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Coexistence patterns of soil methanogens
are closely tied to methane generation and
community assembly in rice paddies
Dong Li1,2, Haowei Ni1,3, Shuo Jiao4, Yahai Lu5, Jizhong Zhou6, Bo Sun1 and Yuting Liang1,3*

Abstract

Background: Soil methanogens participate in complex interactions, which determine the community structures
and functions. Studies continue to seek the coexistence patterns of soil methanogens, influencing factors and the
contribution to methane (CH4) production, which are regulated primarily by species interactions, and the functional
significance of these interactions. Here, methane emissions were measured in rice paddies across the Asian
continent, and the complex interactions involved in coexistence patterns of methanogenic archaeal communities
were represented as pairwise links in co-occurrence networks.

Results: The network topological properties, which were positively correlated with mean annual temperature, were
the most important predictor of CH4 emissions among all the biotic and abiotic factors. The methanogenic groups
involved in commonly co-occurring links among the 39 local networks contributed most to CH4 emission (53.3%),
much higher than the contribution of methanogenic groups with endemic links (36.8%). The potential keystone
taxa, belonging to Methanobacterium, Methanocella, Methanothrix, and Methanosarcina, possessed high linkages
with the methane generation functional genes mcrA, fwdB, mtbA, and mtbC. Moreover, the commonly coexisting
taxa showed a very different assembly pattern, with ~ 30% determinism and ~ 70% stochasticity. In contrast, a
higher proportion of stochasticity (93~99%) characterized the assembly of endemically coexisting taxa.

Conclusions: These results suggest that the coexistence patterns of microbes are closely tied to their functional
significance, and the potential importance of common coexistence further imply that complex networks of
interactions may contribute more than species diversity to soil functions.

Keywords: CH4 emission, Methanogens, Co-occurrence network, Common and endemic coexistence, Stochastic
and deterministic processes

Introduction
Methanogens are a group of phylogenetically cohesive
microbes from the domain Archaea that are responsible
for the production of methane (CH4), which is regarded
as the second most important greenhouse gas, with a
global warming potential 25 times higher than that of

CO2 [1]. The composition, distribution and functions of
methanogenic and biogeographic communities have
been widely studied from local to global scales [2–4].
The coexistence pattern of methanogenic communities
is affected by environmental filters. For example, pH
plays an important role in habitat filtering, which shapes
the methanogenic biogeographic pattern in paddy soils,
lakes, and dry lands [5, 6]. Temperature also affects the
diversity and abundance of soil methanogenic archaea
[7] as well as the carbon cycling and electron flow of
complex methanogenic systems [8, 9]. CH4 emissions
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markedly increase with rising temperature and are linked
to the transcriptional activities of methanogens [10].
Methanogens show significant metabolic flexibility dur-
ing temperature adaptation [11, 12]. The community
composition of methanogens that dominate the meta-
bolic processes varies with temperature, resulting in
changes in CH4 production [13].
The coexistence of methanogens is also a result of

biotic interactions [14, 15]. Methanogens are engaged in
complex associations including both inter- and intra-
species syntrophic relationships and competition. Meth-
anogenic archaea cooperate with syntrophic partners to
obtain formate/H2 for CH4 synthesis. These partnerships
are aggregated not only by metabolic interactions but
also by additional amino acid auxotrophies [16]. How-
ever, detailed knowledge about complex species interac-
tions in the field based on empirical studies is difficult to
obtain for the most abundant and diverse microorgan-
isms [17]. In recent decades, co-occurrence networks
have become increasingly applied in ecology to infer
microbial potential interactions [18, 19]. Co-abundance
networks of root-associated methanogens were built to
identify consortia associations that were involved in CH4

cycling in a field experiment [20]. Although coexistence
cannot be strictly conflated with co-occurrence, co-
occurrence relationships provide some support for eluci-
dating potential coexistence patterns ranging from pairs
of taxa to complex, multi-taxon communities in a variety
of ecosystems [21–23].
In addition to these deterministic processes (environ-

mental filtration and species interactions), it is broadly
recognized that community assembly is simultaneously
influenced by stochastic processes [24–26], including
ecological drift, mutation, and random births and deaths
[27]. Stochastic processes reveal a stronger effect in driv-
ing archaeal β-diversity in rice fields than in dryland
[28]. Frequent flooding management may enhance eco-
logical drift and dispersal limitation [28]. With the rec-
ognition of the critical importance of microbial
coexistence, deciphering the coexistence patterns of soil
methanogens and the underlying community assembly
mechanism may help identify the potential keystones
(microbial consortia) [20] responsible for CH4 produc-
tion at large spatial scale.
Rice paddies are major man-made wetlands and rice

agriculture is the largest anthropogenic source of CH4

emissions, with a range of 25-300 Tg CH4 per year [1].
To further understand the coexistence patterns and
community assembly of methanogens and their linkage
to CH4 production in typical paddy soils, 429 soil sam-
ples were collected from 39 rice paddies in 13 regions
from northern to southern China to test the following
hypotheses: (1) Complex co-occurrence relationships of
methanogens are mediated by mean annual temperature

(MAT) across continental rice paddies, and this coexist-
ence pattern can partially predict variations in CH4

emissions. (2) A broadly distributed microbial communi-
ties that co-occur in different locations may play crucial
roles in maintaining community and soil ecosystem
functions [29, 30]. (3) Stochasticity dominates methano-
genic community assembly but the importance of stochasti-
city and determinism differs between commonly and
endemically coexisting taxa.

