1	Warming exacerbates the impact of nutrient enrichment on microbial functional
2	potentials important to the nutrient cycling in shallow lake mesocosms
3	
4	Lijuan Ren ¹ , Yuanyuan Liu ¹ , Torben L Lauridsen ^{2,3} , Martin Søndergaard ^{2,3} ,
5	Boping Han ¹ , Jianjun Wang ⁴ , Erik Jeppesen ^{2, 3, 5, 6*} , Jizhong Zhou ^{7, 8,9} , and
6	Qinglong L. Wu ^{2, 4, *}
7	
8	¹ Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou,
9	China
10	² Sino-Danish Centre for Education and Research, University of Chinese Academy of
11	Sciences, Beijing, China
12	³ Department of Bioscience, Aarhus University, Silkeborg, Denmark
13	⁴ State Key Laboratory of Lake Science and Environment, Nanjing Institute of
14	Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
15	⁵ Limnology Laboratory, Department of Biological Sciences and Centre for
16	Ecosystem Research and Implementation, Middle East Technical University, Ankara,
17	Turkey
18	⁶ Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
19	⁷ Institute for Environmental Genomics and Department of Microbiology and Plant
20	Biology, School of Civil Engineering and Environmental Sciences, University of
21	Oklahoma, Norman, OK, USA
22	⁸ Earth and Environmental Sciences, Lawrence Berkeley National Laboratory,
23	Berkeley, CA, USA
24	⁹ State Key Joint Laboratory of Environment Simulation and Pollution Control,
25	School of Environment, Tsinghua University, Beijing, China

- **Corresponding authors**: Qinglong L. Wu, Email: <u>qlwu@niglas.ac.cn</u>; or Erik
- 27 Jeppesen, Email: ej@bios.au.dk.
- 29 Keywords: warming, eutrophication, shallow lake, microbial functional potentials,
- 30 nutrient cycling
- **Running title**: Microbial functional response to warming

Gene	Gene Subcategory Name/abbreviation		Enzyme/protein
category	- •	of the	
		enzyme/protein/gene	
Carbon	Starch	amyA	Alpha-amylase
degradation	Starch	amyX	Pullulanase
	Starch	apu	Amylopullulanase
	Starch	cda	Cyclomaltodextrinase
	Starch	glucoamylase	Glucoamylase
	Starch	pulA	Pullulanase
	Cellulose	cellobiase	Cellulose
	Cellulose	endoglucanase	Endoglucanase
	Cellulose	exoglucanase	Exoglucanase
	Hemicellulose	ara	Arabinofuranosidase
	Hemicellulose	mannanase	Beta-mannanase
	Hemicellulose	xylA	Xylose isomerase
	Hemicellulose	xylanase	Xylanase
	Chitin	acetylglucosaminidase	Acetylglucosaminidase
	Chitin	chitinase	Chitinase
	Chitin	endochitinase	Endochitinase
	Chitin	exochitinase	Exochitinase
	Pectin	pectinase	Pectinase
	Aromatics	AssA	Alkylsuccinate synthase
	Aromatics	camDCAB	Camphor 5-monooxygenase
	Aromatics	limEH	Limonene-1,2-epoxide
			hydrolase
	Aromatics	LMO	limonene monooxygenase
	Aromatics	vanA	Vanillate demethylase
	Aromatics	vdh	Aryl-aldehyde oxidase
	Lignin	phenol_oxidase	Phenol oxidase
Carbon	Reductive	aclB	ATP citrate lyase
fixation	tricarboxylic acid		
	Cycle Reductive costul CoA	CODU	Carbon monovido
	Reductive acetyi–CoA	CODH	Carbon monoxide
	Wood Linnadahl	ETHES	Tetrohydrofolata formylaga
	wood-Ljuligualli	ГІПГЗ	Tetranydrofolate formylase
	Paulway Calvin cycle	rubisco	BuBisCo
Methane	Methanogenesis	merA	Methyl coenzyme M reductase
wiethalie	Methane oxidation	mmoX	Soluable methane
	We mane oxidation	mmoz	monooxygenase
	Methane oxidation	nmoA	Particulate methane
	We that contraction	pinor	monooxygenase
Nitrogen	Ammonification	ødh	Glutamate dehydrogenase
Turogen	Ammonification	ureC	Urease
	Anammox	hzo	Hydrazine oxidoreductase
	Assimilatory N	nasA	Assimilatory nitrate reductase
	reduction		catalytic subunit
	Assimilatory N	nirA	Nitrite reductase (NAD(P)H)
	reduction		
	Assimilatory N	nirB	Nitrite reductase (NAD(P)H)
	reduction		
	Denitrification	narG	Respiratory nitrate reductase
		-	alpha chain
	Denitrification	nirS	Cytochrome cd1 nitrite
			reductas

Table S1 Full names of the abbreviated enzymes/proteins/genes in the main text.

