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Climate mediates continental scale patterns
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Abstract

Background: Understanding the large-scale patterns of microbial functional diversity is essential for anticipating
climate change impacts on ecosystems worldwide. However, studies of functional biogeography remain scarce for
microorganisms, especially in freshwater ecosystems. Here we study 15,289 functional genes of stream biofilm
microbes along three elevational gradients in Norway, Spain and China.

Results: We find that alpha diversity declines towards high elevations and assemblage composition shows
increasing turnover with greater elevational distances. These elevational patterns are highly consistent across
mountains, kingdoms and functional categories and exhibit the strongest trends in China due to its largest
environmental gradients. Across mountains, functional gene assemblages differ in alpha diversity and
composition between the mountains in Europe and Asia. Climate, such as mean temperature of the warmest
quarter or mean precipitation of the coldest quarter, is the best predictor of alpha diversity and assemblage
composition at both mountain and continental scales, with local non-climatic predictors gaining more
importance at mountain scale. Under future climate, we project substantial variations in alpha diversity and
assemblage composition across the Eurasian river network, primarily occurring in northern and central regions,
respectively.

Conclusions: We conclude that climate controls microbial functional gene diversity in streams at large spatial
scales; therefore, the underlying ecosystem processes are highly sensitive to climate variations, especially at
high latitudes. This biogeographical framework for microbial functional diversity serves as a baseline to
anticipate ecosystem responses and biogeochemical feedback to ongoing climate change.
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Highlights

1. Functional gene alpha diversity monotonically
declines towards high elevations and assemblage
composition shows increasing turnover with greater
elevational distances, these patterns being
consistent across mountains, kingdoms and
functional gene families.

2. Climate primarily explains the alpha diversity and
compositional changes at mountain and continental
scales, with local non-climatic predictors gaining
more importance at mountain scale.

3. Under future climate scenarios, alpha diversity and
assemblage composition show substantial changes
across Eurasia, especially at mid- and high-latitudes.

Background
Across terrestrial and aquatic habitats, microorganisms
mediate many ecosystem processes [1, 2] crucially linked
to climate through complex interactions and feedbacks
[3]. Gaining insight into the large-scale patterns of micro-
bial diversity is essential for predicting climate change im-
pacts on ecosystems worldwide. The assessment of
biodiversity responses to climate change by functional ap-
proaches can improve the quantitative and predictive
power of ecological research [4]. However, functional bio-
geography remains largely unexplored for microbes [5],
especially in freshwater ecosystems. The increasing avail-
ability of low-cost molecular methods, such as high-
throughput sequencing and gene arrays [6, 7], allows link-
ing microbial assemblages with ecosystem processes and
enables the application of novel functional perspectives to
classic microbial biogeography questions. Among these
questions, elucidating the drivers that underlie the biogeo-
graphical patterns constitutes a key task.
Climate is among the main drivers shaping large-scale

gradients in microbial diversity. For instance, temperature
has been shown to drive the latitudinal gradient in diversity
of planktonic marine bacteria [8] or the continental scale
gradients in diversity and assemblage composition of func-
tional genes involved in denitrification and nitrogen fixation
across forest soils [9, 10]. Moreover, microbial functional
gene diversity and composition can respond rapidly under
warming and cooling scenarios, as demonstrated by experi-
ments on soils [11, 12]. These findings are framed in the
metabolic theory of ecology [13], and thus higher mutation
and speciation rates are expected towards warmer areas in
accordance with the kinetics of biological processes. Fur-
thermore, precipitation can also drive large-scale gradients
in microbial diversity by constraining above ground vegeta-
tion and soil moisture across bioclimatic zones [14, 15].
Nevertheless, the role of climate in shaping microbial func-
tional diversity patterns remains scarcely addressed at large
scales for a wide range of functional genes. This is especially

true for freshwaters, the most threatened ecosystems on
Earth [16], where studies over small spatial scales have
demonstrated temperature to drive microbial diversity and
composition in lakes [17] and streams [18], as well as to be
positively related to functional diversity of biofilm bacteria
in streams [19]. Meanwhile, the relationship between pre-
cipitation and freshwater microbial assemblages has been
understudied although, for instance, rainfall seasonality is
linked to functional diversity of stream biofilms [20]. At
large geographical scales, precipitation may impact lake mi-
crobial assemblages as climate change-related phenomena
are altering the nitrogen and phosphorus contents of water
rainfall [21].
Here, we provide evidence from three mountainsides

across Eurasia (Additional file 1: Figure S1) for climate to
mediate large-scale gradients in stream microbial functional
gene diversity. Firstly, we reveal the biogeographical pat-
terns of functional diversity within and across mountain-
sides. We secondly determine the role of climatic and local
non-climatic predictors, i.e. in situ abiotic conditions, in
shaping such patterns. Finally, based on the anticipated link
between functional diversity and climate [9, 10, 22, 23], we
perform predictive models [24] to project the changes in
functional diversity under future climate scenarios [25]
across the Eurasian river network. Towards these aims, we
focus on microbial functional genes from kingdoms ar-
chaea, bacteria and fungi which are involved in the cycling
of carbon (C), nitrogen (N), phosphorus (P) and sulphur (S)
as well as in stress-related processes (St). The metabolic po-
tential of these functional genes was assessed by the DNA-
based gene array GeoChip 4.0 [7], which contains approxi-
mately 82,000 probes and covers 141,995 gene sequences
from 410 functional gene families. In total, we detected 15,
289 functional genes linked to 88 functional gene families
(Additional file 1: Table S1) included in these five func-
tional categories (C, N, P, S and St). Microbial functional
genes are ideal candidates for biodiversity projections under
future climates as they meet two essential requirements of
spatial distribution modelling [26], such as a high equilib-
rium with the environment because of their rapid response
to changing conditions [11, 12], and the relatively high dis-
persal capacity reported for microbes [27]. Moreover, litera-
ture indicates the utility in using elevational gradients for
anticipating biodiversity responses to climate change over
large geographical extents [28]. Our study constitutes a re-
markable contribution to the emerging field of functional
biogeography [5], as most previous studies examined the
large-scale patterns of microbial diversity from taxonomic
or phylogenetic perspectives [8, 29].

