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A B S T R A C T   

Understanding microbial associations and their responses to environmental changes are important topics in 
microbial ecology. Using an association network framework, here we compare the potential microbial associa-
tion patterns within bacteria, fungi or diazotrophs in 198 paddy soil samples within Eastern China. All of three 
networks were non-random and possessed topological features of complex systems such as scale-free, small- 
world (i.e., high connectivity) and modularity, which could enable system stability and resilience. However, 
those networks exhibited distinct topological features. The fungal network was the most complex (based on 
average degree), the closest (based on average geodesic distance), the least modular (based on modularity) and 
contained the fewest positive links compared to bacterial and diazotrophic networks. In the fungal and diazo-
trophic networks, we detected 8 super-generalist OTUs (network hubs), which were the most important nodes in 
maintaining network structure. Further analyses showed that the bacterial network was mainly shaped by soil 
temperature, but the fungal network was mainly shaped by ammonia and the diazotrophic network was mainly 
shaped by volumetric water content, ammonia and soil temperature, signifying the importance of different 
environmental variables for each community. This network analysis approach provided new insights into mi-
crobial community responses to environmental perturbations by inferring bacterial, fungal and diazotrophic 
associations across a large spatial scale in paddy soils.   

1. Introduction 

Soil microorganisms play pivotal roles in agricultural ecosystems, 
including mediation of biogeochemical processes (e.g., carbon and ni-
trogen cycling) (Fierer et al., 2012; Xu et al., 2013), and promotion of 
above-ground plant health and productivity (Van Der Heijden et al., 
2008; Wagg et al., 2011; Chaparro et al., 2012). Therefore, soil micro-
organisms have been considered as prospective approaches in agricul-
ture management and ecosystem restoration (Chaparro et al., 2012; 
Hardoim et al., 2015). Increasing availability to generate datasets from 
high-throughput sequencing technologies has aided in our 

understanding on soil microbial diversity, composition and their po-
tential functions. However, there have been a number of studies to 
analyze associations among microorganisms within a community only in 
recent years, which could be more important for ecological functioning 
than microbial diversity (Zhou et al., 2010; Ma et al., 2016). 

Soil microorganisms coexist in complex ecological webs with diverse 
types of associations among species, including mutualism, competition, 
predation or neutral (Faust and Raes, 2012). However, microbial asso-
ciations are poorly understood, owing to the lack of appropriate theo-
retical frameworks and experimental datasets. To address it, network 
inference approaches based on computational tools were developed to 
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predict potential microbial associations from vast sequencing data 
(Zhou et al., 2010, 2011; Faust and Raes, 2012). Microbial networks are 
comprised of two components: (1) nodes representing individual mi-
crobial taxa derived from operational taxonomic units (OTUs); and (2) 
edges representing statistically significant, positive or negative associ-
ations between nodes, which might infer potential biological relation-
ships. Despite lack of empirical evidence, microbial species with 
mutualistic relationships are assumed to positively associate with each 
other, while antagonistic microbes such as competition or predation 
may negatively associate (Weiss et al., 2016). Although it is challenging 
to experimentally validate associations among microbial taxa, network 
analysis may help unveil community and potential functional roles 
incapable of being approached through alpha- or beta-diversity analyses 
(Fuhrman and Steele, 2008). First, network analysis could reveal niche 
overlaps of microbes since similar responses of two taxa to environ-
mental perturbation could result in co-occurrences, and vice versa. 
Second, association networks can be used to identify keystone species 
(that is, species highly associated with other species) (Berry and Widder, 
2014), which may cause a large shift of microbial community compo-
sition as well as functions upon their removal (Berry and Widder, 2014). 
Third, network topological features (i.e., network complexity and 
modularity) can be affected by environmental perturbation. For 
example, microbial network complexity increased and then decreased 
during 269 days’ emulsified vegetable oil amendment for uranium 
bioremediation (Deng et al., 2016), which can be used to characterize 
microbial responses to environmental perturbations. 

Soil microorganisms can be classified into various taxonomic groups 
(e.g., archaea, bacteria, fungi and protists) or functional groups (e.g., 
nitrifiers, denitrifiers and methanogens). Recently, functional groups 
have gained increasing attention owing to inability to dissect biogeo-
chemical cycling solely by taxonomic information (Louca et al., 2016). 
Diazotrophs, for example, occurring in a wide range of bacteria and 
archaea, are only small components of microorganisms (perhaps 
comprising less than 0.5% of the genomes), but important natural source 
of bioavailable nitrogen (N) input in many terrestrial habitats by fixing 
atmospheric N to biologically available NH4

þ-N (ammonia) (Zehr et al., 
2003; Kumar et al., 2017). As N is usually the limiting factor for crop 
growth and productivity, especially in N-poor habitats (Elser et al., 
2007; Shu et al., 2012), surveying diazotrophs provides more accurate 
resolution beyond taxonomic groups in assessing community function. 
Therefore, examining taxonomic groups of microbial communities may 
be insufficient to reveal microbial functions, which highlights the 
importance of incorporating functional groups into microbial ecology 
studies. However, association analyses of functional communities of 
microorganisms are much less understood compared to bacteria and 
fungi. 