	Denitrification	norB	Nitric oxide reductase
	Denitrification	nosZ	Nitrous oxide reductase
	Denitrification	nirK	Copper containing nitrite
			reductase
	Dissimilatory N	napA	Periplasmic nitrate reductase
	reduction		
	Dissimilatory N	nrfA	Ammonia-forming cytochrome
	reduction		c nitrite reductase
	Nitrification	hao	Hydroxylamine oxidoreductase
	Nitrification	amoA	Ammonia monooxygenase
	Nitrogen fixation	nifH	Nitrogenase iron protein
Phosphorus	Phosphorus utilization	phytase	Phytase
	Phosphorus utilization	ppk	Polyphosphate kinase
	Phosphorus utilization	ppx	Exopolyphosphatase
Sulfur	Adenylylsulfate	APS_AprA	Adenylylsulfate reductase
	reductase		
	Adenylylsulfate	APS_AprB	Adenylylsulfate reductase
	reductase		
	Sulfide oxidation	fccAB	Flavocytochrome c sulfide
			dehydrogenase
	Sulfide oxidation	sqr	Sulfide-quinone
			oxidoreductase
	Sulfite reductase	CysJ	Sulfite reductase (NADPH)
			flavoprotein subunit alpha
	Sulfite reductase	dsrA	Dissimilatory sulfite reductase
	Sulfite reductase	dsrB	Dissimilatory sulfite reductase
	Sulfur oxidation	SOX	Sulfer oxidation cycle enzymes

- 34 **Table S2** Permutational multivariate analysis of variance (PERMANOVA) based on
- 35 Jaccard/Bray-Curtis dissimilarity of overall microbial functional gene structure in

Indox	Jacc	Jaccard dissimilarity			Bray-Curtis dissimilarity		
Index	R^2	F	р	R^2	F	р	
Overall warming	0.117	2.251	0.035*	0.125	2.585	0.022*	
Overall nutrients	0.116	2.286	0.024*	0.127	2.627	0.025*	
Overall nutrients: overall warming	0.151	2.943	0.013*	0.168	3.466	0.01**	
Residual	0.616			0.58			

36 different warming and nutrient-enriched treatments. *: p < 0.05; **: p < 0.01.

Table S3 Permutational multivariate analysis of variance (PERMANOVA) of

38 microbial functional gene structure of the subcategory of C, N, P, and S cycling based

Groups	Jaccard di	ssimilarity	Bray-Curtis dissimilarity		
-	F	р	F	р	
С					
Whole	3.084	0.001**	3.621	0.001**	
Control vs EW	1.381	0.274	0.364	0.243	
Control vs NE	1.575	0.123	1.516	0.116	
Control vs NE and EW	4.535	0.025*	3.772	0.028*	
EW vs NE	1.708	0.032*	1.650	0.027*	
EW vs NE and EW	5.685	0.026*	4.676	0.034*	
NE vs NE and EW	5.996	0.03*	4.954	0.029*	
Ν					
Whole	3.581	0.001**	3.581	0.001**	
Control vs EW	1.355	0.290	1.348	0.315	
Control vs NE	1.479	0.126	1.429	0.113	
Control vs NE and EW	4.551	0.026*	3.774	0.031*	
EW vs NE	1.619	0.028*	1.575	0.029*	
EW vs NE and EW	5.577	0.030*	4.548	0.027*	
NE vs NE and EW	6.206	0.038*	5.048	0.032*	
Р					
Whole	3.442	0.001**	2.975	0.001**	
Control vs EW	1.264	0.369	1.270	0.372	
Control vs NE	1.403	0.200	1.376	0.127	
Control vs NE and EW	4.564	0.031*	3.825	0.031*	
EW vs NE	1.469	0.084*	1.447	0.085*	
EW vs NE and EW	5.348	0.029*	4.473	0.03*	
NE vs NE and EW	5.819	0.023*	4.904	0.031*	
S					
Whole	3.707	0.001**	3.158	0.001**	
Control vs EW	1.527	0.208	1.493	0.181	
Control vs NE	1.614	0.093	1.549	0.088	
Control vs NE and EW	4.641	0.029*	3.859	0.026*	
EW vs NE	1.672	0.027*	1.627	0.032*	
EW vs NE and EW	6.080	0.039*	4.963	0.023*	
NE vs NE and EW	6.287	0.024*	5.136	0.036*	

39	on Jaccard/Bray-Curtis	dissimilarity.	*: <i>p</i> < 0.05;	**: <i>p</i> < 0.01.
			· P · · · · · · · · · · · · · · · · · ·	· P

- 41 **Table S4** Permutational multivariate analysis of variance (PERMANOVA) of
- 42 microbial functional gene structure composed of the 9619 genes under warming and
- 43 nutrient treatments based on Jaccard/Bray-Curtis dissimilarity. *: p < 0.05; **: p <
- 44 0.01.

