a phylum-specific marker to estimate the
microbial abundances and the major soil taxa were noted as
the ones with rplB relative abundances greater than 1%
(Fig. 4c, rplB). About 60% of the total cas1 counts were
detected in the major phyla, suggesting cas1 was mainly
distributed in the abundant phyla (Fig. 4c, Cas1). As noted
above, cas1 was prevalent in Euryarchaota and Thermo-
togae (Fig. 4c, Cas1). cas1 host composition slightly
changed in response to soil warming (Fig. 4c, Cas1).
Besides temperature, cas1 host composition was under the
impacts of nutrients (total carbon, total nitrogen, ammo-
nium, and nitrate), pH and moisture (Fig. 4b). Diverse cas1
subtypes were detected in Oklahoma grassland micro-
biomes, i.e., 14 of the 17 subtypes (not IIIA, IIIB, and IIID)
were found in both control and warming samples (Fig. 5).
The cas1 subtype composition was not altered much when
the soil was heated (Fig. 5).

Change of rplB abundances and cas1 prevalence in
each taxon under soil warming treatment

To assess the general dynamics of microbial communities in
response to 8 years of soil warming, we calculated the fold
changes of rplB abundance (Fig. 6a) and cas1 prevalence in
major soil taxa (Fig. 6b). There was no gradual temporal
pattern observed over the 8-year continuous warming.
However, the rplB abundances of 9 out of 13 major taxa
increased in 2012 when the soil warming effect reached a
peak though it dropped thereafter (Fig. 6a). The ratio of
rplB abundances of Alphaproteobacteria to Acidobacteria
was included as an indicator of nutrient availability since
Alphaproteobacteria are regarded as fast-growing and
copiotrophic microbes in contrast to Acidobacteria, which
are more generally oligotrophic. This ratio gradually
increased after 2012 and doubled since 2015 (Fig. 6a).
Moreover, cas1 prevalence tended to increase in warming
plots after 2012, even in the taxa with decreased rplB
abundances, such as Acidobacteria, Chloroflexi, Deltapro-
teobacteria, Euryarchaeota (Fig. 6b), suggesting a pre-
ference to CRISPR-Cas carrying microbes.

Discussion

Targeted-assembly method gives a high coverage of
cas1 diversity and a reliable host assignment

The conventional approach to studying CRISPR-Cas sub-
type and host taxonomy is annotating the de-novo

Targeted assemblies of cas1 suggest CRISPR-Cas’s response to soil warming 1657



assembled contigs [6]. This largely limits the detection
ability due to the incomplete assemblies from metagenomes
with high sequence complexity such as in soil. To overcome
this challenge, we constructed eight Cas1 HMMs to
assemble the universal and most conserved Cas protein [1]
directly from the metagenomes using Xander. The main
advantages of this targeted approach are high coverage of
cas1 sequence diversity, subtype classification, and reliable
host assignment.

Targeted assembly using the eight HMMs provided a
high coverage of the 17 subtypes of cas1 as validated with
a simulated metagenome. This provides the opportunity to
deeply mine the CRISPR-Cas system in more complex
microbiomes. cas1 protein sequences generally clustered
according to subtypes which were classified based on the
organization of CRISPR-Cas system loci (Fig. 3) [5].
Therefore, the cas1 protein tree can be used as a template
to place the cas1 protein assemblies and assign the
subtypes.

In comparison with the traditional method of annotating
cas1 on the contigs de-novo assembled from the Oklahoma
soil metagenomes, the targeted method recovered five times
more cas1 with near full length in addition to the another
~3300 shorter ones, which could be from the less abundant
microbes. Analyzing the targeted-assembled cas1 could
provide new opportunities to investigate the diverse

CRISPR-Cas system. CRISPR arrays are reported to be
horizontally transferred with Cas proteins homologous
across different subtypes [49, 50]. No studies, however,
specifically investigated the mobility of cas1 proteins. To
validate the cas1-based host assignment to the phylum
level, we compared the results of mapping the targeted-
assembled cas1 to the de-novo assembled contigs from the
Oklahoma soil metagenomes.

Only a small proportion of the targeted-assembled cas1
nucleotide sequences could be mapped to the de-novo
assembled contigs and all were within the cas1 coding
regions, highlighting that the targeted-assembly method
can potentially better recover cas1 diversity with high
assembly accuracy. None of the cas1-mapped de-novo
assembled contigs (sans CRISPR-Cas-related genes) were
assigned to a different host taxonomy by the targeted and
de-novo assembly methods (Supplementary T4). This
showed strong evidence that at least in Oklahoma grass-
land microbiomes, cas1 protein sequences were less
mobile across phyla. This could be due to the high
sequence diversity giving distinctive cas1 features and/or
selective usage of CRISPR-Cas system by different phyla.
The majority of cas1-mapped de-novo assembled contigs
were annotated as Euryarchaeota and Thermotogae,
which are also the two most dominant cas1 hosts (Fig. 4c,
Cas1), although they were minor groups in the total

Fig. 4 Increasing temperature with 8-year warming treatment and
cas1 host composition. Temperature fluctuation in warming and
paired control treatment (a); canonical correspondence analyses (CCA)

of cas1 host composition with the environmental attributes (b); cas1
host composition (c, left panel) and microbial composition revealed
by rplB (c, right panel).
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Fig. 5 Subtype annotation of cas1 protein assemblies from control
and warming treatments. cas1 protein sequences assembled from
Oklahoma soil metagenomes with control and warming treatments
were mapped to the branches of Cas1 reference tree that was con-
structed by 93 cas1 protein sequences with the verified subtypes

specified on the right. The branches placed with cas1 protein
sequences assembled from both control and warming samples are
highlighted in red. The branches mapped by cas1 protein sequences
from control or warming samples are colored in green and yellow,
respectively.
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microbial community (Fig. 4c, rplB). The targeted-
assembly method can retrieve cas1 even from the less
abundant microbes, providing more opportunities to
uncover CRISPR-Cas ecology. Comparing with the de-
novo assembled contigs is an important step to further
validate the assembly accuracy and whether the gene of
interest can inform the host taxonomy, especially when
studying new habitats.