Microbial biogeography is the study of spatial distribution patterns 
of microbial communities and their responses to environmental changes 
(Martiny et al., 2006). Biogeographic patterns of microbial association 
networks can help unveil potential microbial associations in soils, and 
contribution of various environmental variables in shaping microbial 
communities, which could facilitate soil managements especially in 
agricultural soils. Here, we compared potential association patterns of 
bacterial, fungal and diazotrophic communities in environmentally 
heterogeneous paddy soils spanning 4 provinces along the Yangtze River 
within Eastern China, which is the major rice-producing region of China. 
As the largest anthropogenic wetland ecosystems and the longest culti-
vation lands on earth (K€ogel-Knabner et al., 2010), paddy soils in China 
produce ~25% of grains for Chinese market. However, N loss is 
tremendous due to excessive use of fertilizers (Xing and Zhu, 2000; Zhu 
et al., 2011). Therefore, it is imperative to examine diazotrophic com-
munities related to nitrogen fixation, which can be used to evaluate 
biological nitrogen fixation potentials in paddy soils. Specifically, we 
aim to test the following scientific questions - (i) whether microbial 
associations in paddy soils varied among bacteria, fungi and diazo-
trophs; and (ii) what environmental variables contributed to the 

association patterns of bacteria, fungi and diazotrophs. Given that soil 
pH has been reported to be a primary driver for soil bacterial spatial 
distribution (Fierer and Jackson, 2006; Shen et al., 2013), and microbial 
lifestyles differ between bacteria and fungi, we addressed two specific 
hypotheses in the current study - (i) association patterns and their 
environmental drivers in paddy soils vary among bacteria, fungi and 
diazotrophs; and (ii) soil pH links strongly to bacterial association 
patterns. 

2. Materials and methods 

2.1. Soil sampling 

The detailed sampling information is shown in Fig. S1A. A total of 18 
long-term paddy plots span 6 counties of Changxing (CX), Hefei (HF), 
Huangshi (HS), Jurong (JR), Xiantao (XT) and Tongcheng (TC), with 3 
paddy plots evenly distributed within each county. Survey was per-
formed from late October to early November in 2015. In each paddy 
plot, 11 topsoil samples, 20 cm in depth and 5 cm in diameter, were 
collected along the L-shape transects (Fig. S1B). Distances between two 
adjacent soil samples along both transects are 1 m, 5 m, 10 m, 20 m and 
40 m, respectively. Our nested design of the experiment within and 
among paddy plots allows for data analyses across different spatial 
scales of plot-level, county-level and overall-level. Soil samples were 
packed into sterile polyethylene bags, immediately kept in a portable 4 
�C refrigerator and then transported to the laboratory. Soils were used 
for DNA extraction (stored at � 80 �C) or physiochemical variables 
measurement (stored at 4 �C). 

2.2. Environmental variable collection and measurements 

In this study, 9 soil physiochemical variables, including volumetric 
water content (VWC, %), soil temperature (Soil T, oC), soil pH (Soil pH), 
ammonia (NH4

þ-N, ppm), nitrate (NO3
� -N, ppm), dissolved total nitrogen 

(DTN, ppm), dissolved total carbon (DOC, ppm), microbial carbon 
(MBC, mg/kg) and microbial nitrogen (MBN, mg/kg), were measured 
(Table S1). In brief, VWC at the soil depth of 0–12 cm and soil T at the 
depth of 10 cm were measured in situ when soil samples were collected. 
VWC was measured for three times to generate mean values using a TDR 
300 (Time-Domain Reflectometer, Spectrum Technologies, Inc., Aurora, 
IL, USA). Soil T was measured for three times to generate mean values 
using a mercurial thermometer. Soil pH was measured by a pH meter 
(E20-FiveEasyTM pH, Mettler Toledo, German) in a 1:5 ratio of soil to 
deionized water slurry after shaking for 30 min. To measure NH4