Results and discussion
Within mountains, functional gene alpha diversity
presented a significant (linear model, LM; P < 0.05)
monotonic decline towards high elevations (Fig. 1a,
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Additional file 1: Table S2) and assemblage compos-
ition showed a significant (P < 0.05) increase in turn-
over with greater elevational distances (Fig. 1b,

Additional file 1: Table S2). These patterns were
highly consistent across mountains and kingdoms
and, interestingly, concur with recent reports showing

Fig. 1 Responses of functional gene alpha diversity and compositional turnover to elevation. The relationships between Shannon diversity and
elevation (a, c) were examined by linear models, and the model significances were determined with F-statistics (P < 0.05). For kingdoms (a), we
considered linear and quadratic terms and selected the best models, i.e. those that minimized the corrected Akaike’s information criterion. The
adjusted R2 values were 0.394, 0.181 and 0.672 for archaea, 0.346, 0.394 and 0.829 for bacteria, and 0.428, 0.346 and 0.844 for fungi, in Norway, Spain
and China, respectively. The relationships between Bray-Curtis dissimilarity and elevational Euclidean distance (b, d) were calculated by linear models,
and the model significances were obtained by a Mantel test (1000 permutations, P < 0.05). For kingdoms (b), the Pearson r values were 0.212, 0.361
and 0.643 for archaea, 0.199, 0.28 and 0.700 for bacteria and 0.283, 0.25 and 0.692 for fungi, in Norway, Spain and China, respectively. Across functional
categories, we show the slope values from LMs assessing the gene family alpha diversity-elevation relationships (c) and the gene family compositional
turnover-elevational distance relationships (d). For kingdoms (a, b), significant and non-significant models are shown as solid and dashed lines,
respectively. The violin boxplots for the Shannon diversity (c) and Bray-Curtis dissimilarity (d) depict the median and the first and the third quartiles of
the slopes of the gene families with significant (P < 0.05) models. Across functional categories, differences among mountains in the model slopes for
the Shannon diversity (c) and Bray-Curtis dissimilarity (d) were examined with a Bonferroni-corrected pairwise t-test (P < 0.05) and are indicated with
the symbols + and ▲. The elevation (a) and elevational distances (b) are shown as raw data for visualization purposes (z-transformed for the analyses).
C, carbon; N, nitrogen; P, phosphorus; S, sulphur; NO, Norway; SP, Spain; CH, China. Details on the models can be found in methods
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that tree functional diversity declines with elevation
in forests worldwide [22]. The uniformity in our alpha
diversity gradients contrasts with the variety of eleva-
tional trends reported for microorganisms on taxo-
nomic or phylogenetic approaches in both soil [30]
and freshwater [31] environments. For instance, spe-
cies richness of stream bacteria showed hump-shaped,
monotonically increasing and U-shaped patterns on
the same mountainsides in Norway, Spain and China,
respectively [31]. Such disparities between microbial
taxonomic and functional diversities are an interesting
phenomenon likely caused by functional redundancy
which seems an inevitable outcome in open microbial
systems where diversity is not limited by low immi-
gration rates [32]. Meanwhile, the consistency in our
compositional turnover gradients agrees with the gen-
eral spatial distance-decay patterns documented for
microbial taxonomic composition [33] and with the
elevational distance-decay patterns observed for mi-
crobial functional gene assemblages in soils [34].
When scaling down to functional gene families, most
of them also showed a significant (LM; P < 0.05) de-
cline in alpha diversity with elevation (Fig. 1c, Add-
itional file 1: Figure S2a), and this pattern was
congruent across the three mountains for 58% of all
families (51 out of 88). Taken together, these findings
highlight a general response of stream microbial func-
tional diversity to elevation across mountains, king-
doms and functional gene families.
Despite the remarkable congruency in our elevational

patterns, the mountain in China showed the strongest
trends for both functional gene alpha diversity and as-
semblage composition. Such a finding was consistent
across kingdoms and functional gene families. For in-
stance, regarding gene families, China showed the high-
est proportion of significant (P < 0.05) and the strongest
(Bonferroni-pairwise t-test; P < 0.05) elevational gradi-
ents in alpha diversity and composition (Fig. 1c, d and
Additional file 1: Figures S2a and S2b). These cross-
mountain variations in the elevational trends might be
related to distinct functional gene regional pools and lat-
itudes [35] as the tropospheric temperature lapse rate
decreases from the equator to the poles [36]. Beyond the
differences in slope steepness of our diversity gradients,
the high congruency in the elevational trends both
across kingdoms and gene families constitutes an inter-
esting finding. For instance, the cross-family consistency
in the elevational trends suggests that the microbial-
mediated stream processes related to biogeochemical
cycling and stress are constrained by similar driving
forces.
Across mountains, functional gene assemblages exhib-

ited continental scale patterns and regional differences
on the overall gene pool were detected in alpha diversity

