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A B S T R A C T

Soil carbon (C) and nitrogen (N) cycles and their complex responses to hydro-climatic forcing have gained
increasing attention. While the temperature effects have been intensively studied, soil moisture response
functions (SMRFs) are not well documented for various microbial and enzymatic processes due to the difficulties
in directly measuring and differentiating the moisture effects on various processes. Here we extended our C-only
Microbial-ENzyme Decomposition (MEND) model to the C-N coupled MEND model with flexible element stoi-
chiometry. Our model calibration showed good agreement between simulated and observed C:N ratios in soil
organic matter and microbial biomass, as well as the ammonium and nitrate concentrations. We show that the
selection of SMRFs for specific biogeochemical processes could result in significant differences in model simu-
lated microbial and C-N processes. In particular, it is essential to account for the soil moisture effects on mi-
crobial dormancy and resuscitation, as the changes in microbial physiology under favorable or stressful con-
ditions will exert strong controls on soil C and N dynamics. We also advocate the utilization of dynamic (time-
variant) data (e.g., litter input, N deposition, soil temperature and moisture), instead of time-invariant data, to
drive model simulations and analyses. Dynamic forcing data (particularly dynamic soil moisture) better re-
present the real-world climate and environmental conditions, which could facilitate more realistic modeling and
understanding of soil C and nutrient cycling in a changing world.

1. Introduction

Soil carbon (C) and nutrient cycles and their complex responses to
hydro-climatic forcing have gained increasing attention during the last
two decades (Bradford et al., 2016; Campo and Merino, 2016; Crowther
et al., 2016; Manzoni et al., 2004). While the temperature effects have
been intensively studied (Allison et al., 2010; Carey et al., 2016;
Crowther et al., 2016; Frey et al., 2013; Tang and Riley, 2015), it re-
mains a challenge to separate the effects from both soil temperature and
moisture (Campo and Merino, 2016; Davidson et al., 2012; Ohashi
et al., 2008; Rowland et al., 2014). The effect of soil moisture on soil C
and nutrient dynamics cannot be neglected because soil microbes
mediate these processes and fluctuations in microbial activities in re-
sponse to soil moisture changes are ubiquitous (Manzoni et al., 2012a).

When soil becomes drier, the microbial metabolic activity generally is
depressed, which might reduce heterotrophic respiration and nitrogen
(N) mineralization (Schimel et al., 2007). A reduction of 10% in soil
water content (SWC) led to a 10–80% decrease in β-glucosidase activity
in Mediterranean evergreen forests (Sardans and Penuelas, 2005). The
β-glucosidase and endo-glucanase activities showed significantly higher
correlations with soil moisture than temperature and pH in the study by
Criquet et al. (2002). However, saturated water conditions could reduce
the phenol oxidases activity due to oxygen deficiency (Freeman et al.,
2001). Therefore, quantifying the soil moisture effects in ecosystem
modeling helps to understand the underlying mechanisms regulating
soil C and nutrient cycling.

The incorporation of soil moisture response functions (SMRFs) sig-
nificantly improved the modeling of soil organic matter (SOM)
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decomposition and soil respiration (Ise and Moorcroft, 2006; Liang
et al., 2019), as the activities of lignocellulose-degrading enzymes and
respiration were highly affected by the changes in moisture content
(Baldrian and Stursova, 2011). Current soil C and ecosystem models
usually use SMRFs to modify SOM decomposition rates (Ma and Shaffer,
2001; Shi et al., 2015; Wu and McGechan, 1998) or microbial re-
spiration rates (Moyano et al., 2013). Soil moisture availability will
influence microbial growth, maintenance, mortality, reactivation and
dormancy, and enzyme activities (Baldrian and Stursova, 2011; Wang
et al., 2019), all of which underlie the mechanisms controlling micro-
bially-mediated soil biogeochemical processes. For example, microbes
(mainly bacteria) tend to become dormant under low moisture condi-
tions (Wang et al., 2019; Wang et al., 2015). The same SWC in different
organic solvents or soils could result in completely different amounts of
water bound on the enzymes (Zaks and Klibanov, 1988). Thus water
activity or potential, instead of SWC, has been widely used in SMRFs to
characterize the effect of water on microbial and enzyme activities
(Goujard et al., 2009; Halling, 1994; Manzoni et al., 2012b; Wang et al.,
2019). Unfortunately, SMRFs are not well documented for various mi-
crobial and enzymatic processes due to the difficulties in directly
measuring the effects on different processes (Wallenstein and
Weintraub, 2008). Our previous model-data fusion study in subtropical
forests showed higher microbial biomass and active fraction of mi-
crobes in the wet season than in the dry season, in which distinct SMRFs
were adopted and parameterized for different processes including oxi-
dative and hydrolytic decomposition, microbial mortality, dormancy
and resuscitation (Wang et al., 2019). Different SMRFs may impose
different effects on microbial and enzyme activities, which further alter
the mineralization of soil organic C and N, the immobilization of in-
organic N, as well as the nitrification and denitrification processes.
However, it remains unclear whether an alternative SMRF would sig-
nificantly affect the C-N processes in soils.

In addition, current testing and evaluation of microbially-enabled
biogeochemical models often use steady-state analyses with time-in-
variant forcing data (e.g., constant soil temperature, moisture and litter
input) as such model simulations are easy to implement and convenient
for analyses (e.g., Allison et al., 2010; Sulman et al., 2018; Wang et al.,
2013). The findings from these simplified analyses have been assumed
to be capable of characterizing ecosystem responses to environmental
perturbations or changes, such as positive, negative, or neutral re-
sponses to warming, drought, or litter addition (Hagerty et al., 2014;
Sulman et al., 2018). However, if the model behaviors are qualitatively
different (e.g., positive vs. negative effect) between simulations with
constant and dynamic data, we need to be cautious in extrapolating the
findings based on constant data, as these climatic and environmental
forcings usually vary with time. For this reason, there is a need to un-
derstand if model behaviors will be consistent when a model is driven
by constant or dynamic forcing data.