þ-N, 
NO3
� -N, DTN and DOC, 10 g of soil was added to a 250 ml plastic bottle 

with 100 ml of 2 mol/L KCl solution. NH4
þ-N and NO3

� -N concentrations 
were measured using a spectrophotometer. DTN and DOC were 
measured using a Multi N/C 2100 analyzer (Analytik, Jena, Germany). A 
total of 5 g vacuum-desiccated soil was added to 100 ml of 2 mol/L 
K2SO4 solution, vibrated, filtered, and the supernatant was used for MBC 
and MBN measurement (Wang and Wang, 2008). The concentration 
units for NH4

þ-N, NO3
� -N, DTN, DOC, MBC and MBN were uniformly 

transformed to mg/kg. In addition, geographical variables (longitude 
and latitude) and local climatic variables (monthly recorded ground 
surface temperature and monthly precipitations) were included in this 
study. The longitude and latitude of each sample were recorded by a 
portable GPS machine when soils samples were collected. Ground sur-
face temperature at the soil depth of 5 cm and precipitation of each 
county were downloaded from public datasets generated by weather 
stations in China (http://data.cma.cn/site/index.html). These mean 
monthly values represent regional climate conditions. 

2.3. DNA extraction, amplicon sequencing and sequencing data 
processing 

Soil DNA was extracted using PowerMax Soil DNA Isolation Kit 
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(MOBIO Laboratories, Inc., Carlsbad, CA, USA) after freeze-grinding 
lysis (Ding et al., 2015). Extracted DNA for PCR amplification was 
diluted to 2 ng/μL. Three genes were amplified separately: (i) 16S ri-
bosomal RNA (rRNA) genes for bacteria; (ii) internal transcribed spacer 
(ITS) for fungi; and (iii) bacterial introgenase subunit H (nifH) for 
diazotrophs. Universal primer pairs used were: 515F/806R (Caporaso 
et al., 2012) for 16S rRNA genes, ITS7F/ITS4R (Ihrmark et al., 2012) for 
ITS genes and PolF/PolR (Poly et al., 2001) for nifH genes. Two-step PCR 
was used to prepare amplicon libraries of these three genes as described 
previously (Wu et al., 2016). Specifically, 10 cycles were used in the first 
step and 20 cycles in the second step for both 16S rRNA and ITS genes, 
while 12 cycles were used in the first step and 23 cycles in the second 
step for nifH genes. PCR products were then quantified by PicoGreen, 
and equal amounts of DNA per sample were combined to generate 
pooled libraries. The pooled libraries were sequenced on a desktop 
MiSeq system (Illumina, San Diego, CA, USA) (2 � 250 bp paired ends) 
following the manufacture’s protocols at the Institute for Environmental 
Genomics, University of Oklahoma after purification using QIAGEN Gel 
Extraction Kit (QIAGEN Inc., Valencia, CA, USA). 

Raw amplicon sequencing data analysis was performed using the in- 
house Sequencing Analysis Pipeline (http://zhoulab5.rccc.ou.edu: 
8080/root) at University of Oklahoma, Norman, OK, USA. Briefly, chi-
meras were removed using Uchime (Edgar et al., 2011) after deleting 
reads of poor qualities by Btrim (Kong, 2011). The 16S rRNA gene and 
ITS sequences were then clustered into Operational Taxonomic Units 
(OTUs) with UPARSE (Edgar, 2013) at the 97% identity cutoff. The nifH 
sequences were clustered into OTUs with complete linkage clustering 
(Loewenstein et al., 2008) at the 95% amino acid identity (Penton et al., 
2016; Afgan et al., 2018) with a hand-curated database of nifH protein 
sequences after corrected by Framebot software (Wang et al., 2013). A 
few samples were discarded due to poor quality in bacterial, fungal or 
diazotrophic sequence reads. 

To normalize sequencing data prior to subsequent analysis, all se-
quences were randomly resampled to 23,000 sequences for bacteria, 
2,000–10,000 sequences for fungi, and 10,000 sequences for diazo-
trophs, which were sufficient to capture the diversity of bacterial, fungal 
and diazotrophic communities, according to the rarefaction curves 
(Fig. S2). 