(analysis of variance, ANOVA; P = 0.001; Additional file
1: Table S3) and assemblage composition (permutational
analysis of variance; R2 = 0.387, P = 0.001; Table S3).
The streams in China showed the highest mean alpha
diversity (Bonferroni-corrected pairwise t-test; P < 0.05;
Additional file 1: Table S3) as well as the most different
composition (Additional file 1: Table S3 and Fig. S3a)
for the overall functional gene pool, such a result being
consistent across the three kingdoms. These findings ex-
pand the large-scale gradients in functional diversity
documented for both macro- [22] and microorganisms
[6, 9, 10] from the terrestrial to the freshwater realm
and, namely for microbial functional gene diversity, from
genes linked to denitrification [9] and nitrogen fixation
[10] to genes involved in other biogeochemical cycles
(e.g. C, P and S) and St-related processes.
To elucidate the drivers shaping our functional diversity

gradients, we examined a set of 19 climatic predictors com-
prising the average conditions for years 1960–1990 and 11
local non-climatic predictors reported as important drivers
of microbial diversity [37, 38] (see “Methods” for details).
Regarding alpha diversity, we found that mean temperature
of the warmest quarter (TWQ) was the most important
predictor at both continental and mountain scales, revealed
by hierarchical partitioning [39] (HP; Fig. 2a), LMs
(Additional file 1: Table S4) and random forest [40] (RF;
Additional file 1: Figure S4a). Such a finding is in line with
the biological importance of the growing season condi-
tions in mountains [41]. Importantly, the alpha diversity
response to the TWQ at continental scale was consistent
across mountains; that is, such a response was not affected
by site location (TWQ, P < 0.001; latitude, P = 0.109;
TWQ × latitude, P = 0.573). Such a positive relationship
between temperature and stream microbial diversity have
been also reported using taxonomic approaches, e.g. in a
recent study on streams from the Rocky Mountains [18].
In accordance with the metabolic theory of ecology [13],
this large-scale temperature dependence of functional di-
versity could be associated with increasing mutation and
speciation rates towards warmer areas [8–10]. This result
may be also compatible with the energy hypothesis, which
proposes that higher diversity coexists with higher avail-
able energy [42]. The consistent relationships between ele-
vation and alpha diversity for most of the functional gene
families further suggest a general temperature dependence
for multiple stream processes. This finding was especially
noticeable for families associated with stress processes
(Additional file 1: Figure S5a) and highlights the need for
future research on temperature dependence to consider a
wider range of ecosystem processes in addition to mere C-
cycling [43].
Regarding assemblage composition, temperature-

related variables constituted the best predictors at
mountain scale (Fig. 2c; Additional file 1: Table S4).
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This result is in line with previous studies on terres-
trial habitats, which show changes in functional gene
composition across temperature gradients [9, 10].

Across mountains, however, mean precipitation of the
coldest quarter (PCQ) was consistently retained as the
best continental scale predictor in HP (Fig. 2c), LMs

Fig. 2 Relative contributions of climatic and local non-climatic predictors in shaping the functional gene alpha diversity and assemblage
composition. The independent effects of the selected predictors on the Shannon diversity (a) and assemblage composition (c) were examined by
hierarchical partitioning, and their significance (P < 0.05) was tested through a 1000 randomization-based procedure. The R2 and P values above
the plots in (a) and (c) were calculated by linear models. The variances in Shannon diversity (b) and assemblage composition (d) associated with
the climatic and local non-climatic predictors were obtained using variation partitioning, based on adjusted R2 and significances tested with
analysis of variance. As local predictors were not selected in Spain, the variance associated with climatic predictors was determined through
linear models for the Shannon diversity and a Mantel test (1000 permutations) for the assemblage composition, with test significance based on F-
statistic and Pearson r value, respectively. The significance levels in the variation partitioning are indicated by *P < 0.05, **P < 0.01, ***P < 0.001.
The assemblage composition was estimated using first axis coordinates from principal coordinate analysis (PCoA) based on Bray-Curtis
dissimilarity matrices (see Fig. S3 in Additional file 1 for details on the axis-explained variance). Green and yellow bars represent climatic and non-
climatic local predictors, respectively. Details on predictor selection are presented in “Methods” and in Additional file 1 (Fig. S14). TWQ, mean
temperature of the warmest quarter; TAP, total annual precipitation; PCQ, mean precipitation of the coldest quarter; TAR, temperature annual
range; IST, isothermality (relationship between air temperature diurnal and annual ranges); TSE, temperature seasonality; Chl-a, chorophyll-a;
Cveloc, current velocity; Shad, shading; TN, total nitrogen
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(Additional file 1: Table S4), generalized dissimilarity
models [44] (GDMs; Additional file 1: Figure S6a) and RF
(Additional file 1: Figure S4b). The PCQ, i.e. winter precipi-
tation, mediates the hydrology in high mountains through
the accumulation of snow, consequently affecting local fac-
tors shaping the spatial patterns of stream microbial assem-
blages [31, 45, 46]. However, the high predictive power of
the PCQ only at continental scale suggests a link between
this factor and functional gene composition via hydrological
mechanisms and agrees with the importance of precipita-
tion when the spatial scale spans multiple biomes [47].
Such a finding was further supported by the effect of site lo-
cations on assemblage composition (LM; PCQ, P < 0.001;
latitude, P < 0.001, PCQ × latitude, P = 0.183). These re-
sults agree with previous observational and experimental
studies in soils, which show precipitation to be a large-scale
driver of microbial assemblage composition by constraining
vegetation types across biomes [14, 15].
Compared to climate, local non-climatic predictors ex-