In order to answer these questions, we extended our C-only
Microbial-ENzyme Decomposition (MEND) model to the C-N coupled
MEND model with flexible elemental stoichiometry (Buchkowski et al.,
2015; Sistla and Schimel, 2012). We focused on the selection of SMRFs
for different biogeochemical processes and their impacts on soil C and N
cycling. We also examined if the MEND modeling with dynamic for-
cings, particularly time-variant soil moisture, could generate sub-
stantially different results from those driven by time-invariant data.

2. Materials and methods

2.1. Carbon-Nitrogen coupled MEND model

We developed a new version of the MEND model, i.e., the C-N
coupled MEND model (Fig. 1). The C-only MEND describes the SOM
decomposition processes by explicitly representing relevant microbial
and enzymatic physiology (Wang et al., 2019; Wang et al., 2015; Wang
et al., 2013). The SOM pool consists of two particulate organic matter

(POM) pools and one mineral-associated organic matter (MOM) pool.
The two POMs are decomposed by oxidative and hydrolytic enzymes,
respectively. The MOM is decomposed by a general enzyme group EM.
The C-N coupled MEND represents additional C-N transformation pro-
cesses: soil organic N (SON) decomposition coupled to the soil organic
C (SOC) decomposition, microbial N mineralization and immobiliza-
tion, nitrification, denitrification (Wang and Chen, 2013), and nitrifier
denitrification (Wrage-Mönnig et al., 2018; Zhu et al., 2013). Model
state variables, governing equations, component fluxes and parameters
are described in Tables 1–4, respectively.

In contrast to traditional models that use fixed SOM C:N ratios
(Bonan et al., 2013; Thornton and Rosenbloom, 2005), we use flexible
stoichiometry (i.e., time-variant C:N ratio) for SOM and microbial
biomass pools to more realistically represent the adaption of microbes
in response to the stoichiometric imbalance of available resources
(Fanin et al., 2017). As for the enzyme pools, a fixed C:N ratio (=3) is
used based on Schimel and Weinstraub (2003). Generally, the SON flux
will follow the SOC flux according to the C:N ratio in the upstream
(source) pool (see Eq. 13 in Table 2). The C:N ratios in the SOM pools
(including POMO, POMH, MOM, QOM, DOM) will be regulated by the
litter input, C-N fluxes from upstream pools, and/or microbial turnover.
The C:N ratio in the microbial biomass pool is self-regulated by the
DOM uptake, heterotrophic respiration (Rh), N mineralization and im-
mobilization. Rh is mainly controlled by the intrinsic C use efficiency
(Yg or intrinsic CUE) (see Eqs. 27–31). In addition to the availability of
DON and mineral N (NH4

+ and NO3
–), we define an intrinsic N use

efficiency (YNg or intrinsic NUE, see Eq. 38 in Table 3) to modify N
mineralization rate (Eq. 37) and immobilization rate (Eqs. 35–36). In
Eq. 38, we first assume a conservative C:N range (i.e., between CNBA,min

and CNBA,max) to represent the stoichiometric plasticity of microbial
communities (Cleveland and Liptzin, 2007; Fanin et al., 2017;
Zechmeister-Boltenstern et al., 2015). Intrinsic NUE (YNg in Eq. 38) will
increase with increasing microbial C:N ratio (CNBA), with YNg being 0
when CNBA ≤ CNBA,min (C-limited) and YNg approaching 1 when
CNBA ≥ CNBA,max (N-limited). This means that N mineralization rate
will decrease, and N immobilization rate will increase when micro-
organisms become more N limited, resulting in higher YNg

(Mooshammer et al., 2014).
A model parameter (reaction rate) in MEND may be modified by soil

moisture, temperature, and/or pH (Wang et al., 2019). MEND re-
presents nitrification, denitrification, microbial dormancy, resuscita-
tion, and mortality and enzymatic decomposition in response to
changes in moisture, as well as shifts in microbial and enzymatic ac-
tivities with changing temperature (Wang et al., 2019). The intrinsic
CUE (Yg in Table 4) decreases with increasing temperature following a
linear function (Li et al., 2019; Wang et al., 2019). The temperature
sensitivities of microbial and enzyme activities are modeled by the Q10

method (Wang et al., 2012) or the Arrhenius equation characterized by
the activation energy (Wang et al., 2013). The following section de-
scribes the SMRFs for different processes as soil moisture effect is the
focus of this study.

2.2. Soil moisture response functions

We use different SMRFs (Wang et al., 2019) to describe the influ-
ences of soil moisture on the enzyme-mediated SOM decomposition
processes, microbial mortality, microbial dormancy and resuscitation,
nitrification and denitrification.

(1) The SMRF for SOM decomposition by oxidative enzymes is
adapted from Hansen et al. (1990). (Fig. 2a)
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where ψ is the soil water potential (SWP) in units of MPa and f ψ( )lig
denotes the SMRF for the POM decomposition by oxidative enzymes.

(2) The SMRF for SOM decomposition by hydrolytic enzymes is
based on Manzoni et al. (2012a) (Fig. 2a)
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where f ψ( )cel denotes the SMRF for the POM decomposition by hy-
drolytic enzymes or the decomposition of MOM, ψFC (=−0.033 MPa) is
the SWP at field capacity, ψmin is the microbial stress threshold SWP,
and b is a shape parameter. The values of ψmin and b for soil or litter in
different biomes are adapted from Manzoni et al. (2012a).

(3) The SMRFs for microbial mortality, dormancy & resuscitation
(Manzoni et al., 2014; Wang et al., 2019) are also shown in Fig. 2a.