2.4. Network analyses 

After obtaining OTU tables for 16S rRNA gene, ITS and nifH gene, 
abundance data were transformed into relative abundance by dividing 
the sum reads of each sample as described previously (Wu et al., 2017). 
Only OTUs detected in more than half of samples were used for each 
network construction. In brief, pairwise similarities of relative abun-
dance data across different OTUs were calculated based on Spearman 
correlation coefficients. The correlation matrix was subsequently 
transformed into a similarity matrix, and the random matrix theory 
(RMT) was used to automatically define the appropriate similarity 
threshold (St) prior to network construction (Yang et al., 2009). Once 
the St was determined, an adjacency matrix was obtained by keeping all 
the OTUs whose similarity values were larger than the determined St. 
Then the molecular ecological network (MEN) was constructed using the 
Molecular Ecological Network Analyses (MENA) Pipeline (http://ieg4. 
rccc.ou.edu/mena). Once the MEN was constructed, various network 
topological features were calculated based on the adjacency matrix 
using the MENA Pipeline. The topological features for individual nodes 
are useful in accessing nodes’ roles in the network, and the topological 
features for the network are useful in comparing various MENs identi-
fied under different situations (Deng et al., 2012). To visualize associ-
ation networks, the node represents a species or taxon and the edge 
linking two nodes represents positive or negative correlation between 
two nodes. Bacterial, fungal or diazotrophic communities in soil samples 
were categorized at the overall-level, county-level or plot-level. A few 
plot-level networks in bacteria were discarded because of excessive 

nodes for network constructions using the MENA pipeline. Topological 
features examined here included the total node number, total link 
number, average degree (avgK), centralization of degree (CD), average 
cluster coefficient (avgCC), average geodesic distance (GD), centraliza-
tion of betweenness (CB), centralization of stress centrality (CS), den-
sity, total module number and modularity. Detailed biological 
implications of those network features were described previously 
(Table S2) (Wu et al., 2016). All networks were graphed using Cytoscape 
3.7.0 (Shannon et al., 2003). The topological roles of nodes in the net-
works were classified into four categories according to within-module 
connectivity (Zi) and among-module connectivity (Pi): network hubs 
(highly connected nodes within entire network, Zi > 2.5 and Pi > 0.62), 
module hubs (highly connected nodes within modules, Zi > 2.5 and Pi �
0.62), connectors (nodes that connect modules, Pi > 0.62) and periph-
erals (nodes connected in modules with few outside connections, Zi <
2.5 and Pi � 0.62) (Deng et al., 2012). 

2.5. Statistical analyses 

One hundred random networks corresponding to each overall 
network were generated. In the random network, the numbers of nodes 
and links were constant, but all the links’ positions were rewired 
randomly so that the rewired network was comparable to the empirical 
one (Maslov and Sneppen, 2002). For the 100 random networks, each 
network index was calculated with the average and the standard devi-
ation. The Z test was employed to determine the significance of network 
indices between the empirical and random networks. For comparison of 
network indices from different networks, the student t-test was applied 
using the standard deviations derived from corresponding random net-
works. The importance of environmental variables for network topo-
logical features were estimated using multiple regression model (MRM) 
with the R ‘ecodist’ package. All environmental variables were stan-
dardized with function ‘decostand’ in R vegan package, and Euclidean 
distance matrices were used in the MRM model. Pearson’s correlations 
were used to determine how environmental variables influence network 
topological features with the R ‘cor.test’ function. We further investi-
gated the importance of environmental variables on microbial commu-
nity composition using MRM model, in which Euclidean distance 
matrices for environmental variables datasets and Bray-Curtis distance 
matrices for community datasets were used. We also examined the re-
lationships between microbial networks and environmental variables in 
an indirect way using OTU significance, which was defined as the square 
of Pearson correlation coefficient (r2) of OTU abundance profile with 
environmental variables (Deng et al., 2012). After calculating OTU 
significance, Mantel tests were used to examine the relationships be-
tween OTU significance and network features for exploring relationships 
between potential interactions and environmental variables. 

3. Results 

3.1. Overall bacterial, fungal and diazotrophic communities in paddy soils 

We obtained 32,014 bacterial OTUs (ranging from 1,199 to 5,838 
OTUs across 188 samples), 11,341 fungal OTUs (ranging from 134 to 
955 OTUs across 186 samples) and 17,677 diazotrophic OTUs (ranging 
from 252 to 2,235 OTUs across 183 samples). The most abundant 
phylum in bacterial community was Deltaproteobacteria (13.53%), fol-
lowed by Acidobacteria (12.89%), Alphaproteobacteria (9.48%), Beta-
proteobacteria (8.76%), Chloroflexi (7.64%) and Gammaproteobacteria 
(5.00%) (Fig. S3A). Five classifiable phyla were identified for fungal 
communities: Ascomycota (45.75%), Basidiomycota (24.22%), Zygomy-
cota (9.50%), Chytridiomycota (4.07%) and Glomeromycota (2.50%) 
(Fig. S3B). In contrast, the majority of diazotrophic communities in 
paddy soils were unclassified (80.91%) at the genus level, followed by 
Bradyrhizobium (5.18%), Azotobacter (3.71%), Geobacter (1.17%) and 
Methylomonas (1.06%) (Fig. S3C), suggesting that our knowledge about 
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diazotrophs was limited. 