Groups	Jac dissin	card nilarity	Bray- dissin	Bray-Curtis dissimilarity		
	F	р	F	р		
Whole	6.544	0.001**	9.507	0.001**		
Control vs EW	2.491	0.027*	2.295	0.026*		
Control vs NE	2.495	0.024*	2.265	0.030*		
Control vs NE and EW	16.197	0.027*	10.459	0.032*		
EW vs NE	2.077	0.028*	1.947	0.027*		
EW vs NE and EW	16.941	0.028*	11.154	0.029*		
NE vs NE and EW	18.549	0.025*	11.943	0.024*		

45	Table S5	Water	environmental	properties	s in response	to warming	and nutrient
----	----------	-------	---------------	------------	---------------	------------	--------------

46 enrichment in the shallow-lake mesocosms. The treatments are termed as follows:

47 ambient temperature, unenriched (control); enhanced warming (A2 + 50%),

48 unenriched (EW); ambient temperature, nutrient-enriched (NE); and enhanced

49	warming	(A2 + 50%),	nutrient-enriched	(NE and EW).
----	---------	-------------	-------------------	------------	----

Index	Control	EW	NE	NE and EW
Turbidity	6.53±0.98 ^a	5.25±0.18 ^a	11.63±7.84 ^a	15.33±5.41 ^a
$PO_4^{3-}-P (mg l^{-1})$	0.003 ± 0.0003^{a}	0.003 ± 0.0006^{ac}	0.008 ± 0.001^{b}	0.005 ± 0.001^{ac}
$NO_x - N (mg l^{-1})$	0.071 ± 0.066^{a}	0.0045 ± 0.0006^{a}	3.560 ± 0.218^{b}	2.290 ± 0.689^{b}
DOC (mg l^{-1})	1.52±0.11 ^a	1.44±0.06 ^a	2.42±0.41 ^{ab}	2.76±0.42 ^b
TOC (mg l^{-1})	1.97 ± 0.30^{a}	1.64±0.08 ^a	4.11±1.77 ^{ab}	7.68±2.36 ^b
Chlorophyll a ($\mu g l^{-1}$)	8.35±4.21 ^a	4.77 ± 1.43^{a}	12.68±2.82 ^a	340.48±153.15 ^b

Figure S1 Differences in the microbial metabolic potentials (characterized as the 51 52 relative signal intensity) involved in the biogeochemical cycling processes of carbon 53 (i), nitrogen (ii), phosphorus (iii), and sulfur (iv). The treatments are termed as follows: ambient temperature, unenriched (control); enhanced warming (A2 + 50%), 54 unenriched (EW); ambient temperature, nutrient-enriched (NE); and enhanced 55 56 warming (A2 + 50%), nutrient-enriched (NE and EW). EW: Control (a), NE: Control 57 (b), as well as NE and EW: Control (c) means the metabolic potential differences of EW with control, NE with control, NE and EW with control, respectively. *: p < 0.05. 58

60 Figure S2 Rubisco genes detected in the shallow lake mesocosms. Phylogenetic tree

based on the overall rubisco large-subunit amino acid sequences obtained by GeoChip

- 62 hybridization. Tree topography and evolutionary distance are given by a
- 63 neighbor-joining method (**a**); percentages of different types of rubisco genes (**b**).
- 64 Phylogenetic tree based on the rubisco large-subunit amino acid sequences, which
- 65 differed significantly between the warming and nutrient-enriched treatments (c).

Figure S3 Microbial functional gene structure of the subcategory of C (a), N (b), P
(c), and S (d) cycling in response to warming and nutrients as identified by detrended
correspondence analysis (DCA). The treatments are termed as follows: ambient
temperature, unenriched (control); enhanced warming (A2 + 50%), unenriched (EW);
ambient temperature, nutrient-enriched (NE); and enhanced warming (A2 + 50%),
nutrient-enriched (NE and EW).

Figure S4 Structural dissimilarity of microbial functional genes composing the 9619 74 genes between the different warming and nutrient-enriched treatments and the 75 controls (a: based on Jaccard dissimilarity; b: based on Bray-Curtis dissimilarity). The 76 treatments are termed as follows: ambient temperature, unenriched (control); 77 enhanced warming (A2 + 50%), unenriched (EW); ambient temperature, 78 nutrient-enriched (NE); and enhanced warming (A2 + 50%), nutrient-enriched (NE 79 and EW). EW: Control, NE: Control, and NE and EW: Control mean the structure 80 81 dissimilarity of EW with control, NE with control, NE and EW with control, 82 respectively.

83

84 Figure S5 Spearman's correlations (R values) between transformed environmental and ecosystem metabolic variables and microbial functional

gene structure (Bray-Curtis distance) as determined via Mantel tests (*: p < 0.1; **: p < 0.05).

Figure S7 Bacterial production rates in the warming and nutrient-enriched treatments.

96 The treatments are termed as follows: ambient temperature, unenriched (control);

97 enhanced warming (A2 + 50%), unenriched (EW); ambient temperature,

nutrient-enriched (NE); and enhanced warming (A2 + 50%), nutrient-enriched (NE

and EW). Significant (p < 0.05) differences among treatments are indicated by

100 alphabetic letters above the bars according to post hoc comparisons.