Soil water potential greatly affects the microbial dormancy and
reactivation processes and various sigmoidal-type switching functions
have been proposed to quantify these effects (Manzoni et al., 2014;

Wang et al., 2019), e.g., the response functions used to modify the
dormancy ( f ψ( )A D2 ) and the reactivation ( f ψ( )D A2 ) can be expressed as
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where ψ is the SWP (MPa) and the exponent ω describes the steepness
of the curve. ψA D2 and ψD A2 are critical SWPs depending on the osmolyte
synthesis strategy (Manzoni et al., 2014). We also use f ψ( )A D2 to modify
microbial mortality rate.

(4) The SMRFs for nitrification and denitrification (Muller, 1999)
are shown in Fig. 2b.

=

⎧

⎨

⎪⎪

⎩
⎪
⎪

⩽
+ < ⩽

< ⩽
+ < ⩽

>

+ +

− −

f WFP

WFP WFP
a b WFP WFP WFP WFP

WFP WFP WFP
a b WFP WFP WFP WFP

WFP WFP

( )

0
·

1
·

0

1

1 2

2 3

3 4

4 (46)

where =WFP θ ϕ/ is water-filled pore space (θ and ϕ denotes the vo-
lumetric water content and soil porosity, respectively); +a and +b are
intercept and slope of linear regression for increasing activity (i.e.,

>+b 0); and −a and −b are intercept and slope of linear regression for
decreasing activity (i.e., <−b 0) (Wang and Chen, 2013). The values for
WFPi, =i( 1, 2, 3, 4) and + + − −a b a b, , , are from Muller (1999).

2.3. Study site and data collection

We compiled data from a three-year duration field experiment in a
subtropical monsoon evergreen broadleaf forest (BF) within the
Dinghushan Biosphere Reserve (DBR) in South China (Wang et al.,
2019). The broadleaf forest is distributed in the core area of the reserve.
The forest has not been disturbed for more than 400 years according to
previous studies (Zhou et al., 2006). The mean annual precipitation is
about 1678 mm, of which nearly 80% falls in the hot-humid season
(from April to September) and the remainder in the dry season (from
October to March). Soils in DBR are classified as Ultisols according to
the USDA soil taxonomy (Soil Survey Staff, 1999). The model simula-
tion period covered the three-year observational period (August 2009 –
December 2012). Soil temperature and SWC at 10-cm depth were
measured by a digital thermometer and a MPKit (ICT International,
Armidale, NSW, Australia), respectively (Tang et al., 2006). The SWC
was converted to soil water potential (SWP) using a soil water retention

Fig. 1. The C-N coupled Microbial-ENzyme
Decomposition (MEND) model. Ra and Rh are
autotrophic and heterotrophic respiration, re-
spectively. POMO and POMH are particulate or-
ganic matter (POM) decomposed by oxidative
(EPO) and hydrolytic enzymes (EPH), respec-
tively. MOM is mineral-associated OM, which is
decomposed by a mixed enzyme group EM.
Dissolved OM (DOM) interacts with the active
layer of MOM (QOM) through sorption and
desorption. Litter enters POMO, POMH, and
DOM. Microbes consist of active (MBA) and
dormant microbes (MBD). DOM can be assimi-
lated by MBA. Mineral N input enters NH4

+ and
NO3

– that can be immobilized by microbes and
taken up by plant roots.

Table 1
Soil carbon (C) and nitrogen (N) pools (state variables) in the MEND model.

ID Soil C and/or N pool Pool Name Variable name in
equations

1 Particulate organic matter (POM)
decomposed by oxidative enzymes

POMO C pool: PO; N pool:
PNO

2 POM decomposed by hydrolytic
enzymes

POMH PH; PNH

3 Mineral-associated organic matter MOM M; MN
4 Dissolved organic matter DOM D; DN
5 Active MOM interacting with DOM QOM Q; QN
6 Active microbial biomass MBA BA; BAN
7 Dormant microbial biomass MBD BD; BDN
8 Oxidative enzymes decomposing POMO EPO EPO; EPNO

9 Hydrolytic enzymes decomposing POMH EPH EPH; EPNH

10 Enzymes decomposing MOM EM EM; EMN
11 Ammonium NH4

+ NH4

12 Nitrate NO3
– NO3
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curve characterized by the van Genuchten model (van Genuchten,
1980). Monthly N deposition rates were measured from 2009 to 2012.
The average total (wet + dry) NH4

+ and NO3
– deposition rates were

2.1 and 1.2 g N m−2 yr−1, respectively. Soil respiration was measured
using the Li-8100 Automated Soil CO2 Flux System (Li-Cor Inc., Lincoln,
NE, USA). Microbial biomass C and N were determined by the fumi-
gation-extraction method (Wu et al., 1990). Ammonium and nitrate
were extracted with 2 M KCl and determined with a Flow Injection
Analysis Automated Ion Analyzer (QuickChem 8000, LACHAT, USA). In
summary, there were 49 data points of heterotrophic respiration rate
(Rh), 12 data points of microbial biomass C (MBC), 7 measurements of
microbial C:N ratios (MBCN), and 7 extractable NH4

+ and NO3
– con-

centrations.

2.4. Model calibration

We calibrated the MEND parameters controlling SOM decomposi-
tion using observed Rh and MBC in previous study (Wang et al., 2019).
In the current study, we further calibrated the MEND parameters re-
lated to N mineralization, immobilization, nitrification, and deni-
trification (Parameter 30–35 in Table 4) using observed data including
SOM C:N ratio (SOMCN), MBCN, and extractable NH4

+ and NO3
– con-

centrations. The model calibration period covered from August 2009 to
December 2012. We used the modified Shuffled Complex Evolution
(SCE) algorithm to implement multi-objective calibration of selected
parameters (Duan et al., 1992; Wang et al., 2015). We minimized the
overall objective function (J) as the weighted average of multiple ob-
jectives:

∑= ∙
=

J w J
i

m

i i
1 (47a)

∑ = ∈
=

w w1, [0, 1]
i

m

i i
1 (47b)

where m = 4 in this study and denotes the number of objectives and wi

is the weighting factor for the ith (i = 1,2,…,m) objective (Ji), i.e.,
SOMCN, MBCN, NH4

+ or NO3
– concentrations in this study (Table 5).