Materials and methods
Sampling and site characteristics
A total of 429 soil samples were taken from 39 paddy
fields in 13 regions, covering a wide spatial range of 110°
10′ to 126° 14′ E and 19° 32′ to 46° 58′ N (Fig. 1a) dur-
ing August to November 2013 after rice harvesting. The
paddy fields represented four types of crop rotations
(single rice, rice-wheat rotation, double rice, triple rice),
five soil types (neutral black soil derived from loamy
loess, alkaline fluvo-aquic soil derived from alluvial sedi-
ments of the Yellow River, hydromorphic paddy soils
derived from sediments of lakes, acidic red soil derived
from quaternary red clay, submergenic paddy soil de-
rived from neritic sediment) (the geographic information
of 13 sampling regions were listed in Table S1 including
longitude, latitude, MAT and mean annual precipitation
(MAP)). In each sampling field, 11 soil samples were
taken within 100 m × 100m plots using a spatially expli-
cit “L-shaped” sampling design. Five cores with a diam-
eter of 5 cm were randomly selected from the topsoil
(0–15 cm), and each sub sample point was 0.5 m in
diameter and mixed together (500 g in total). Soils were
collected and sealed into sterile sampling bags, trans-
ported to the lab on ice. Then, the soils were divided
into two subsamples in laboratory. One subsample was
kept at 4 °C to measure the soil geochemical properties,
and the other was stored at − 80 °C for molecular ana-
lyses. Because all the soil samples were collected after
the rice harvest, this study did not consider the effects of
aboveground crops.
Soil pH was determined with a glass electrode in the

soil with a water-to-soil ratio of 2.5:1. Soil total organic
carbon (SOC) and dissolved organic carbon (DOC) were
measured by potassium dichromate oxidation. Total ni-
trogen (TN), nitrate (NO3

−-N), and ammonium (NH4
+-

N) contents were determined by the Kjeldahl method.
Total phosphorus (TP) and available phosphorus (AP)
were measured with the sodium carbonate and Olsen-P
methods, respectively. Total potassium (TK) and available
potassium (AK) were measured by flame photometry after
extraction with sodium hydroxide and ammonium acetate,
respectively. The climatic data including mean annual
temperature (MAT) and mean annual precipitation
(MAP) were obtained from the Worldclim database
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(www.worldclim.org). All soil geochemical data are avail-
able in the repository Figshare (https://doi.org/10.6084/
m9.figshare.11493081.v2).

Measurement of CH4 production potential
CH4 production potential was determined in laboratory
[31]. The flasks of soil, with air vacuumed out, were
purged with N2 repeatedly to remove residual CH4 and
O2 and then incubated for approximately 50 h in dark-
ness at 25 °C. Soil samples were taken with a pressure-
lock syringe at 1 h and 50 h later, after the flasks were
heavily shaken by hand, and analyzed for CH4 on GC-
FID. CH4 production potential was calculated using the

linear regression of the CH4 increase with incubation
time and expressed in μg CH4 g−1 d−1. CH4 production
potential was the average of the triplicates weighted by
an interval of two adjacent measurements.

Soil DNA extraction and MiSeq sequencing
Soil DNA was extracted from 2 g of well-mixed soil for
each sample by combining freeze-grinding and sodium
dodecyl sulfate for cell lysis as previously described [32].
The extracted DNA quality was assessed according to
the 260/280 nm and 260/230 nm absorbance ratios with
a NanoDrop 2000 instrument (Thermo Fisher Scientific,
Wilmington, DE, USA). All DNA was stored at − 80 °C.

Fig. 1 Methane generation potential and the distribution of methanogenic archaeal communities in paddy soils. a Richness (orange) of
methanogenic archaeal communities and CH4 emission potential (purple) from 39 typical paddy fields (green) across northern to southern China.
b α diversity (richness and Shannon index) of methanogens. The horizontal bars within boxes represent medians. The tops and bottoms of boxes
represent 75th and 25th percentiles, respectively. c Canonical correspondence analysis (CCA) of methanogenic archaeal community structure.
Black arrow indicates the vector of the explanatory variable, and points of different colors indicate paddy soil samples in 39 paddy fields (429 soil
samples in total). MAT, mean annual temperature; MAP, mean annual precipitation; CEC, cation exchange capacity; TOC, total organic carbon;
DOC, dissolved organic carbon; TN, total nitrogen; DTN, dissolved total nitrogen; DON, dissolved organic nitrogen; DAN, ammonium nitrogen;
DNN, nitrate nitrogen; TP, total phosphorus; AP, available phosphorus; TK, total potassium; AK, available potassium. d Distance–decay relationships
of methanogenic communities at three scales, local (1–100m), meso (0.1–50 km), and regional (100–3500 km)

Li et al. Microbiome            (2021) 9:20 Page 3 of 13

http://www.worldclim.org
https://doi.org/10.6084/m9.figshare.11493081.v2
https://doi.org/10.6084/m9.figshare.11493081.v2