3.2. Overall network topological features from bacteria, fungi and 
diazotrophs 

We constructed association networks at the overall-, county- and 
plot-levels, resulting in a total of 70 networks. All of them were non- 
random and displayed the scale-free feature, with R2 of power law 
ranging from 0.711 to 0.967 (Table S3). The three overall networks also 
exhibited other general topological features, such as small-world and 
modularity (Table 1). Specifically, GD (geodesic distance) values were 
significantly higher than their corresponding randomized networks, 
indicating the small-world behavior. Modularity values were signifi-
cantly higher than the modularity values from corresponding random-
ized networks, indicative of the modular feature. The association 
patterns among bacterial, fungal and diazotrophic communities were 
markedly different. The avgCC (average cluster coefficient), GD, and 
modularity were the highest (p < 0.05) for the bacteria, and the least (p 
< 0.05) for the fungi (Table 1). All county- (Fig. S4) and plot-level 
(Fig. S5) networks showed the modularity featureFig. S5, which was 
similar as the overall-level networks (Table S4). Most of county- and 
plot-level networks exhibited the small-world feature, except for 2 
county-level (JR of bacteria and HF of diazotroph) and 3 plot-level (TC2 
and JR1 of bacteria, and TC2 of diazotroph) networks (Table S4). 

The overall-level network of bacterial communities tended to have 
positive correlations rather than negative correlations since positive 
links accounted for 57.91% of the potential interactions (Fig. 1). How-
ever, the overall-level networks of fungal (10.30% positive links) and 
diazotrophic (42.57% positive links) communities harbored fewer pos-
itive links than the bacterial network (Fig. 1). Similar pattern was also 
found in the networks at the county or plot level: bacterial networks 
contained more positive correlations (63.87% in the county-level and 
69.86% in the plot-level), but fungal (32.9% in the county-level and 
35.17% in the plot-level) and diazotrophic (31.14% in the county-level 
and 21.78% in the plot-level) networks contained fewer positive corre-
lations (Table S3). 

3.3. Putative keystone taxa 

Networks hubs, modules hubs and connectors were identified in all 
networks (Fig. 1). For bacteria, no network hub was identified (Table 2). 

Members from Acidobacteria, Alphaproteobacteria, Deltaproteobacteria 
and Chloroflexi together accounted for approximately half of all module 
hubs (49.80%) and connectors (48.31%) in the bacteria (Table S5). A 
total of 4 fungal network hubs belonged to Podospora (Ascomycota), 

Table 1 
Topological features of empirical microbial networks and comparison with 
corresponding random networks.   

Network features Bacteria Fungi Diazotrophs 

Empirical 
networks 

R2 of power law 0.901 0.899 0.843 
Total nodes 271 86 169 
Total links 632 233 343 
Average degree 
(avgK) 

4.664 5.419 4.059 

Average geodesic 
distance (GD) 

5.494b 3.035 3.909 

Average clustering 
coefficient (avgCC) 

0.234 0.061 0.157 

Modularity 0.613 0.369 0.535 

Random 
networksa 

Average geodesic 
distance (GD) 

3.460 �
0.039 

2.801 �
0.056 

3.357 �
0.063 

Average clustering 
coefficient (avgCC) 

0.055 �
0.009 

0.134 �
0.018 

0.076 �
0.013 

Modularity 0.426 �
0.007 

0.332 �
0.010 

0.445 �
0.008  

a Parameters of random networks were generated from 100 times of randomly 
rewired networks. Parameters presented here are mean values and standard 
derivations from random networks. 

b Significant difference (p < 0.05) between any two of the 3 overall-level 
networks are shown in bold. 

Fig. 1. An overview of microbial networks of bacteria (A), fungi (B) and 
diazotrophs (C). In the network graph, colors of nodes represent different 
phyla (classes for Proteobacteria); nodes in the red boxes are network hubs; 
nodes in the middle of modules in green boxes are the modules hubs; nodes in 
the black boxes are connectors; Red links represent positive correlations and 
grey links represent negative correlations. (For interpretation of the references 
to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 2 
Network hubs in the networks within bacterial, fungal and diazotrophic 
communities.  