Each objective evaluates the goodness-of-fit of a specific observed
variable (Table 5). The goodness-of-fit may be evaluated by MARE and/
or |PBIAS|:

∑= −
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n

Y i Y i
Y i

1 ( ) ( )
( )i

n
sim obs

obs1 (48)

= −
− −

−PBIAS Y Y

Y
| | sim obs

obs (49)

where MARE is the Mean Absolute Relative Error (MARE) and lower
MARE values (MARE ≥ 0) are preferred (Wang et al., 2019). MARE
represents the averaged deviations of predictions (Ysim) from their ob-
servations (Yobs). PBIAS is the percent bias between simulated and ob-
served mean values (Wang et al., 2018), where n is the number of data;
Yobs and Ysim are observed and simulated values, respectively; and

−
Yobs

and
−

Ysim are the mean value for Yobs and Ysim, respectively.

2.5. Scenarios to examine soil C-N responses to different SMRFs and forcing
data

We designed three sets of numerical experiments to examine soil C-
N responses to different SMRFs and forcing data. The first set (Scenario
F0–F4, see Table 6) was designed to explore if different SMRFs would
result in significant differences in modeling results. We assigned dif-
ferent SMRFs to POMO decomposition, POMH and MOM decomposition,

Table 2
Governing equation for soil C and N pools in the MEND model.

Governing Equation Eq#

Soil Carbon (state variable, e.g., P1, denotes the C content):

= + − ∙ ∙ −I g g F F(1 )dPO
dt PO D PO 12 1

(1)

= + − ∙ − ∙ −I g g F F(1 ) (1 )dPH
dt PH D PO 12 2

(2)

= − ∙ + −f F F F(1 ) ( )dM
dt D 1 2 3

(3)

= −F FdQ
dt 4 5

(4)

= + ∙ + + + ∙ + − − −I f F F F g F F F F F( ) ( )dD
dt D D D1 2 3 12 14 6 4 5

(5)

= − − − + + − −F F F F F F F F( ) ( )dBA
dt 6 7 8 9 10 11 14 15

(6)

= − − +F F F F( ) ( )dBD
dt 7 8 12 13

(7)

= −F FdEPO
dt EP EP15, 1 16, 1

(8)

= −F FdEPH
dt EP EP15, 2 16, 2

(9)

= −F FdEM
dt EM EM15, 16,

(10)

= = + + + +R F F F F F( ) ( )dCO
dt h

2
9 10 11 12 13

(11)

+ + + + + + + + + = + + − + + − +P P M Q D BA BD EP EP EM I I I F F F F F( ) ( ) ( ) ( )d
dt O H O H PO PH D 9 10 11 12 13

(12)

Soil Nitrogen (state variable, e.g., PNO, denotes the N content):
For PNO, PNH, MN, QN, and DN, the N flux is calculated as: =FN F CN/i i sourcewhere Fi is the C flux, and CNsource is the C:N ratio of the (upstream) source pool (13)

= − − − − − + +→ →( ) FN FN FN( )dBAN
dt

F
CND

F
CNBA

F
CNBD

F
CNBA

F
CNENZ

mn BA im NH BA im NO BA
6 7 8 12 13

, , 4 , 3
(14)

= − −( ) FNdBDN
dt

F
CNBA

F
CNBD

mn BD
7 8

,
(15)

= + + − −→I FN FN FN FN( )dNH
dt NH mn BA mn BD im NH BA nit

4
4 , , , 4

(16)

= + − − −− →I FN FN FN FNdNO
dt NO nit nit denit denit im NO BA

3
3 , 3

(17)

+ + + + + + + + + + + = + + + + − +−PN PN MN QN DN BAN BDN EPN EPN EMN NH NO IN IN IN I I FN FN( ) ( ) ( )d
dt O H O H PO PH D NH NO nit denit denit4 3 4 3

(18)

The state variables (C and N pools) are described in Table 1; Eq. 11 indicates the total heterotrophic respiration (Rh) flux. Eq. 12 and 18 expresses the overall mass
balance of C and N, respectively. The transformation fluxes (F or FN) are elucidated by Eqs. 19–41 in Table 3.
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microbial mortality, dormancy and resuscitation (Table 6). We con-
ducted long-term MEND simulations beyond the calibration period
(2009–2012) by repeatedly using the dynamic forcing data from the
calibration period. We calculated the mean concentrations of SOC,
mineral N (i.e., MN = NH4

+ + NO3
–), active microbial biomass C

(Active-MBC) after the model reached the dynamic steady state. We
then calculated the active fraction of microbial biomass (%Active-MBC)
under each scenario, percent change in SOC (%ΔSOC) and mineral N
(%ΔMN) relative to the SOC and MN under baseline scenario (F0).

The second set (Scenario D0–D4, see Table 7) was to investigate if
model simulations with constant (time-invariant) data (litter input, soil
temperature and moisture) would be different from those with dynamic
(time-variant) data. The constant and dynamic data for modeling are
shown in Fig. 3. We first run the model with Scenario D0 (i.e., constant
litter input, soil temperature and moisture, see Table 7) to reach the
steady state, following which, we then run MEND under Scenario
D1–D4 (Table 7) to reach a new dynamic steady state. We then calcu-
lated Active-MBC and %Active-MBC under each scenario, and %ΔSOC
and %ΔMN relative to the SOCSS and MNSS under baseline scenario
(D0). Here we asked whether there would be significant changes be-
tween simulations driven by constant and dynamic data, whereas we
did not intend to provide accurate estimates for the steady-state C and
N contents such as SOCSS and MNSS. The reason is that the first steady

state in all scenarios was determined by model calibration and simu-
lations with constant data (i.e., litter input, soil temperature and
moisture), followed by which a new steady state was achieved by
varying one of the data categories (Scenario D1–D3) or varying all data
(D4).