The methanogenic archaeal 16S rRNA gene was com-
bined with adaptor sequences and barcode sequences by
PCR amplification with the primer pair 1106F (TTWAGT
CAGGCAACGAGC)/1378R (TGTGCAAGGAGCAGGG
AC) [33]. Primer bias may be caused by chimeras, multi-
template amplification bias or primer mismatch [34–36].
Previous studies evaluated this primer pair and showed
that it is applicable to analysis of methanogenic archaeal
community in paddy field soils by comparing different pri-
mer sets [37]. In addition, Feng et al. also used this primer
pair to study the community composition of methanogens
from paddy fields in China and showed that the primer
could be used to study methanogenic Archaea in paddy
soil of China [38]. An ABI GeneAmp® 9700 (ABI, Foster
City, CA, USA) with a 20 μL reaction system containing
4 μL of 5× FastPfu Buffer, 0.8 μL of each primer (5 μM),
2 μL of 2.5 mM dNTPs, 10 ng of template DNA, and
0.4 μL of FastPfu polymerase was used to perform the
PCR amplification. The qPCR program used for methano-
genic archaea was 94 °C for 2 min, followed by 30
cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for
60 s, and subsequent extension and signal reading.
The specificity of the amplification products was
confirmed by melting curve analysis, and the expected
sizes of the amplified fragments were checked in a
1.5% agarose gel. PCRs were conducted in triplicate
for each sample. The results were combined after the
PCR amplification. The PCR products were separated
on a 2.0% agarose gel. We excised and purified the
band of the correct size using an AxyPrep DNA Gel
Extraction Kit (Axygen Scientific, Union City, CA,
USA) and quantified with QuantiFluor™-ST (Promega,
Madison, WI, USA).
The pooled DNA was diluted to 2 nM, loaded onto the

reagent cartridge, and run on a MiSeq benchtop sequen-
cer (Illumina Inc., San Diego, CA, USA). The samples
were prepared for sequencing using a TruSeq DNA kit
according to the manufacturer’s instructions. The puri-
fied mixture was diluted, denatured, re-diluted, mixed
with PhiX (equal to 30% of the final DNA amount), and
then submitted to an Illumina MiSeq system for sequen-
cing with a Reagent Kit v2 2 × 250 bp, as described in
the manufacturer’s manual.
Paired-end reads were first merged using FLASH and

then quality filtered according to the procedure de-
scribed by Caporaso et al. [39]. Chimera detection and
removal were accomplished using the USEARCH tool in
the UCHIME algorithm [40]. Sequences were split into
groups according to taxonomy and assigned to OTUs at
a 97% similarity level using the UPARSE pipeline [40].
Those OTUs lacking more than two sequences were re-
moved; representative sequences of the remaining OTUs
were assigned to taxonomic lineages using the RDP
classifier within the SILVA database.

GeoChip 5.0 experiments and raw data analyses
Generally, 600 ng of purified soil DNA from each sample
was labeled with the fluorescent dye Cy-3 (GE Healthcare,
CA, USA) using a random priming method as described
previously [41], purified using a QIAquick Purification kit
(Qiagen, CA, USA), and then dried in a SpeedVac
(Thermo Savant, NY, USA) into a powder. Subsequently,
the labeled DNA was resuspended in DNase/RNase-free
distilled water and mixed completely with hybridization
solution containing 1× Acgh blocking, 1× HI-RPM
hybridization buffer, 10 pM universal standard DNA,
0.05 μg/μL Cot-1 DNA, and 10% formamide (final con-
centrations). Then, the solution was denatured at 95 °C
for 3min, incubated at 37 °C for 30min, and hybridized
with GeoChip 5.0 arrays (180 K) [42].
The microarray data were preprocessed by the micro-

array analysis pipeline on the IEG website (http://ieg.ou.
edu/microarray/) as previously described [42]. The main
steps were as follows: (i) remove the spots of poor qual-
ity, which were determined by a signal-to-noise ratio less
than 2.0; (ii) calculate the relative abundance of each soil
sample by dividing the total intensity of the detected
probes, then multiply by a constant and take the natural
logarithm transformation; and (iii) remove the detected
probes in only two out of eight samples at the same
sampling site.

Data analyses
The α-diversity (richness and Shannon index) of each
sample was calculated, and the β-diversity was estimated
(based on Bray-Curtis distances between samples). The
geographical distances among the sampling sites were
calculated from the sampling coordinates. Canonical
correspondence analysis (CCA) was performed to
explore the relationships between the methanogenic
community and major climate and edaphic variables. A
forward selection procedure was used to select signifi-
cant variables using the “ordiR2step” function from
“vegan”. To estimate changes in β-diversity with distance
at various scales, the slopes of distance decay relationship
(DDR) [43] at three spatial scales were calculated: local
scale (1–100m), mesoscale (0.1–50 km), and regional scale
(100–3500 km). The turnover rates were calculated as the
slope of the linear least squares regression of the relation-
ship between ln(community similarity) versus ln(geographic
distance), and microbial similarity was calculated based on
the 1 − Bray-Curtis distance. Spearman’s rank correlations
were used to determine the relationship between environ-
mental variables and network topological attributes. All
analyses were conducted in R 3.6.1.
The co-occurrence networks of methanogens across