Network Network 
hubs 

Reads abundance 
(%) 

Phylum Genus 

ITS OTU_25 0.585 Ascomycota Podospora 
ITS-HF OTU_583 0.049 Ascomycota Unclassified 
ITS-HS3 OTU_539 0.092 Zygomycota Mortierella  

OTU_546 0.051 Basidiomycota Rhodotorula 
nifH OTU_585 0.035 Unclassified Unclassified 
nifH-HF OTU_2691 0.021 Unclassified Unclassified 
nifH-TC OTU_46 2.089 Unclassified Unclassified 
nifH- 

CX1 
OTU_6565 0.019 Unclassified Unclassified  
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Mortierella (Zygomycota), Rhodotorula (Basidiomycota) and an unclassi-
fied genus from Ascomycota (Table 2). Members of Ascomycota (35.29%– 
44.62%) and Basidiomycota (23.08%–30.88%) dominated the module 
hubs (66.18%) and connectors (67.70%) from fungal networks, and 
unclassified fungal phyla accounted for 10.29–11.54% of them 
(Table S5). A total of 4 network hubs in the diazotrophic network were 
identified, with all from unclassified phyla (Table 2). In addition, 
69.23% of module hubs and 65.73% of connectors in diazotrophs were 
unclassified, with the rest belonging to Betaproteobacteria (10.26%– 
12.59%), Alphaproteobacteria (4.20%–7.69%), Deltaproteobacteria 
(6.41%–11.19%) and Gammaproteobacteria (4.90%–5.13%) (Table S5). 
Notably, most of module hubs (78.98%) and connectors (81.22%) were 
low in relative abundance (<0.099%), revealing potentially important 
roles of rare taxa in communities. In addition, few hubs and connectors 
were present in multiple networks. 

To explore the interrelationships between two kingdoms, a bacteria- 
fungi network was constructed based on bacterial and fungal OTUs, 
which also exhibited typical topological features of scale-free, small- 
world and modularity (Table S3). There were 903 bacteria-bacteria 
links, overwhelmingly outnumbering the 3 bacteria-fungi links of Bac-
teroidetes-Zygomycota, Chloroflexi-Ascomycota and Acidobacteria-Basi-
diomycota. In the bacteria-fungi network, all hubs and connectors were 
bacteria, with one network hub belonging to Deltaproteobacteria 
(Table S6). 

3.4. Association of network topological features with environmental 
variables 

Associations of environmental variables with network topological 
features were assessed (The MRM analysis, Fig. 2 & Table S7). Collec-
tively, these variables explained substantial variations in network to-
pological features of fungi (46.54%, p < 0.05), but were insignificant for 
bacteria (62.74%, p > 0.10) or diazotroph (38.94%, p > 0.10). The most 
important variable linking to bacteria was soil temperature (8.88%, p <
0.05) (Fig. 2). In fungi, the most important variable was NH4

þ-N 
(18.51%, p < 0.05). In diazotrophs, the most important variables were 
VWC (volumetric water content) (15.19%, p < 0.05), NH4

þ-N (13.59%, p 
< 0.05) and soil temperature (11.01%, p < 0.05). Those environmental 
variables linking to network topological features also correlated with 
microbial community composition (Table S8). 

In bacterial networks, total module number positively correlated 
with NH4

þ-N (r ¼ 0.68, p ¼ 0.01), but negatively correlated with soil pH 
(r ¼ � 0.53, p ¼ 0.06) (Fig. 3). CB (centralization of betweenness) 

negatively correlated with DOC (dissolved total carbon) and NH4
þ-N (r <

� 0.62, p < 0.05). In fungi, network topological features correlated with 
NH4
þ-N, and soil temperature (Fig. 3). Total module number, modularity 

and GD positively correlated with NH4
þ-N (r > 0.51, p < 0.05). Also, 

modularity positively correlated with soil temperature (r ¼ 0.56, p <
0.05). AvgK (average degree), CD (centralization of degree) and density 
negatively correlated with NH4

þ-N (r < � 0.56, p < 0.05). CD and density 
negatively correlated with soil temperature (r < � 0.51, p < 0.05). GD 
negatively correlated with NO3

� -N (nitrate) (r ¼ � 0.52, p < 0.1). In 
diazotrophs, network features correlated with NH4

þ-N and soil temper-
ature (Fig. 3). Specifically, total module number, modularity, total node 
number, and GD positively correlated with NH4

þ-N (r > 0.54, p < 0.05). 
CD and density negatively correlated with NH4

þ-N (r < � 0.62, p < 0.05). 
CS and density negatively correlated with soil temperature (r < � 0.53, p 
< 0.05). 