The third set of experiments (Table 8) was to examine whether the
effects of litter addition on soil C and N would be different when con-
stant (Scenario L0) or dynamic (Scenario L1) data (litter input, N de-
position, soil temperature and moisture) were used. For each of the two
scenarios, we designed two treatments: a control treatment with ob-
served litter input rate (mean rate for Scenario L0 and time-variant rate
for Scenario L1) and a litter-addition treatment with +11% more litter
input than the control treatment. Regarding Scenario L0, we first run
the model with constant data to reach the steady state. We then run
MEND with litter addition, i.e., by +11% as described in Wang et al.
(2019), to reach a new steady state. As per Scenario L1 with dynamic
data, we also run MEND with litter addition (+11%) to reach a new
dynamic steady state following the first steady state achieved by dy-
namic data. For each scenario with constant or dynamic data, %ΔSOC
and %ΔMN were calculated as the percent changes in SOCSS and MNSS

between the two steady states, i.e., the two treatments (litter-addition
vs. control).

Table 3
Component fluxes in the MEND model (parameters are described in Table 4).

Flux description Equation Eq#

Particulate organic matter (POM) pool (oxidative) (PO) decomposition (F1) = ∙ ∙
+

F VdPO EPO PO
KPO PO

1
(19)

POM pool (hydrolytic) (PH) decomposition = ∙ ∙
+

F VdPH EPH PH
KPH PH

2
(20)

Mineral-associated organic matter (MOM, M) decomposition = ∙ ∙
+

F VdM EM M
KM M3

(21)

Adsorption (F4) and desorption (F5) between dissolved organic matter (DOM, D) and adsorbed DON (QOM, Q) = ∙ − ∙
= ∙

F k Q Q D
F k Q Q

(1 / ) ;
( / )

ads max

des max

4

5

(22)
(23)

DOM (D) uptake by microbes = + ∙ ∙
+

F V V( )
Yg g m

BA D
KD D6

1 (24)

Dormancy (F7) and reactivation (F8) between active (MBA, BA) and dormant (MBD, BD) microbes = − + ∙ ∙
= + ∙ ∙

F D K D V BA
F D K D V BD

[1 /( )] ;
[ /( )]

D m

D m

7

8

(25)(26)

MBA (BA) growth respiration (F9) and maintenance respiration (F10)
= ⎛

⎝
− ⎞

⎠
∙

= ⎛
⎝

− ⎞
⎠

∙

∙ ∙
+

∙ ∙
+

F

F

1 ;

1

Yg

Vg BA D
KD D

Yg
Vm BA D

KD D

9
1

10
1

(27)
(28)

MBA (BA) overflow respiration (F11) = − ∙F max BA BAN CN{0, }BA max11 , (29)
MBD (BD) maintenance respiration (F12) = ∙ ∙F β V BDm12 (30)
MBD (BD) overflow respiration (F13) = − ∙F max BD BDN CN{0, }BA max13 , (31)
MBA (BA) mortality = ∙ ∙F γ V BAm14 (32)
Synthesis of enzymes for PO (EPO, F15,EPO), enzymes for PH (EPH, F15,EPH), and enzymes for M (EM, F15,EM) = + ∙ ∙ ∙

= + ∙ ∙ ∙
= ∙ ∙ ∙

= + +

F P P P p V BA
F P P P p V BA
F fp p V BA
F F F F

/( ) ;
/( ) ;

;

EPO O O H EP m

EPH H O H EP m

EM EM EP m

EPO EPH EM

15,

15,

15,

15 15, 15, 15,

(33)

Turnover of enzymes (EPO, EPH, EM) = ∙
= ∙

= ∙
= + +

F r EP
F r EP
F r EM
F F F F

;

;

EPO E O

EPH E H

EM E

EPO EPH EM

16,

16,

16,

16 16, 16, 16,

(34)

N immobilization by microbes
=

=

⎜ ⎟

⎜ ⎟

→
∙ ∙ ∙

∙ ⎛
⎝

+ + + ⎞
⎠

→
∙ ∙ ∙

∙ ⎛
⎝

+ + + ⎞
⎠

FN

FN

;im NH BA
VNim NH YNg BA NH

KSNH
NH

KSNH
NO

KSNO
BA

KSNH

im NO BA
VNim NO YNg BA NO

KSNO
NH

KSNH
NO

KSNO
BA

KSNO

, 4
( , 4 ) 4

4 1 4
4

3
3 4

, 3
( , 3 ) 3

3 1 4
4

3
3 3

(35)
(36)

N mineralization = − ∙

= ⎛
⎝

⎞
⎠

−
−

FN YN FN

YN

(1 ) ;mn BA g

g
CNBA CNBA min

CNBA max CNBA min

ω
, 6

,
, ,

(37)
(38)

Nitrification = ∙FN VN NHnit nit 4 (39)
Nitrifier Denitrification = ∙ −

=

−

−
+ −

FN FN f O

f O

[1 ( )];

( )

nit denit nitrif

WFP
WFP

2

2
(1 )4/3

0.54/3 (1 )4/3

WFP is water-filled porosity

(40a)
(40b)

Denitrification = ∙FN VN NOdenit denit 3 (41)