all sites and in each field were constructed using CoNet
[44], a robust ensemble-based network inference tool to
detect nonrandom patterns of microbial co-occurrence
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using multiple correlation and similarity measures. Four
methods were selected to evaluate pairwise associations
among the OTUs: the Pearson, Spearman, Bray-Curtis,
and Kullback-Leibler correlation methods. The initial
thresholds for all four measures were selected to retrieve
1000 positive and 1000 negative edges. For each measure
and edge, 1000 renormalized permutation and 1000
bootstrap scores were generated to alleviate composi-
tionality bias. Connection retention was saved while
satisfying the four methods. A measure-specific P value
was computed first and then merged with Brown’s
method. Edges with merged P values less than 0.05 were
kept after multiple tests using the Benjamini-Hochberg
procedure. The co-occurrence networks were visualized
with Cytoscape 3.7.1. The network topological parame-
ters were analyzed using Network Analyzer [45].
To include nonlinear relationships and multivariate

interactions, a random forest classification analysis was
performed to identify important predictors of CH4 emis-
sions among multiple variables, including climatic and
edaphic factors, microbial co-occurrence network and
diversity. Random forest is a new classification and re-
gression method that uses standard samples of training
data and random feature selection in tree selection to
modify standard classification and regression tree
methods [46]. Random forest analysis evaluates the im-
portance of each predictor by determine how much the
mean square error (MSE) increases. The variables were
selected when the predictor variables were randomly re-
placed and the other variables remain unchanged. Thus,
MAT, MAP, TOC, TN, TP, microbial co-occurrence
network, and diversity were included in the final random
forest model. These analyses were performed using the
“RandomForest” package in R, and the significance of
both the model and each predictor was also assessed
with the “rfUtilities” and “rfPermute” packages, respectively.
According to the frequency of the connection between

the pairwise OTUs in 39 networks, we divided these
pairwise OTUs into five groups: always endemic links,
conditionally endemic links, moderate links, condition-
ally common links, and always common links (Table 1).
The pairwise OTUs which categorized into conditionally
common links (C. common) and always common links
(A. common) were regarded as the keystones OTUs

based on the random forest analysis (53.3% contribution
to methane emission). Then, the network construction
was conducted to analysis the relationship between key-
stone OTUs and methanogenic functional genes (via
GeoChip 5.0) to understand the potential function of
these keystones on methane emissions. For the annota-
tion, the 16 s rRNA sequence from each related OTU
were BLAST compared and searched at NCBI web site.
To evaluate the phylogenetic community composition
within each group, the mean nearest taxon distance
(MNTD) for each sample was calculated as described
previously [47]. To identify the processes driving soil mi-
crobial community composition within a sample, the
standardized effect size measured MNTD (ses. MNTD),
which quantifies the number of standard deviations of
the observed MNTD values, was used to test for niche
or dispersal limitations (999 randomizations). When the
ses. MNTD values are negative and quantiles are low (P
< 0.05), co-occurring species are more affected by phylo-
genetic clustering than by dispersal limitation. In this
study, the ses. MNTD is the negative of the nearest
taxon index (NTI) [48]. By contrast, positive values and
high quantiles (P > 0.95) indicate that co-occurring spe-
cies are more affected by dispersal limitation than by
phylogenetic clustering. βMNTD is the abundance-
weighted-mean phylogenetic distance among closest rel-
atives occurring in two different communities, and βNTI
is the number of standard deviations that the observed
βMNTD is from the mean of the null distribution. βNTI
values > 2 or ≤ − 2 indicate determinism in community
assembly; in contrast, βNTI values between − 2 and 2
indicate stochasticity. All phylogenetic analyses were
conducted using Picante in R [49].

Results
Diversity of methanogenic communities in paddy soils
CH4 emissions varied considerably across rice paddies
(Fig. 1a). The diversity dilution curves of all 429 samples
indicated that the sequencing depth captured most of
the microbial information (Fig. S1). The methanogenic
α-diversity varied across sites (Fig. 1b) and was positively
correlated with MAT (P < 0.05, ANOVA) (Fig. S2). CH4

emissions were correlated with Shannon-Wiener diver-
sity of soil methanogens (Fig. S2).

Table 1 Five groups were classified based on the frequency of co-occurrence relationships between pairwise OTUs

Edge numbers Relative proportion Related OTUs

Always endemic links (only appeared in 1 plot) 4049 41.82% 314

Conditionally endemic links (1 < plots number ≤ 3) 2928 30.24% 209

Moderate links (3 < plots ≤ 10) 2206 22.78% 131

Conditionally common links (10 < plots ≤ 20) 342 3.53% 32

Always common links (plots > 20) 157 1.62% 9
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The methanogenic communities were clustered separ-
ately by geographic locations along the different climatic
zones (Fig. 1c). MAT, MAP, pH, CEC, and TOC were
found to significantly influence methanogenic commu-
nity distribution (P < 0.05). The definition of DDR
means that the similarity of communities decreases with
the increase of geographical distance. At the local scale,
the slope of DDR is positive, which means the on a very
small spatial scale (1–100 m), there is no DDR pattern
for the methanogenic communities (Fig. 1d). Addition-
ally, as the scale increased, the similarity of communities
decreased, and the linear fitting slopes varied from
− 0.0298 to − 0.1669. These results suggested that the

methanogenic communities showed a clear biogeographic
distribution pattern.