Trait-based OTU significance was also measured to evaluate associ-
ations between environmental variables and network features 
(Table S9). In the bacterial network, very strong correlations were 
observed between the node connectivity and the OTU significance of 
selected soil variables, based on all detected OTUs (p < 0.05) or several 
phylogenetic groups such as Chloroflexi (p < 0.05) and unclassified phyla 
(p < 0.05). In diazotrophs, the connectivity of all detected OTUs (p <
0.05) and unclassified OTUs (p < 0.05) significantly correlated with the 
OTU significance. However, no significant association was found in 
fungi. 

4. Discussion 

Given high complexity of microbial communities (Van Dijk et al., 
2014), it is challenging to assess potential microbial associations. 
Therefore, association networks have been widely used to infer potential 
relationships among microorganisms (Zhou et al., 2010, 2011; Faust 
et al., 2012). Here, we compared association networks of bacteria, fungi 
and diazotrophs in paddy soils. We showed that potential association 
patterns of different microbial groups varied substantially in terms of 
topological features, keystone species, and correlations with environ-
mental variables. As a result, there was no universal pattern of potential 
microbial associations across microbial taxonomic and functional 
groups. 

All networks of paddy soil microbiome are scale-free and non- 
random. This is not surprising, given that non-random correlational 
networks are commonly documented for macro- and microorganisms 
(Horner-Devine et al., 2007; Prosser et al., 2007) as well as many social, 
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technological and molecular biological networks (Albert and Barab�asi, 
2002; Barab�asi and Oltvai, 2004; Bullmore and Sporns, 2009). The 
findings of non-random network patterns in this study may suggest that 
paddy soil microorganisms tend to be correlational more than expected 
by chance, which could be attributed to roles of deterministic processes 
in shaping microbial community. All the networks showed topological 
features of scale-free, small-world and modularity. Those general fea-
tures could have important implications for the stability and resilience 
of ecosystems. Biological networks with scale-free property show a 
pattern that few OTUs (hubs or connectors) have many associations 
whereas most OTUs (specialists) have few associations (Barab�asi, 2009). 
Consequently, the networks are robust in face of random removal to 
nodes, but are vulnerable to attacks against highly connected OTUs 
(hubs or connectors) (Barab�asi and Oltvai, 2004). For instance, it was 
shown that deleting a hub node in the yeast interactome network of 
protein-protein interactions could exert more phenotypic outcomes than 
other nodes (Yu et al., 2008). The small-world network means that any 
two OTUs can be connected with only a few associations, which could 
facilitate rapid responses of microbial community to environmental 
changes (Albert et al., 2000; Montoya et al., 2006). In microbial ecology, 
module means compartmentalization, i.e., a group of microbial species 
are intensively connected within themselves but loosely connected with 
nodes in other modules, which may result from habitat heterogeneity, 
niche differentiation and/or divergent selection (Olesen et al., 2007). 
Therefore, one module is expected to exert no or limited effect on other 
modules in the microbial community, which helps reduce microbial 
responses to environmental perturbations by constraining environ-
mental perturbations within modules (Kitano, 2004). Here, we predict 
that stability of microbial associations in paddy soils remains robust in 
face of environmental perturbations, which may be important for soil 
ecosystem stability and functioning. 

Species with a critical role in maintaining ecosystem stability, 
regardless of their abundance, are commonly defined as keystone spe-
cies, which can often be detected as network hubs, module hubs and 
connectors by network analyses (Olesen et al., 2007; Faust and Raes, 
2012). In this study, putative keystone microbial species were detected 
by the topology-based approach. Although the network hub is missing in 
many network studies (Barber�an et al., 2012; Faust et al., 2012; Deng 
et al., 2016; Ma et al., 2016; Shi et al., 2016), a number of network hubs 
in the fungal and diazotrophic networks, as well as the bacteria-fungi 
network, were identified (Tables 2 and S6). However, all network 

hubs from the diazotrophic and bacteria-fungi networks are unclassified, 
which warrantee future work to characterize those keystone species. In 
contrast, it has been shown that Podospora, a fungal network hub, is one 
of the most abundant genera in healthy soils (Xu et al., 2012) and can 
control Verticillium wilt of tomato (Dutta, 1981). Podospora (0.585%) is 
present across 6 counties, suggestive of a crucial, prevalent role in paddy 
soil communities. Another network hub Mortierella is an important 
phosphate-solubilizing fungus in promoting soil enzyme activities and 
plant growth (Zhang et al., 2011), and the network hub Rhodotorula has 
been reported as a promising agent for in situ bioremediation of medium 
to high-level pesticide contaminated sites (Salam et al., 2013). Consid-
ering the critical role of keystone species in community complexity and 
stability, these species should receive high conservation priorities when 
environmental perturbation occurs. Keystone microbial species, such as 
mycorrhizal fungi, can mediate plant-plant communication by trans-
ferring signals of pathogenic fungal diseases from infected plants to their 
neighbor to invoke defenses (Babikova et al., 2013; van der Heijden and 
Hartmann, 2016), the presence of such keystone species could thus be 
essential for sustaining soil health and crops productivity. As a result, 
manipulating keystone species of microbial network structures, 
including isolating, characterizing, removing and adding putative 
keystone species, could provide a promising approach for agriculture 
management to improve crops productivity (Banerjee et al., 2018). 