plained a lower amount of geographical variation in
alpha diversity and assemblage composition at both
mountain and continental scales, with local non-climatic
predictors gaining more importance at mountain scale
as revealed by various statistical methods, such as vari-
ation partitioning (Fig. 2b, d). These results contrast
with the importance of local non-climatic factors, such
as nutrients or pH, in shaping freshwater microbial taxo-
nomic diversity [48]. It suggests different driving forces
for microbial taxonomic and functional gene diversities,
which is in line with the decoupling observed between
taxonomy and function in microbial systems [32]. For
example, no local predictor was consistently meaningful
for alpha diversity at neither continental nor mountain
scales under the HP and LM analyses (Fig. 2a; Add-
itional file 1: Table S4). Regarding composition, only
total nitrogen was identified as a significant driver in
China. Interestingly, nitrogen availability has been shown
to elicit changes in microbial assemblage composition,
but not in alpha diversity, under elevated nutrient inputs
in a global experiment on grasslands [49]. Other poten-
tially important predictors of freshwater microbial diver-
sity, such as those informing about carbon availability
[48], may also play a role. For instance, dissolved organic
matter poorly predicts taxonomic elevational diversity
and the biogeography of freshwater bacteria [31, 50], but
is associated with bacterial trait structure over large
spatial scales as a response to the terrestrial influence
gradient in a continuum of small streams to large lakes
[50]. We therefore encourage further studies to assess
the role of carbon availability in explaining functional
gene diversity of stream microbes.
Collinearity between climatic and local non-climatic

predictors is frequent for elevational gradients. By in-
cluding three different mountainsides, we could test the

role of all local non-climatic predictors across different
models, either based on individual mountains or the
overall dataset, and found climatic predictors to primar-
ily mediate both alpha diversity and assemblage compos-
ition (see RF results on all predictors included in the full
models at Additional file 1: Figure S7). For instance,
among all local non-climatic predictors, only conductiv-
ity was revealed as a candidate to importantly drive
alpha diversity when the entire dataset was analysed (see
RF results prior to the removal of highly correlated pre-
dictors at Additional file 1: Figure S8). However, when
each mountain was analysed separately, alpha diversity
showed a significant and cross-mountain consistent re-
sponse only to TWQ (LM; P < 0.05 for all mountains;
Additional file 1: Figure S9), but not to conductivity
(LM; P = 0.732 for Norway; Additional file 1: Figure S9)
or other relevant local non-climatic predictors (Add-
itional file 1: Fig. S9). Furthermore, we assessed all pos-
sible models including either the best climatic predictors
or conductivity and their respective interactions with
latitude to control for cross-mountain consistency and
found that best models based on Akaike weights [51]
were those containing the climatic predictors and the
interaction with latitude (weight = 0.725 for alpha diver-
sity; weight = 1.000 for assemblage composition; Add-
itional file 1: Table S5). Despite these evidences, we
encourage further complementary manipulative experi-
ments [28] to elucidate how functional gene diversity re-
sponse to those local non-climatic predictors that covary
or interact with climate, such as conductivity or nutrient
loads [52]. Collectively, our findings show climate to me-
diate overall functional gene diversity in freshwater eco-
systems as large spatial scale, suggesting that ongoing
climate change can affect stream processes worldwide.
Given that elevational gradients offer excellent possi-

bilities to conduct natural experiments for assessing cli-
mate change impacts [28], we employed LMs and GDMs
to project the trends of alpha diversity and assemblage
composition, respectively, under future climate scenarios
(period 2061–2080) across the Eurasian river network.
We selected three scenarios from the Fifth Assessment
Report of the Intergovernmental Panel on Climate
Change [25]. They are based on the representative con-
centration pathways (RCP) 2.6, 4.5 and 8.5 and
symbolize the most “optimistic”, one intermediate and
the most “pessimistic” expectations of greenhouse emis-
sion rates, respectively, by the end of this century [53].
For modelling, we combined together the TWQ and
PCQ as predictors, i.e. the variables that best explained
the continental scale gradients in overall alpha diversity
and assemblage composition, respectively. These predic-
tors jointly explained a large amount of variance for both
overall alpha diversity (LMs; R2 = 0.543; P < 0.001) and
composition (GDMs; D2 = 65.6%; P < 0.001; Additional

Picazo et al. Microbiome            (2020) 8:92 Page 6 of 14



file 1: Figure S6b). Our projections show a general in-
crease in alpha diversity (Fig. 3a, Additional file 1: Figure
S10) and elevated compositional turnover rates (Fig. 3b,
Additional file 1: Figure S11) as a response to future cli-
mates. Compared to the baseline, the median increase in
alpha diversity and the median turnover rates were pre-
dicted to be 11.0% and 29.6%, respectively, under the

moderate RCP 4.5 scenario (Fig. 3c, e). Across kingdoms,
i.e. archaea, bacteria and fungi, the changes in alpha di-
versity and composition followed similar trends, but sig-
nificant differences in their magnitude (Additional file 1:
Figure S12). Fungal functional genes showed the highest
projected increase in alpha diversity, while bacteria
accounted for the greatest changes in composition