Co-occurrence networks of methanogenic community
Networks of the methanogenic community were con-
structed at the OTU level across the all samples (Fig. 2a)
and in each local plot (Fig. S3). The architecture of the
local networks gradually became more complicated from
north to south (Table S2, S4). The node and edge
numbers increased from 39 to 147 and from 45 to 1039,
respectively. Methanoregula, Methanothrix, Methanocella,
Methanosarcina, Methanobacterium (genera), Methano-
microbiales, and Methanosarcinales (orders) accounted

Fig. 2 Co-occurrence networks and linkage with CH4 emissions. a The whole co-occurrence network structure of methanogenic community across all
39 paddy fields. The local co-occurrence network was also constructed in each field separately (Fig. S3). b The predictions of climatic variables (MAT,
MAP), main soil geochemical variables (TOC, TN, TP, and pH), and methanogenic archaeal communities network and diversity to CH4 emissions base
on random forest regression analysis. R2 means decision coefficient, and “% var explained” means the goodness of fit of the model. The red column
indicates the factor that has a significant effect (P < 0.05; ANOVA, Duncan test), and the dark gray column indicates the factor that has no significant
effect. The network index used in the model is the first component (56.9%) from the principal component analysis of eight main topological attributes
of co-occurrence networks (node number, edge number, modularity, positive correlations, negative correlations, average clustering coefficient, network
diameter, characteristic path length). Microbial diversity is Shannon index. c Spearman’s correlation analysis of network topological attributes and MAT.
Blue shaded area is a 95% confidence interval. Correlations with other environmental factors are shown in Fig. S4
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for a high proportion of the nodes, ranging from 62.2
(QZa) to 95.0% (HLb) (Fig. S3).
For the main environmental factors, MAT was the

strongest predictor of the variations among eight net-
work topological attributes (node number, edge number,
positive correlations, negative correlations, modularity,
average clustering coefficient, network diameter, charac-
teristic path length) (Fig. S4). Linear regression analysis
further indicated that MAT was positively correlated
with all the network attributes (P < 0.05) (Fig. 2c, Fig. S4).
In addition, we found that richness also has an impact on
the network structure (Fig. S5). By controlling variables,
the importance of temperature and richness to the
network was explored, and it showed that temperature is
more important (R = 0.254 > R = − 0.004) (Table S3). All
findings suggested that MAT was more closely related
than other environmental factors to the methanogenic
networks structure.

Commonly and endemically coexisting taxa of soil
methanogens
Methanogenic community (co-occurrence network and
diversity) factors associated with geochemical variables
(MAT and MAP) and main soil factors (TOC, pH, TN
and TP) explained 75.28% of total variations in CH4

emissions, of which methanogen interactions accounted
for the greatest percentage (37.5%) (Fig. 2b). Linear re-
gression analysis indicated that of the eight topological
attributes, modularity, average clustering coefficient, and
network diameter were positively correlated with CH4

emissions (P < 0.05) (Fig. S6). These results indicated
that co-occurrence of these methanogens may be a
major contributor to CH4 emissions.
To address the hypothesis that broadly and locally co-

occurring methanogens may play different roles in main-
taining community structure and functions, the pairwise
co-occurrence links of all 39 networks were classified
into five groups based on the frequency with which the
edge appeared among the 39 networks: always endemic,
conditionally endemic, moderate, conditionally common,
and always common links, with related OTU numbers of
314, 209, 131, 32, and 9, respectively (Table 1). The mi-
crobial richness and Shannon diversity of the five groups
were significantly different (P < 0.05, ANOVA, Duncan
test) (Fig. S7). A random forest model was constructed
to predict the impacts of five groups of co-occurrence
relationships on CH4 emissions (Fig. 3a). The contribu-
tion of common (conditionally and always common) co-
occurrence relationships was the highest (53.3%), while
that of endemic (conditionally and always endemic) co-
occurrence relationships was 36.8%. Therefore, the 33
OTUs that commonly coexisted might be considered
potential keystones for CH4 emissions (Table S5). Relative
to their connection in the 429 soil samples, 17 OTUs were

highly abundant species and 16 OTUs were rare species
(Fig. S8). And we also found that the abundance distribu-
tion of these keystone species was related to temperature
(Fig. S9), for example, Methanomicrobiacea at almost 20–
25 °C has the highest abundance, Methanosarcinaceae and
Methanobacteriaceae at 8–15 °C, Methanocellaceae at 8–
19 °C is highest. To confirm this result, biomarker taxa for
CH4 emissions were screened at the genus level (Fig. 3b).
Among the top 19 biomarker genera with relatively high
impact, those potential keystone taxa were included in 7
genera that accounted 47% of total microbial production
of CH4 emissions.
The functional network was constructed among the 33

potential keystones and methane generation functional
genes detected by GeoChip (Fig. 3c, Fig. S10). In total, there
were 1119 edges among 92 nodes. Intensive relationships
were observed among keystones and functional genes. The
sum of the edge weights between gene and gene, species
and gene, and species and species were 1.26, 1.01, and 0.40,
respectively, indicating that there were relatively strong
links between keystones and functional genes. The genes
and species involved in these interactions were mainly
mcrA (methyl-coenzyme M reductase alpha subunit), fwdB
(molybdenum/tungsten formylmethanofuran dehydroge-
nases), mtbA (methylcobalamin: coenzyme M methyltrans-
ferase), mtbC (B12 binding domain of corrinoid proteins),
Methanocella, Methanothrix, Methanosarcina, and Metha-
nobacterium. Linear regression analysis showed that the
weight of species and genes linkages was positively corre-
lated with CH4 emissions (P < 0.05) (Fig. 3d).