G. Wang, et al. Journal of Hydrology 585 (2020) 124777

5



3. Results and discussion

3.1. Model calibration with N data

We have shown good performances in simulating Rh and MBC by the
C-only MEND model in previous study (Wang et al., 2019). Our cali-
bration of the C-N coupled MEND model also achieved good agreement
between simulated and observed SOMCN, MBCN, NH4

+ and NO3
– con-

centrations (Fig. 4). The simulated mean SOMCN was 13.8, which was
only 6% higher than the observed value (Fig. 4a). The simulated daily

data during 2009–2012 showed MBCN between 5.9 and 7.6 and the
mean MBCN was consistent with the observed MBCN (Fig. 4a). The si-
mulated MBCN (7 data points) exhibited a much smaller variation than
the observations, mostly because there was one measurement of
MBCN = 13.8 in August 2011, which was much higher than the other 6
observed MBCN values (4.5–7.7). In addition, the simulated soil NH4

+

and NO3
– concentrations also agreed well with the observations, with

NO3
– exhibiting a larger variation in model simulations than in ob-

servations (Fig. 4b). We did not explicitly simulate NO3
– leaching and

plant uptake of NH4
+ and NO3

– as no data were available for

Table 4
MEND model parameters.

ID Parameter Description Range Units Eq#

1 LF0 Initial fraction of PO, LF0 = PO/(PO + PH) (0.1, 1.0) —
2 r0 Initial active fraction of microbes, r0 = BA/(BA + BD) (0.01, 1) —
3 fINP Scaling factor for litter input rate (0.1, 0.9) —
4 VdPO Maximum specific decomposition rate for PO (0.1, 100) mg C mg−1C h−1 19
5 VdPH Maximum specific decomposition rate for PH (0.1, 100) mg C mg−1C h−1 20
6 VdM Maximum specific decomposition rate for M (0.1, 100) mg C mg−1C h−1 21
7 KPO Half-saturation constant for PO decomposition (40,100) mg C cm−3 soil 19
8 KPH Half-saturation constant for PH decomposition (1,40) mg C cm−3 soil 20
9 KM Half-saturation constant for M decomposition (100, 1000) mg C cm−3 soil 21
10 Qmax Maximum sorption capacity (0.5, 5.0) mg C cm−3 soil 22
11 Kba Binding affinity, Sorption rate kads = kdes × Kba (1, 16) (mg C cm−3 soil) −1 22
12 kdes Desorption rate (1e-4, 0.01) mg C cm−3 soil h−1 23
13 rE Turnover rate of EPO, EPH, and EM (1e-4, 0.01) mg C mg−1C h−1 34
14 pEP [Vm × pEP] is the production rate of EP (EPO + EPH), Vm is the specific maintenance rate for BA (1e-4, 0.05) — 33
15 fpEM fpEM = pEM/pEP , [Vmt × pEM] is the production rate of EM (0.5, 3.0) — 33
16 fD Fraction of decomposed PO and PH allocated to D (0.05, 1) — 3
17 gD Fraction of dead BA allocated to D (0.01, 1) — 1
18 gPO − ∙g g(1 )D POis the fraction of dead BA entering PO (0.05, 0.2) 1
19 Vg Maximum specific uptake rate of D for growth (1e-3, 0.1) mg C mg−1C h−1 24
20 α = Vm /(Vg + Vm) (0.01, 0.5) — 24
21 KD Half-saturation constant for microbial uptake of D (1e-4, 0.5) mg C cm−3 soil 24
22 Yg(Tref) True growth yield at reference temperature (Tref) (0.1, 0.6) — 24
23 kYg Slope for Yg dependence of temperature (0.001, 0.016) 1/°C 24
24 Q10 Q10 for temperature response function (1.2, 2.5) —
25 γ Max microbial mortality rate = Vm × γ (0.1, 20) — 32
26 β Ratio of dormant maintenance rate to Vm (5e-4, 0.05) — 30
27 ψA2D Soil water potential (SWP) threshold for microbial dormancy; both ψA2D & ψD2A < 0 (–0.6, –0.2) MPa 49
28 τ ψD2A = ψA2D × τ, ψD2A is the SWP threshold for microbial resuscitation (0.1, 0.9) — 50
29 ω Exponential in SWP function for microbial dormancy or resuscitation (1,6) — 50
30 VNim NH, 4 Max specific immobilization rate for NH4

+ (0.001,0.05) mg N mg−1C h−1 35
31 VNim NO, 3 Max specific immobilization rate for NO3

– (0.001,0.05) mg N mg−1C h−1 36
32 KSNH4 Half-saturation constant for NH4

+ immobilization (1e-4, 0.1) mg N cm−3 soil 35
33 KSNO3 Half-saturation constant for NO3

– immobilization (1e-4, 0.1) mg N cm−3 soil 36
34 VNnit Max nitrification rate (0.001, 0.1) h−1 39
35 VNdenit Max denitrification rate (0.001, 0.5) h−1 41

Notes: The column “Eq#” lists the major equation # where each parameter is used.

Fig. 2. Soil moisture response functions for (a) oxidative and hydrolytic decomposition, microbial dormancy & mortality and resuscitation; (b) nitrification and
denitrification.
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validation. However, our nitrification and denitrification simulations
implicitly included these fluxes since we constrained the model by
using observed SOMCN, MBCN, NH4

+ or NO3
– concentrations in addition

to Rh and MBC.