Fig. 3 Projected changes across the Eurasian river network in functional gene alpha diversity and assemblage composition under future climate
scenarios. The relative increase in Shannon diversity assuming the moderate emission scenario RCP 4.5 (a, map) and the relative increase in
Shannon diversity averaged by latitude for the three emission scenarios (a, line plot) were calculated by linear models using temperature of the
warmest quarter (TWQ) and precipitation of the coldest quarter (PCQ) as predictors (R2 = 0.543; P < 0.001). The turnover rates assuming the
moderate emission scenario RCP 4.5 (b, map) and the turnover rates averaged by latitude for the three scenarios (b, line plot) were calculated
using generalized dissimilarity models with the TWQ and PCQ as predictors on Bray-Curtis dissimilarity matrices (D2 = 65.6%; P < 0.001). The violin
boxplots show the median and the first and the third quartiles for the relative increase in Shannon diversity (c) and the turnover rate (e) on the
overall gene pool and for the mean relative change in Shannon diversity (d) and the mean turnover rate (f) on every gene family pool, grouped
into functional categories. Pairwise differences across functional categories regarding the relative change in the Shannon diversity (d) and
turnover rates (f) were examined by a Bonferroni-corrected pairwise t-test (P < 0.05) post hoc analyses and are indicated with the symbols +, ▲
and △. Light and dark grey areas in maps depict the climate envelope covered by and extrapolated from the in situ data, respectively, in terms of
TWQ and PCQ. C, carbon; N, nitrogen; P, phosphorus; S: sulphur; St, stress
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(Additional file 1: Figure S12). Such a finding indicates
cross-kingdom variations in the magnitude of functional
diversity response to climate change, which constitutes a
significant step beyond previous reports on taxonomic
approaches which show distinct biogeographical patterns
and responses to nutrient availability for archaea, bacteria
and fungi [50, 54]. Interestingly, the projected changes
showed highly congruent trends across functional gene
families (Fig. 3d, f). These results are consistent with the
rapid response documented for macro- and microbial
genes under climate change experiments [12, 55] and sug-
gest that temperature and precipitation changes may
strongly influence functional gene assemblages mediating
multiple ecosystem processes, likely producing biogeo-
chemical feedbacks to the climate [56, 57].
Across Eurasia, the largest increase in alpha diversity

will occur in regions North of 60° N, while assemblage
composition will mainly shift between 45° and 75° N.
These projections show for the first time the highest
sensitivity of northern regions to functional diversity
changes affecting multiple stream processes, such as bio-
geochemical cycling. Despite no previous studies have
anticipated the future trends of microbial functional di-
versity, neither in terrestrial nor freshwater ecosystems,
there are interesting reports about plant traits and cer-
tain ecosystem functions [58, 59]. For instance,
temperature sensitivity of soil respiration is predicted to
mainly increase with warming at high latitudes by affect-
ing microbial assemblage compositions [59].
The predicted changes can be further visualized

through the lens of key biogeochemical processes medi-
ated by gene families that showed a consistent alpha di-
versity response to elevation. Such a response was
especially evident for gene families associated with the
decomposition of recalcitrant C, such as chitin, aro-
matics and lignin (Additional file 1: Figure S13). This
finding suggests an increase in CO2 emissions through
the stimulation of old recalcitrant C upstream and
northward, likely producing a positive feedback to global
warming [12]. In addition, all gene families linked to de-
nitrification exhibited a similar alpha diversity response
to elevation (Additional file 1: Figure S13). This finding
suggests accelerated rates of nitrification with global
warming that could increase anthropogenic emissions of
N2O, a potent greenhouse gas contributing to climate
change and stratospheric ozone destruction [60]. Other
gene families associated with essential processes, such as
nitrogen fixation, assimilatory nitrogen reduction and ni-
trification, also showed a consistent decline in alpha di-
versity upstream, therefore suggesting a high sensitivity
of these processes towards climate change.
Although we here show a big picture on the large-

scale functional implications of microbial diversity
changes, two major caveats could be acknowledged

regarding the spatial modelling framework. First, our
projections comprise considerable extrapolated areas
due to the relatively limited climate gradient covered by
the studied mountains. Further studies are encouraged
to broaden the climate envelope by including additional
elevational gradients. Second, our modelling informs on
the variance in functional gene alpha diversity and as-
semblage composition exclusively linked to climatic pre-
dictors while it does not consider local- and landscape-
level predictors. The reasons behind this strategy are
mainly connected to the primary role of climate in driv-
ing large-scale microbial functional diversity as shown
by our study and previous reports [9, 10] and also to the
availability of future scenarios for climate but not for
local variables. In this sense, the employed climate data
set is the best one currently available for large-spatial
scales and remote areas where there is no locally mea-
sured climatic data accessible. Despite our approach
shows clear trends of increasing diversity and compos-
itional change under future climate scenarios, there are
uncertainties related to the exact magnitude of such
changes which should be adjusted when more sophisti-
cated current and future climate data become available
[61, 62]. This recommendation is especially applicable to
compositional change because of the uncertainty associ-
ated with interpolated precipitation provided by the cli-
mate gridded dataset [63]. We note, however, that local
physicochemical predictors vary within and among
streams due to geological origins, climate variations,
hydrological factors or anthropogenic disturbances, and
have been demonstrated, together with landscape pos-
ition, of substantial importance for microbial taxonomic
diversity [64–66]. Although the inclusion of key local
predictors will surely increase the accuracy of biodiver-
sity projections under future climate scenarios, it cur-
rently constitutes a great challenge for large-scale
studies. By assessing climate change effects on biodiver-
sity from elevational gradients to large geographical ex-
tents and bearing in mind that the conclusions of our
approach are subjected to the mentioned caveats, we
here present a novel spatial exercise based on “elevation-
for-latitude” substitution to provide the first general
overview of climate change impacts on microbial func-
tional diversity at the Eurasian scale.

Conclusions
In summary, our results demonstrate how climate con-
strains microbial functional diversity in lotic fresh waters
and contribute to a better understanding of ecosystem
responses to climate change. Warming and altered pre-
cipitation regimes under future climate will affect alpha
diversity and lead to compositional turnover, these phe-
nomena being especially evident in mid- and high-
latitude regions across Eurasia. The predicted changes
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indicate a functional response of microorganisms linked
to crucial biogeochemical processes, such as nutrient
cycling, organic matter decomposition and greenhouse
gas emissions, and anticipate biogeochemical feedback
to ongoing climate change. Taken together, our findings
serve as a baseline for estimating climate change impacts
on stream processes through the study of microbial
functional gene assemblages. We finally recommend fur-
ther tests based on metatranscriptomics, metaproteo-
mics and metabolomics approaches to support the
validity of such findings and encourage future research
to include field observations covering wider climate gra-
dients and manipulative experiments across ecosystems
and biogeochemical cycles, especially focusing on fresh
waters and other nutrients in addition to carbon.