Different community assembly of commonly and
endemically coexisting taxa
The beta nearest taxon index (βNTI) values of the five
groups were mainly between − 2 and 2 (Table 2): always
endemic (98.76%), conditionally endemic (93.2%), mod-
erate (97.58%), conditionally common (74.21%), and
always common (71.52%). The community assembly was
dominated by stochastic processes, while the proportion
of deterministic processes increased for common
coexistence taxa. The distributions of βNTI values of
common coexistence taxa were more extensive and had
a relatively low frequency (Fig. 4). The βNTI of other
groups centralized between 2 and − 2 with a relatively
higher frequency.

Discussion
Using network analysis to explore the direct and/or in-
direct cooperation between microbial taxa coexisting
across complex and diverse communities could help to
ascertain the functional roles and assembly processes in
the basic ecology and life history strategies of many
microbiota [18, 50, 51]. In the present study, in accord-
ance with our hypothesis that intricate co-occurrence
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relationships of methanogens are mediated by MAT
across continental rice paddies, we found that all the
topological attributes of the network were positively
correlated with MAT. The increasing average clustering
coefficient and characteristic path length indicated that
highly connected OTUs were grouped in their neighbor-
hood and clustered together rather than randomly [18].

One explanation is that the temperature shapes distinct
community composition of methanogens in long-term
rice paddies [28]. Based on the metabolic theory of ecol-
ogy [52] and latitudinal diversity gradient, temperature
increase soil microbial richness [53], and spatial hetero-
geneity [54], the structure of both archaeal and bacterial
communities involved in the turnover of acetate and
propionate in methanogenic rice field soil varied with
the gradient temperature from 25 to 50 °C [55]. Another
potential explanation for the topological change is that
environmental filtering affects microbial competition
and mutualism [18]. Adaptation to environmental stress
in one species of microbe may increase/decrease selection
pressure on another species, giving rise to antagonistic/
sympathetic cooperative interaction [51]. Our results indi-
cated that MAT had a higher correlation coefficient with
positive interactions of methanogens rather than negative
interactions. Temperature may enhance the cooperative

Fig. 3 Potential keystone taxa for CH4 emissions. a Contribution of five groups of methanogenic communities to CH4 emissions based on
random forest regression model. Five groups were classified based on the frequency of co-occurrence relationships between pairwise OTUs
(A.endemic, always endemic group; C.endemic, conditionally endemic group; Moderate, moderate group; C.common, conditionally common
group; A.common, always common group). b Biomarker taxa for CH4 emissions. The top 19 genera were identified by applying random forest
classification of the relative abundance. Biomarker taxa are ranked in descending order of importance to the accuracy of the model. The inset
represents tenfold cross-validation error as a function of the number of input genera used to differentiate microbiota in order of variable
importance. Among the 19 genera, 7 genera contain the keystone OTUs (33 OTUs involved in C.common and A.common) and account for 47%
of total microbial production of CH4 emissions; the other 12 genera account for 53%. c Functional co-occurrence network of 33 keystone OTUs
and functional genes involved in CH4 generation. d Linear regression analysis of the connections between genes and species with CH4 emissions.
Blue shaded area indicates 95% confidence interval (Spearman’s P < 0.05)

Table 2 The relative contribution (%) of deterministic and
stochastic processes to community assembly of five groups with
OTUs related to endemic, moderate, and common links

Determinism (%) Stochasticity (%)

Always endemic group 1.24 98.76

Conditionally endemic group 6.80 93.20

Moderate group 2.42 97.58

Conditionally common group 28.48 71.52

Always common group 25.79 74.21
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interactions of methanogenic archaea, which have an im-
portant effect on community functions in rice paddies. In
the present study, the coexistence relationship can better
predict the variations of CH4 emissions compared with
microbial diversity (Fig. 2b). The result was consistent
with the previously network-based research that the up-
take of carbon by the soil food web increases from 50 to
75% when the network connectance index increased from
0.626 to 1.278, suggesting that network structure is tightly
related to the ecosystem functional process [56]. The
tightening connection between taxa might help to reveal
the potential niche occupancy characteristics shared by
community members [18]. Furthermore, the long-term
geological processes impart lasting legacies on the
contemporary environments [57]. Geological processes
directly or indirectly affect biodiversity and ecosystem
functions. For example, previous study revealed that the
regional-scale variation of climate change can determine
the effects of biodiversity on ecosystem multifunctionality
in natural ecosystems [58]. Hu et al. explored the key
drivers of biological community and found that MAT had
the strongest influence on bacterial communities [57]. In
addition, geological processes may lead to the biological
speciation and evolution [59, 60]. Poltak et al. proposed an
evolutionary scenario, in which the common ancestor of
Archaea harbored the ability for methane metabolism
(including the evolution of methyl-coenzyme M reductase-
containing hot spring Archaea) [61, 62]. Coevolution among
species can enhance ecosystem characteristics; for example,
species evolve complementary resource utilization, thus
improving ecosystem productivity [61].
The roles of global trends (generalist edges) and local