3.2. Soil microbes and C-N in response to different soil moisture response
functions (SMRFs)

In Fig. 5a, we showed the percent changes in SOC (%ΔSOC) and
mineral N (%ΔMN) under Scenario F1–F4 with different SMRFs relative
to the SOC and MN under baseline scenario F0 with default SMRFs.
Without consideration of the soil moisture effects on microbial dor-
mancy and resuscitation (Scenario F1 in Table 6), the steady-state SOC
(SOCSS) would increase significantly by 226% compared to the baseline
(Scenario F0) SOCSS (Fig. 5a). No SMRFs to modify microbial dormancy
and resuscitation rates also resulted in negative change in mineral N
concentration (%ΔMN = –7%). This could be explained by the lowest
Active-MBC and %Active-MBC under Scenario F1 among all scenarios,
consequently resulting in the lowest microbial and enzyme activities
and the accumulation of SOC under Scenario F1. The low Active-MBC
and SOM decomposition rate under Scenario F1 further led to less net N
mineralization fluxes (by –35%) and reduced mineral N. When soil
moisture effect was not considered for microbial dormancy and re-
activation under Scenario F1, substrate (i.e., DOC) limitation became
dominant and caused higher dormancy rates than resuscitation rates in
early stage of the simulation period, ultimately resulting in low Active-
MBC and %Active-MBC. In other word, when soil moisture effect was
combined with the effect of substrate availability, it could lead to
higher resuscitation rates than dormancy rates under wet conditions,
which alleviated the single substrate-limiting effect to some extent
(Scenario F0).

There were no changes in SOC, MN, and Active-MBC when the same
SMRF (Eq. (43)) was applied to both oxidative and hydrolytic decom-
position processes (Scenario F2) (Fig. 5a). This was expected due to all
observed SWP values in the study site being lower than –0.003 MPa (or
SWC < 0.494, Fig. 3c), which was not able to cause significant effects
on soil microbial and C-N dynamics between the two SMRFs shown in
Fig. 2a. We anticipated there might be changes in soil C-N under Sce-
nario F2 if the soil moisture data could cover the range beyond (greater
than) –0.003 MPa in Fig. 2a, because saturation of soil moisture would
depress the activity of oxidative enzymes due to oxygen limitation
(Freeman et al., 2001). A single SMRF like Eq. (43) has often been used
to modify the decomposition rates of all soil C pools (Liang, 2019;
Oleson, 2013), partly due to the generally low occurrence probability
for extremely high or low soil moisture, as well as the difficulty in
differentiating the soil moisture effects between multiple decomposi-
tion processes.

We also found significant increases in SOCSS when the function
(1–fSM2) (fSM2 denotes Eq. (43)) was assigned to microbial mortality
and dormancy and the function fSM2 assigned to microbial resuscita-
tion (Scenario F3 and F4) (Fig. 5a). However, these positive effects were
much smaller than the effect by Scenario F1, owing to the Active-MBC
concentrations and microbial activities under Scenario F3 and F4 were
lower than those under F0 but higher than those under F1.

The above analyses in terms of different SMRFs indicated that the

selection of SMRFs could lead to significant differences in model si-
mulations of soil microbial and C-N processes. Particularly, remarkable
differences in soil C and N cycling could occur between with and
without accounting for the soil moisture effects on microbial dormancy
and resuscitation (Scenario F1 vs. F0 in Fig. 5a), as microbial physio-
logical states will switch under favorable or stressful environmental
conditions (Bär et al., 2002; Stolpovsky et al., 2011; Wang et al., 2019).

3.3. Constant versus dynamic litter input, soil temperature or moisture

Among the four scenarios (D1–D4) with constant and/or dynamic
data (litter input, soil temperature and moisture), only the scenarios
with dynamic soil moisture caused significant changes in SOCSS and
MNSS compared to those under the baseline scenario D0 with constant
litter input, soil temperature and moisture (Fig. 5b). The %ΔSOC was
73% and 88%, under Scenario D3 (dynamic soil moisture) and D4
(dynamic litter input, soil temperature and moisture), respectively. Our
results showed that under Scenarios D0–D2 without soil moisture dy-
namics, Active-MBC and %Active-MBC were almost the same, with
nearly all microbes being active (%Active-MBC =%98) due to no water
stress when the constant SWC (0.253) was used for modeling. However,
dynamic soil moisture resulted in lower Active-MBC and more reason-
able %Active-MBC (31%) and consequently reduced microbial and
enzyme activities, further leading to the accumulation of SOC. Though
the net N mineralization flux decreased by 12% (relative to Scenario
D0), there was still an accumulation of mineral N (+36%) under Sce-
nario D3 and D4 due to reduced N loss via denitrification.

The above analyses implied that the utilization of field-observed
dynamic (time-variant) data, particularly dynamic soil moisture, could
result in dynamic microbial community and physiology, subsequently
leading to substantially different soil C and N processes. This was fur-
ther evidenced by direct comparisons between experimental observa-
tions and model simulations driven by constant or dynamic data
(Fig. 6). The simulated Rh agreed well with the observations
(R2 = 0.68) during 2009–2012 when the model was driven by “Dy-
namic LTW” (dynamic litter input, soil temperature and moisture)
(Fig. 6a). When constant litter input was used, the simulated Rh values
were similar to those by “Dynamic LTW”, with a little bit lower
R2 = 0.63. When constant soil temperature was used, higher dis-
crepancies exhibited between simulated and observed Rh (R2 = 0.54),
in which high Rh fluxes were generally underestimated. In addition,
most of the Rh fluxes were greatly overestimated by the model driven by
constant soil moistures (Fig. 6a). Consistent MBC results were modeled
no matter what (constant or dynamic) litter input or soil temperature
data were employed (Fig. 6b). However, the utilization of constant soil
moisture resulted in significant overestimates of MBC (Fig. 6b), which
elucidated the overestimated Rh fluxes (Fig. 6a). Our results indicated
that seasonal variations in soil moisture play an important role in
regulating microbial and C-N cycling. It is possible that significant
differences would also appear when dynamic litter input or temperature
data from other study sites were used, which conveys the same message
that dynamic versus constant data may result in completely different
modeling results even when the same model structure is used.

Table 5
Objective functions for MEND model parameterization.