Methods
Biological sampling
To span a wide climate gradient across Eurasia, we se-
lected 52 stream sites located along three mountainsides
from the subarctic, Mediterranean and subtropical re-
gions (Additional file 1: Figure S1). For the subarctic re-
gion, we sampled the Bálggesvárri mountain in the
Lyngen Alps Landscape Protected Area (Norway). This
area presents a collection of glaciers and rocky peaks
reaching a maximum elevation of 1833 m.a.s.l. For the
Mediterranean region, samples were collected in Aigües-
tortes and Estany de Sant Maurici National Park. This
area is known by its extensive set of glacial lakes located
in the Pyrenees (Spain), a massive mountain range with
its highest altitude reaching 3404 m.a.s.l. For the sub-
tropical region, we selected the Laojun Mountain Na-
tional Park, which is located at the junction of the
Tibetan and Yungui Plateaus (China). This area presents
a maximum elevation of 4513 m.a.s.l. and harbours typ-
ical mountain streams which, below 1800 m.a.s.l., turn
into a deep, slowly discharging large river (Jinsha River,
Upper Yangtze River). All these areas represent a land-
scape dominated by mixed evergreen and deciduous for-
ests in lowlands, shrubs and grasses above the tree-line
and bare rock peaks. Because landscape position has
been reported of substantial importance for microbial
taxonomic diversity [66–68], we selected for sampling
only first, second at most, order streams to minimize the
influence of such an additional confounding factor. De-
tailed information on the fieldwork procedures are de-
scribed in Wang et al. [31]. In short, the sampling sites
were evenly spaced according to elevation and ranged
from 18 to 771m.a.s.l. in Bálggesvárri (n = 17), from 850
to 2500 m.a.s.l. in the Pyrenees (n = 17), and from 1828
to 4045m.a.s.l. in Laojun (n = 18). Fieldwork was carried
out in Autumn 2009 in China and Summer and Autumn
2012 in Norway and Spain, respectively. We started the
sampling from the highest elevation and ended in the

lowest parts of the streams, where the elevation stopped
varying substantially. Based on stream width, five to ten
cross sections were established at each location. Along
the transects, we randomly selected 10 stones from rif-
fle/run habitats and collected biofilm subsamples from
the surface of each stone by scraping off a 9-cm2 area
using a sterilized sponge. Subsamples were then pooled
into a composite sample for each site and immediately
frozen at − 18 °C.

Environmental data
We collected data on latitude, longitude and elevation as
well as 11 spatial and physicochemical variables in situ
or in the laboratory for each site (Additional file 1: Table
S6) following the methods described in Wang et al. [31].
Briefly, the latitude, longitude and altitude were taken
using a GPS unit. Shading (% of canopy cover) was esti-
mated from 10 locations in evenly spaced perpendicular
transects that covered the whole study stretch. The
water depth, current velocity, width and substratum
grain size were obtained from 10 random locations
within the same transects. We also measured the water
temperature, conductivity and pH at each site. In the la-
boratory, we analysed chlorophyll-a by the 90% acetone
extraction method [69] as well as total nitrogen and total
phosphorus by peroxodisulphate oxidation and the spec-
trophotometry method [70], respectively. For Bálggesvárri
Mountain, total nitrogen data were not available because
the concentration level did not reach the minimum detec-
tion threshold required for the method employed. Add-
itionally, we extracted 19 climatic variables with a spatial
resolution of 30 arc seconds (~ 1 km) from WorldClim
v.1.4. (www.worldclim.org/current) for each site. This in-
formation is based on interpolated climate station data
and represents the average conditions for years 1960–
1990 [71] and constitutes the best climatic dataset cur-
rently available for large-spatial scales and remote zones
where locally measured climatic data are not accessible.

GeoChip procedures
We measured functional gene diversity and composition
by applying GeoChip 4.0, a highly comprehensive (~ 82,
000 probes covering 141,995 coding sequences) func-
tional gene array widely used in biogeochemical, eco-
logical and environmental analyses [7] because of its
high optimization. GeoChip method presents several ad-
vantages compared to open-format technologies (e.g.
metatranscriptomics, metaproteomics and metabolo-
mics), such as high throughput, low detection limits,
high reproducibility and potential for quantification, en-
abling a rapid performance with good correlations be-
tween target DNA concentrations and hybridization
signal intensities [72]. Microbial DNA was extracted
from the biofilm samples using the phenol chloroform
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method [73] and purified using the QIAquick Gel Ex-
traction Kit (QIAGEN Sciences, Germantown, MD,
USA). The purified DNA was then quantified with a
PicoGreen Kit (Eugene, OR, USA) and used for the Geo-
Chip 4.0 hybridization. The DNA from each sample
(500 ng) was labelled with the fluorescent dye Cy-3 (GE
Healthcare, California, USA) by random priming [74].
The DNA was purified as explained above and dried in a
SpeedVac (Thermo Savant, New York, USA). Then, each
dried and labelled DNA sample was resuspended in
42 μL of hybridization solution. This solution consisted
of 1× HI-RPM hybridization buffer, 1× comparative gen-
ome hybridization blocking agent, 0.05 μg μL−1 Cot-1
DNA, 10 pM universal standard and 10% formamide
(final concentrations). The solution was later denatured
by remaining at 95 °C for 3 min. To remove the bubbles
created during the denaturation process, the conditions
were maintained at 37 °C for 30 min. The hybridizations
were carried out at 67 °C for 24 h. Finally, the scanned
images of the GeoChip hybridizations were obtained and
converted by means of the Agilent Feature Extraction
11.5 software (Agilent Technologies, California, USA).
For GeoChip data analyses, we employed signal
intensity-based matrices as variation in functional gene
abundances has an effect on diversity metrics and can
also inform itself about environmental change [12]. The
signal intensities were quantified and processed based
on previous pipelines [74] as follows: (i) removing
probes with a signal-to-noise ratio of less than 2.0; (ii)
normalizing the signal intensity of each probe by divid-
ing the total signal intensity of a sample and multiplying
by a constant;( iii) removing singletons, i.e. genes de-
tected only once on each mountain; and (iv) selecting
those genes involved in the carbon (C), nitrogen (N),
phosphorus (P) and sulphur (S) cycles and stress-related
(St) processes.