signals (specialist edges) in adaptations to environmental

factors accompanied by coexistence patterns in antagon-
istic/sympathetic cooperative interactions are essential in
research on co-occurrence patterns [51, 63]. In the
present study, more than 72% of the edges were identi-
fied as endemic edges (the frequency of edge numbers ≤
3 among the 39 networks), which included over 75% of
OTUs in co-occurrence relationships in the methano-
genic community (Table 1). However, the contribution
of endemic links to methanogenesis (36.8%) was far
lower than the contribution of common links (53.3%).
This result conflicts with the observation that specialists
consume resources more rapidly than generalists [64].
Based on the occupancy scenario (i.e., habitat generalists

and habitat specialists) [18], we further seek to categorize
the potential keystone taxa. The potential keystone species
involved in common links belong to Methanosarcinaceae,
Methanocellales, Methanobacteriales, and Methanomicro-
biales. These taxa may have strong adaptability in maintain-
ing important common relationships in the community. For
example, Methanosarcinaceae can also use H2/CO2 as sub-
strates, although not as effective as Methanobacteriaceae
and Methanocellaceae [65]. Methanosarcinaceae includes
acetoclastic methanogens and other generalist methanogens,
and Methanocellaceae, Methanomicrobiacea, Methanoregu-
laceae, and Methanobacteriaceae are all hydrogenotrophic
[1]. Acetate formed by acetogenic bacteria can be either
used directly by some methanogens (Methanosarcina spp.
and Methanosaeta spp.) and can also be degraded by
syntrophic associations of bacteria (e.g., syntrophic acetate
oxidizers) and hydrogen-consuming methanogenic archaea
[66]. Hydrogenotrophic methanogenesis could act as the
sinks for electron through interspecies electron transfer that
reduce equivalents between hydrogen-forming acetogenic

Fig. 4 Community assembly of five groups of methanogenic communities. a The distribution of beta nearest taxon index (βNTI). Each
observation is the number of null model standard deviations. The observed value is from the mean of its associated null distribution. b Box-plot
of the total βNTI of five groups. S, stochastic process; D, deterministic process. Boxes followed by different letters differed significantly at P < 0.05
(ANOVA, Duncan test)
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bacteria and hydrogen-consuming Archaea [67]. In a previ-
ous study, hydrogenotrophic methanogens (e.g., Methanore-
gula and Methanocella) can sustain in low dissolved H2

concentrations and produce acetate for Methanosarcina
[68]. Temperature affects the overall diversity of the micro-
bial communities. Previous research confirmed that different
groups of methanogens could become predominant at
different temperatures [69]. Most known methanogens were
mesophilic and moderate to extreme thermophilic archaea
[70]. For example, Methanobacteriaceae showed the greatest
activity at 30 °C, and Methanocellaceae were favored in the
late stages at 45 °C. For the acetoclastic methanogens,
Methanosarcinaceae could produce CH4 via both hydroge-
notrophic and acetoclastic processes under moderate tem-
peratures (10–30 °C) and exclusively consumed H2/CO2

rather than acetate at higher temperatures (45 °C). Their
abundance is highest in the range of 8–21.6 °C (Fig. S9).
Compared with the optimum growth temperature reported
in the literature, they are not exactly the same. We propose
that such flexible strategies give the rise to the shift of eco-
system processes and functions, subsequently increasing the
efficiency of CH4 production.
We also found that the keystone taxa possessed high

linkages with functional genes mcrA, fwdB, mtbA, and
mtbC involved in the methanogenesis process (Fig. 3c).
Methylcobamide: CoM methyltransferase (mtbA) is in-
volved in CO2 reduction to methane and acetate dispro-
portionation into methane and CO2 in methylotrophic
methanogenesis [65]. These processes may be the rea-
sons that keystone species dominate methane emissions.
The functional genes involved in this study are all re-
lated to methane production (21 functional genes),
which have been extensively studied and verified in pre-
vious studies, such as mcrA, fwdB, and mtbA. In present
study, GeoChip microarray was used to measure the
abundance of functional genes include methane metab-
olism process. Therefore, a greater number of available
genes could identify by used of network analysis because
the GeoChip is a close loop system that cannot discover
new functional genes (unless such new gene had been
discovered and put into the GeoChip library). So, all the
functional and keystone genes that we have screened out
based on network analysis, and statistically and analytic-
ally confirmed. We hope to identify more genes related
to the structure and function of methanogens in future
studies.
The community assembly processes with the linkage to