Response Variable Description Objective Function

SOMCN Soil organic matter C:N ratio =J PBIAS| |1
MBCN Microbial biomass C:N ratio = × + ×J PBIAS MARE0.5 | | 0.52
NH4

+ Ammonium concentration = × + ×J PBIAS MARE0.5 | | 0.53
NO3

– Nitrate concentration = × + ×J PBIAS MARE0.5 | | 0.54

Notes: MARE is the mean absolute relative error (Eq. (48)). |PBIAS| denotes the absolute value of percent bias (Eq. (49)).
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3.4. Dynamics versus constant data result in different responses to litter
addition

When constant data (litter input, N deposition, soil temperature and
moisture) were used to drive model simulations, litter addition (+11%)
caused positive effects on both SOC (+11%) and mineral N (+7%).
However, with dynamic data as the driving force, litter addition
(average of +11%) resulted in insignificant change in SOC (−2%, p-
value greater than 0.05) but significant negative response in mineral N
(−9%) (Fig. 7). We didn’t see a significant increase in microbial bio-
mass or active biomass, likely because almost all microbes (98%) had
already become active due to no environmental stress when constant
forcing data were used. As a result, the microbial and enzyme activity
didn’t change under litter addition, finally leading to the accumulation
of SOC and mineral N. On the contrary, there was an 58% increase in
Active-MBC under dynamic data and litter addition, which led to higher
microbial and enzyme activities and ultimately unchanged SOC.
Though both net N mineralization and denitrification slightly increased
by 0.8% and 0.5%, respectively, net mineral N loss was found when
dynamic data were used, due to the denitrification flux being higher
than the sum of N deposition and net N mineralization. In brief, the
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Table 7
Scenarios to test model simulations with constant or dynamic data.

Scenario Litter input Soil temperature Soil moisture

D0 Constant Constant Constant
D1 Dynamic Constant Constant
D2 Constant Dynamic Constant
D3 Constant Constant Dynamic
D4 Dynamic Dynamic Dynamic

Note: see Fig. 3 for constant or dynamic data.

Fig. 3. Constant (time-invariant) and dynamic (time-variant) data for mod-
eling. (a) litter input, (b) soil temperature, and (c) soil moisture.
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responses of soil C and N to litter addition could be qualitatively dif-
ferent when constant or dynamic data were used to drive model si-
mulations.

Our results highlighted the necessity to account for the seasonality
of environmental factors for a better understanding of priming effects in
field conditions. Priming effects often refer to the changes in the SOM
decomposition caused by the addition of organic or mineral substrates,
such as fresh litter, root exudates, and fertilizer (Blagodatskaya and
Kuzyakov, 2008). In addition, interventions such as drying and wetting
could also contribute to priming effects (Kuzyakov et al., 2000). Both
positive and negative SOC responses to litter addition have been ob-
served in short- and long-term experiments (Lajtha et al., 2014a; Lajtha
et al., 2014b; Pisani et al., 2016; Sulman et al., 2018). When time-in-
variant data were employed to drive model simulations, we found a
negative priming effect leading to the accumulation of SOC. On the
contrary, we showed a positive priming effect (i.e., more native SOC
loss via CO2) with litter addition in this old broadleaf forest when dy-
namic data were used. In our previous study on a different forest (young
pine forest) in the same area, we demonstrated a negative priming ef-
fect by the modeling with seasonal data. These experimental and
modeling results imply that differential priming effects could appear in
different ecosystems under similar or distinct environmental condi-
tions, due to the complicated mechanisms for the changes in soil mi-
crobial community and activity in response to substrate additions and/
or environmental change.

4. Conclusions

The C-N coupled MEND modeling regarding different SMRFs in-
dicated that the selection of SMRFs for specific biogeochemical pro-
cesses could result in distinct differences in model simulations of soil
microbial and C-N processes. In particular, it is essential to accounting
for the soil moisture effects on microbial dormancy and resuscitation, as
the changes in microbial physiology under favorable or stressful con-
ditions will exert strong controls on soil C and N dynamics. Without
consideration of the soil moisture effects on microbial dormancy and
resuscitation, the steady-state SOC (SOCSS) would increase significantly
compared to the baseline SOCSS, whereas mineral N concentration
would decrease. Among the four scenarios with constant and/or

Table 8
Scenarios to test litter addition effects via model simulations with constant or dynamic data.

Scenario Treatment Litter input Soil temperature Soil moisture

L0 Control Constant (observed mean) Constant Constant
Litter-addition Constant (observed + 11%) Constant Constant

L1 Control Dynamic (observed) Dynamic Dynamic
Litter-addition Dynamic (observed + 11%) Dynamic Dynamic

Note: see Fig. 3 for constant or dynamic data.

Fig. 4. Comparison between simulated and observed data. (a) C:N ratios of soil organic matter (SOM) and microbial biomass (MB); (b) Concentrations of soil NH4
+

and NO3
–. Error bars are standard deviations.

Fig. 5. (a) Percent change in soil organic C (%ΔSOC), percent change in mineral
N (%ΔMN), concentration of active microbial biomass (Active-MBC), and active
fraction in total biomass (%Active-MBC) when different soil moisture response
functions (see scenarios in Table 6) were used. (b) %ΔSOC, %ΔMN, Active-MBC
and %Active-MBC when constant or dynamic data were used (see scenarios in
Table 7).
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dynamic data, only the scenarios with dynamic soil moisture caused
significant changes in SOCSS and MNSS compared to those under the
baseline scenario with constant data. We also show that the responses

of soil C and N to litter addition could be qualitatively different when
constant or dynamic data were used to drive model simulations.
Therefore, we advocate the utilization of dynamic data, instead of time-
invariant data, to drive model simulations and analyses. Dynamic for-
cing data from measurements or reanalysis better represent the real-
world climate and environmental conditions, which could facilitate
more realistic modeling and understanding of soil C and nutrient cy-
cling in a changing world.
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