Mountain and continental scale patterns
Microbial functional genes are hierarchically organized,
i.e. they are included in 88 functional gene families
which are in turn grouped into five functional categories.
Thus, alpha diversity and assemblage composition dis-
similarity were calculated based on these two hierarch-
ical levels. Firstly, we considered functional gene
assemblages for the three kingdoms at the sampling site
level which included all functional genes irrespective of
their functional gene family and their functional cat-
egory. Secondly, we repeated the procedure by grouping
the functional genes into functional gene families. Then,
we calculated the diversity and compositional dissimilar-
ities of these functional gene assemblages. Given that
various diversity metrics, such as observed richness,
Chao1 estimated richness, Shannon-Wiener index,
Simpson index and Inverse Simpson index, showed high

correlations with each other (Pearson, r > 0.97 in all
cases), we thus finally used alpha diversity based on the
Shannon-Wiener index (base = exp(1)) because it is per-
haps the most commonly employed diversity index in
ecological research [75] and combines species richness
(that is, functional gene richness in our case) and abun-
dances (that is, signal intensities). For a more intuitive
interpretation of diversity, we used true diversity, i.e. the
effective number of attributes derived from the
exponent-transformed Shannon entropy [76]. Cross-site
and cross-mountain differences in functional gene com-
positions (referred as turnover [77] in our study) were
evaluated by Bray-Curtis dissimilarity, which accounts
for the variation in assemblage structure due to changes
in identities and abundances. We considered this meas-
ure of beta diversity because we chose to use quantita-
tive data (i.e. signal intensities) given the importance of
abundance for ecosystem functioning [78] and to ex-
clude joint absences as this is an appropriate strategy for
analysing communities along environmental gradients
[77]. We log-transformed signal intensities in all cases to
emphasize the role of less-abundant genes as rare items
can be essential in terms of ecosystem functioning [79].
Across mountains, we tested for overall and pairwise dif-
ferences in mean alpha diversity by ANOVA and
Bonferroni-corrected t-tests, respectively. Global and
pairwise differences in assemblage composition were
assessed by PERMANOVA (1000 permutations), with
Bonferroni-adjusted P values in pairwise comparisons.
Both analyses were performed on the overall functional
gene pool as well as on functional genes grouped into
kingdoms and functional categories (i.e. C, N, P, S and
St). Within mountains, the elevational gradients in alpha
diversity and composition were examined on functional
gene assemblages grouped into kingdoms and functional
gene families (grouped by functional categories). For bet-
ter comparison of model coefficients, elevation was z-
standardized. The relationships between alpha diversity
and elevation were tested by LMs, and the significance
was determined by F-statistics. For kingdoms, we tested
models including linear and quadratic terms. When both
models were significant (P < 0.05) and significantly dif-
ferent (ANOVA; P < 0.05), we selected as the best model
the one that minimized the Akaike’s information criter-
ion adjusted for small sample size (AICc). For gene fam-
ilies, we considered only linear relationships as the alpha
diversity-elevation relationships were estimated through
model slope values. The relationships between assem-
blage dissimilarity and elevational Euclidean distances
were examined by LMs for both kingdoms and func-
tional gene families, with their significance determined
by the Mantel test (Pearson correlations, 1000 permuta-
tions). Pairwise comparisons of mean slopes from LMs
assessing the alpha diversity and compositional turnover
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response to elevation across functional gene families
were tested by Bonferroni-corrected t-tests. For this
analysis, gene families were grouped into functional
categories and pairwise differences checked firstly
with and secondly without accounting for the moun-
tain. Because spatial patterns are most likely weak for
those gene families containing low richness of func-
tional genes, they were classified into richness-based
quartiles and those within the lower quartile were ex-
cluded from the analyses. Finally, we examined the
elevational patterns for 88 gene families (their distri-
bution across the 5 targeted functional categories can
be seen at Additional file 1: Table S1).

Pre-selection of climatic and local non-climatic predictors
To elucidate the drivers shaping the continental and
mountain scale gradients in diversity and assemblage
composition, we firstly selected ecologically relevant pre-
dictors that minimized collinearity to be included in the
analyses. Prior to the initial selection, we ranked the in-
dividual influence of all predictors on alpha diversity and
assemblage composition by RF analyses [80]. We then
included in further analyses the best ranked predictors
that were not strongly correlated with the others (Pear-
son; r < 0.7; Additional file 1: Figure S14) prioritizing
those predictors with a clear influence on freshwater mi-
crobial diversity at high elevations [41], such as those re-
lated to the growing season conditions, i.e. linked to the
kinetics of biological processes, and the winter precipita-
tion, i.e. mediating the hydrology in mountains through
snow accumulation. This procedure, as well as the ana-
lyses themselves (see below), were applied to each data-
set, i.e. all sites and the sites from individual mountains,
on the overall functional gene assemblages.