Only a few hubs or connectors show wide distribution across 
different plots, supporting the context dependency theory that keystone 
species does not dominate anywhere or any time, but play critical roles 
only under specific contexts (Salam et al., 2013). Our finding is in 
alignment with a previous observation that putative keystone species 
change with conditions (Lu et al., 2013; Lupatini et al., 2014). Inter-
estingly, keystone species tend to be low in abundance (Shi et al., 2016; 
Wu et al., 2016), which is also observed in this study (Table 2, Table S5 
& S6). Recent studies have showed that less abundant or rare species 
may play important roles in determining genetic diversity, functional 
diversity and ecosystem stability against environmental perturbation 
(Jousset et al., 2017). Therefore, a focus on abundant taxa, as proposed 
recently (Delgado-Baquerizo et al., 2018), would overlook some 
important species. 

Positive correlations may indicate cooperative or mutualistic po-
tential associations such as cross-feeding and/or syntrophic relation-
ships, while negative correlations could infer antagonistic associations 
among species such as predation and/or competition for a limiting 
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resource (Faust and Raes, 2012). Here, we detected more positive cor-
relations (57.91%) in bacterial networks than diazotrophic networks 
(42.57%) and fungal networks (10.30%) (Fig. 1). A possible explanation 
is that typical fungal lifestyles (e.g. heterotrophic, saprotrophic and 
spore-forming) are more universal and adapt to more niches than bac-
terial lifestyles. The weak niche differentiation of fungal communities 
possibly results in stronger competition (i.e., negative associations) for 
similar niches between soil microorganisms. However, negative feed-
backs tend to stabilize processes while positive feedbacks conversely 
enhance ecosystem changes and destabilize the status quo (Simard et al., 
2012), it is thus likely that fungal communities in the paddy soils may be 
more robust to environmental perturbations than bacteria. 

As temperature can greatly increase metabolic rates and biochemical 
processes (Gillooly et al., 2001; Brown et al., 2004), temperature has 
strong effects on microbial metabolism and ecology. However, the 
temperature effect on potential microbial associations was rarely stud-
ied as compared to microbial diversity and composition (Lin et al., 
2017). In this study, soil temperature rather than soil pH, was linked to 
microbial associations of bacteria and diazotrophs (Fig. 2 & Table S7). 
The finding was consistent with a previous study that temperature 
played crucial roles in affecting potential bacterial associations in 
anaerobic digestion processes (Lin et al., 2017), and reinforced critical 
roles of temperature in controlling microbial growth, activities and di-
versity (Davidson and Janssens, 2006; Zhou et al., 2016). In contrast, 
ammonia was correlated significantly to both diazotrophic and fungal 
associations but not bacterial associations (Fig. 2). In natural terrestrial 
ecosystems, bioavailable ammonia mainly originates from biological N 
fixation, which results from diazotrophic activities. Fungi, including 
ectomycorrhizal and arbuscular mycorrhizal fungi, are responsible for 
acquiring N for rice crop (Chalot et al., 2006; Guether et al., 2009), 
which form a strong link with paddy soil ammonia. Owing to significant 
correlations of temperature and ammonia in potential microbial asso-
ciations (Fig. 2 & Table S7) and composition (Table S8), paddy soil 
processes may be sensitive to those environmental variables as well. 

In summary, this study provides valuable insights into microbial 
associations in paddy soils at a large spatial scale, which go beyond the 
basic descriptions of microbial alpha- and beta-diversity by exploring 
potential, positive or negative relationships among community mem-
bers. All association networks exhibited general topological features, 
such as scale-free, small-world and modularity. However, association 
patterns and their environmental drivers varied among different mi-
crobial groups. Compared to bacterial and diazotrophic associations, the 
fungal association was predicted to be the most complex, closest, 
antagonistic and had least niche differentiation (or selection). In addi-
tion, we identified 8 super-generalist OTUs in the fungal and diazo-
trophic associations, which may be important for maintaining microbial 
community structure. 
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