Effects of soil warming on cas1 subtypes and
preference in Oklahoma grassland microbiome

rplB and cas1 were targeted-assembled from 48 metagen-
omes encompassing 8 years of continuous warming of a
tallgrass prairie soil in Oklahoma to investigate the
dynamics of microbial abundance and cas1 prevalence in
response to soil warming. The microbial abundance of the
major phyla increased in 2012 when the heating differential
was the highest, and dropped back after 2012 (Fig. 6a). This
may reflect a strong resilience of the soil microbiome at the
phylum level. In addition, the microbial abundance ratio of
Alphaproteobacteria to Acidobacteria after 2012 gradually
rose and doubled after 2015. This ratio has been used to
suggest nutrient availability in which fast-growing microbes
like Proteobacteria are favored over slow-growing bacteria
like Acidobacteria that are more successful in low nutrient
environments [16, 17]. The increasing soil temperature may
act as a trigger and slowly induce changes or sequential

reactions affecting the other environmental factors, such as
pH, moisture, carbon, and nitrogen [51], which may explain
the strong negative correlations between soil temperature
with pH, and pH with moisture and nitrogen (Supplemen-
tary Fig 1). cas1 host composition, as a result, could be
influenced by a combined effect of temperature, pH and
moisture, and nutrients (total carbon, total nitrogen, nitrate,
and ammonium) (Fig. 4b). Although the overall microbial
communities have an ability to recover after environmental
perturbation, the warming effect may lead to changes of soil
physiochemistry and slowly affect the microbe and cas1
host composition.

We detected a diverse but similar cas1 subtype compo-
sition in the warming samples and the paired controls.
Therefore, there may be a microbial shift within a phylum
carrying the same subtypes in response to soil warming.
Our previous study at the same sampling site indeed
revealed that this warming treatment led to an increasing
divergence of microbial composition based on 16S riboso-
mal RNA genes [15]. A recent study has experimentally
demonstrated that CRISPR-Cas systems can be shared
between bacterial genera [52]. Replicating and passing the
same mature CRISPR-Cas systems among the different and
same genera within a phylum may be advantageous for
microbial survival under environmental perturbation.

In addition to the need of detecting the CRISPR-Cas
dynamics within phyla, CRISPR-Cas system was favored
within different microbial taxa, especially in Euryarchaeota

Fig. 6 Responses of microbial abundance (rplB) and cas1 pre-
valence within each major taxon (relative microbial abundance
>1%) to 8-year soil warming treatment. Fold change (log2) of rplB
abundance of each major taxon (relative abundance >1%) (a) and the
cas1 prevalence within the corresponding phyla (b) in response to the

8-years’ soil warming; All listed major taxa are arranged according to
an ascending order of rplB abundances. The positive and negative
values of log2 transformed fold changes are differentiated by red and
black bubbles, respectively.
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and Thermotogae at our study site. As a result, the total
counts of cas1 mainly reflect the abundance changes of the
cas1-predominant hosts. Therefore, we calculated the cas1
prevalence per phylum, which can reveal a preference of
CRISPR-Cas system within each host phylum. The pre-
valence of cas1 in each taxon tended to increase in response
to soil warming. In 2013, 8 out of 10 taxa were increased in
cas1 prevalence, 7 out of 11 taxa in 2014, and 6 out of 9
taxa in 2015 while 4 out of 9 in 2016 (Fig. 6b). The pre-
valence of cas1 or CRISPR-Cas system within each taxon
also increased in the other major taxa, even in those with
decreased microbial abundances after the heating stimuli,
such as in Acidobacteria and Firmicutes (Fig. 6a). These
imply that CRISPR-Cas system became more preferred in
the major taxa after the largest temperature differential,
suggesting more intense interactions with the viruses after
soil warming. The higher temperature could increase the
virulence of soil phages and induce the release of free
phages as more become lytic [53].

Here, we validated and applied the gene targeted-
assembly method to detect the CRISPR-Cas subtype
diversity and predict cas1 hosts. Although the soil micro-
biome is known to have strong resilience to environmental
changes, increasing CRISPR-Cas preference was observed
in response to 8 years of soil warming. Applying this new
method to environmental samples can improve our under-
standing of the ecological outcomes, and potentially the role
of CRISPR-Cas in nature.

Data availability

The shotgun metagenomic sequences have been deposited
in the National Center for Biotechnology Information under
the BioProject PRJNA533082. The cas1 assemblies were
submitted to DDBJ/EMBL/GenBank as a Targeted Locus
Study project under the accession KDDF00000000,
PRJNA551292. The de-novo assembled contigs are
available at https://iegst1.rccc.ou.edu/owncloud/index.php/
s/mODjEsnzJ8Jxe3s. The eight Cas1 HMMs can be
downloaded from Fungene website (http://fungene.cme.
msu.edu) and Xander packages are available on GitHub,
https://github.com/Ruonan0101/Targeted_Cas1_assembly.
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