Drivers underlying the biogeographical patterns
In order to get a comprehensive picture on how climatic
and local non-climatic predictors contribute to the alpha
diversity gradients, we employed an approach based on
multiple statistical methods, including the HP, LMs and
RFs. The combination of the HP and LMs provides robust
evidence for meaningful predictors when both methods
retain the same variables, and minimizes the probability of
spurious results due to multicollinearity [39].
First, we used a multi-model approach to select the

candidate model by running LMs on the full models
(those containing all potential combinations of pre-
selected single predictors) with alpha diversity as re-
sponse variable. The models were ranked according to
their AICc values and those with minimum AICc were
chosen as candidate models. These models were further
checked for spatial autocorrelation by Moran’s tests [81]
and validated by visually checking their residuals for
normality and homoscedasticity [82].

Second, we perform the HP, LM and RF analyses to
evaluate the relationships between the predictors in-
cluded in the candidate model and the response variable.
For the HP analyses, the significance of the independent
effects on the response variable was tested through a
1000 randomization-based procedure [39]. For LMs, we
z-standardized the predictors in order to better compare
the coefficients within models. For all RFs (see also
above), we set 3000 as the number of trees, and the
number of predictors used in each split was one third of
the included predictors; those variables showing negative
or zero importance values were considered not predict-
ive [80]. For better comparison of the relative contribu-
tions of predictors, we transformed the variable
importance scores into percentages relative to the sum
of the importance values. To assess how predictors con-
tributed to assemblage composition, we followed the
same procedure employed for alpha diversity but using
as a response variable the first axis coordinates from
principal coordinate analysis (PCoA; Additional file 1:
Figure S3). When assessing the cross-mountain gradient
in composition, this procedure was further supported by
GDMs, which predict spatial variation in assemblage
composition between site pairs by modelling the re-
sponse of biological dissimilarity matrices to environ-
mental predictors. We run GDMs, plotted the I-splines
for each predictor and obtained the impact of all individ-
ual predictors on the response dissimilarities (estimated
as the variance explained by each predictor when the
rest were kept constant). The uncertainty in the fitted I-
splines was checked by plotting I-splines with error
bands from 100 interactions-based bootstrapping [83],
each data subsample retaining 70% of the sites from the
full site-pair table. The significances of the full model
and the individual predictors were assessed by a 100
permutation-based procedure [84]. For both the PCoA
and GDMs, the biological distances were obtained by ap-
plying the Bray-Curtis dissimilarity on signal intensity-
based matrices previously log-transformed.
Additionally, we divided the variance in alpha diversity

and composition associated with the climatic and local
non-climatic predictors by variation partitioning [85]
based on linear regression for alpha diversity and redun-
dancy analysis [86] for the compositional matrices. In the
latter case, signal intensity-based matrices were previously
Hellinger-transformed to meet the requirements of linear
ordination methods [87]. The selection of predictors was
performed by the ordiR2step procedure [88], which bases
the forward selection of variables on adjusted R2 and P
values of the initial pre-selected variables. When no pre-
dictors were retained for the local non-climatic set, the
variance in alpha diversity in relation to the climatic pre-
dictors was checked by LMs, whereas the variance in com-
position was checked by a Mantel test.
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Projections under climate change scenarios
We considered future climate conditions based on the
most “optimistic”, one intermediate and the most “pessim-
istic” expectations of greenhouse emission rate scenarios,
that is, the representative concentration pathways (RCPs)
2.6, 4.5 and 8.5. They broadly equal to atmospheric CO2

concentrations of 490, 650 and 1,370 p.p.m., respectively,
by the end of this century [53]. These future climate con-
ditions based on the mentioned three CO2 emission sce-
narios come from the Fifth Assessment Report of The
Intergovernmental Panel on Climate Change [25] and are
available at the WorldClim site (www.worldclim.org/
CMIP5v1) [71]. We downloaded the climatic variables
from all individual downscaled and bias-corrected climate
model outputs available (n = 15–19) in the database at 2.5
arc minute spatial resolutions. We only considered the
data that represent future climatic conditions averaged
over the period from 2061 to 2080. For subsequent ana-
lyses, we used the ensemble means of each climatic vari-
able over the individual climate model outputs.
We projected the changes in alpha diversity and shifts

in assemblage composition over the entire Eurasian do-
main at a spatial resolution of 2.5 arc minutes combin-
ing the TWQ and PCQ as predictor variables, i.e. the
best predictors of alpha diversity and assemblage com-
position, respectively. The current and future alpha di-
versities were obtained using LMs based on linear
relationships. The variation in functional gene compos-
ition was projected using GDMs [44, 89] with a “space-
for-time” substitution [90] based on Bray-Curtis dissimi-
larity matrices that were previously log-transformed.
GDMs were run on the whole functional gene pool and
on functional gene subsets for each gene family. The
projections were shown on fluvial systems by masking
the outputs with the global river classification layer [91].
We excluded rivers that were classified as “very small”
and “small” in the mask and applied a 5-km buffer
around the streams for an adequate visualization of
resulting continental-scale patterns.
All statistical analyses and plots were run in R statis-

tical software V3.5.3 by using the packages vegan V2.54
[92], ggplot2 V3.1.1 [93], MuMIn V1.43.6 [94], hier.part
V1.0-4 [95], gdm V1.3.11 [84], randomForestSRC V2.9.0
[96], raster V2.8-19 [97] and corrplot [98].
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