CH4 production are simultaneously influenced by deter-
ministic and stochastic processes [71]. Co-occurring species
adapt to environmental conditions by generating a trade-off
between environmental filtering and disposal limitation and
thereby alter the selection pressures on other species and
how they use the available resources [72, 73]. Species sort-
ing is the deterministic process which is defined as the

ecological forces that alter the community structure due to
the fitness differences among organisms and environmental
heterogeneity. Conversely, dispersal limitation could either
be deterministic, stochastic, or both [74]. Jiao et al. reported
that co-occurrence associations of archaea tends to be more
frequent in low-latitude rice paddies because of species
sorting [75]. Since the MAT was the dominant environ-
mental filter in the present study, we found that the distri-
bution of βNTI shifted to the edges (βNTI = 2) with the
increased frequency of co-occurrence relationships. The
relative contribution of deterministic processes to commu-
nity assembly had a similar tendency accompanied by an
increase in co-occurrence relationships (Table 2). Although
the stochastic processes still play a dominant role in driving
microbial community assembly, our result demonstrated
that the commonly coexisting taxa undergoing strong en-
vironmental selection (MAT) and adaptations for survival
are more likely to be associated together and play a more
important role in CH4 emissions. This inference could be
validated by a previous study showing that the biotic selec-
tion (species sorting) contributed more to microbial assem-
bly processes than other forces in paddy soils [76]. Since
methanogenesis is subject to distinct temperature filtering,
the closer coexistence relationship of commonly coexisting
taxa would appear with stronger niche occupation [77],
consequently improving the efficiency of CH4 production.
In the future research, such coexistence relationship may
be considered to add in climate warming model (e.g., GISS
global climate models) to improve the accuracy of model
prediction.
Furthermore, the effects of rice at different development

stages on the community composition of methanogenic ar-
chaea will affect methane emission. Kimura et al. reported
that the types and amounts of various compounds supplied
by rice roots to rhizospheres varied with different growth
stages [78]. In present study, some of the keystone taxa, such
as Methanosarcinaceae, Methanobacteriales, and Methano-
microbiales, are consistent with the previous research that
these keystone methanogens during the rice growth period
that significantly affect methane emission in paddies
[79–81]. Therefore, although we did not consider the effect
of crops on the composition and function of methanogens
in present study, the role of crops cannot be ignored. In the
future research, we need to study the role of these keystone
species on methane emissions at different stages of rice
growth and to analyze the effects of rice growth on these
microbial communities, structures, and functions.

Conclusion
In conclusion, methanogenic co-occurrence patterns
were studied across rice paddies at a continental scale,
and tightened network structure was found to be highly
mediated by MAT. Common co-occurrence relationships
may be more important than endemic co-occurrence
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relationships to the function of microorganisms in CH4

production. The relative importance of stochastic pro-
cesses and deterministic processes differed between com-
munity assemblies of taxa that commonly coexisted and
those that endemically coexisted. These results suggest
that the microbial coexistence patterns are closely tied to
the functional significance of the community, with par-
ticular importance of commonly coexisting taxa, further
indicating that complex networks of interaction may con-
tribute more than species diversity to soil functions. Both
field and laboratory experiments are required to further
address the methanogens coexistence pattern that drives
community composition and functions at ecological time-
scales as well as for the evolution of species interactions.
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Additional file 1: Figure S1. Sampling and sequencing of methanogens.
Abscissa: the number of sequences randomly selected from the sample;
ordinate: the species diversity and the number of OTU that can be
represented by the random sampling sequence. Each curve in the figure
represents a sample, marked with a different color. Figure S2. Linear
regression of methanogenic archaea α-diversity and MAT (A) and CH4 emis-
sions (B). Solid lines denote significant relationship with 95% confidence inter-
val (shadow area). Dotted line denotes P > 0.05. Figure S3. The co-
occurrence network structure of methanogenic community of 39 plots. Per-
centage in the top right corner indicates the proportion of 33 key OTUs
(Table S4) in total node numbers of each network. Figure S4. Contributions
of climatic variables and soil properties to the network topological attributes
based on correlation and random forest regression model. Circle size repre-
sents the variable importance (that is, proportion of explained variability calcu-
lated via forest regression analysis analysis). Colors represent Spearman’s
correlation coefficients (node: node number; edge: edge number; modularity:
modularity; positive: positive correlations; negative: negative correlations;
Avg.C.C: average clustering coefficient; N.D: network diameter; C.P.L: character-
istic path length). Figure S5. Spearman’s correlation analysis of network topo-
logical attributes and richness. Blue shaded area is a 95% confidence interval.
Figure S6. Spearman’s correlation analysis of network topological attributes
and CH4 emissions. Dotted lines denote P > 0.05. Solid lines indicate a signifi-
cant correlation (P < 0.05), with the blue shaded area showing the 95% confi-
dence interval. Figure S7. Relative abundance of OTUs of the five groups of
methanogenic archaeal communities. Each column followed by different let-
ters differed significantly at P < 0.05 (ANOVA, Duncan test). (A.endemic: always
endemic group; C.endemic: conditionally endemic group; C.common: condi-
tionally common group; A.common: always common group). Figure S8. Rela-
tive abundance frequency histogram of 33 keystone OTUs in 429 samples.
The blue histogram indicates rare OTUs (average relative abundance < 1% in
429 samples). The red histogram indicates abundant OTUs (average relative
abundance > 1% in 429 samples), and the inset represents low-frequency
OTUs with average relative abundance < 1%. Figure S9. The relative abun-
dance of keystone taxa (at the family level) changes with temperature. (HL:
1.5°C, CC: 4.5°C, SY:8.3°C, YY: 14.4°C, FQ:13.9°C, LA: 16.1°C, QZ:17.9°C, ZX:17°C,
JO:18.8°C, CT:19°C, HY:18°C, QX:21.6°C, HK:23.8°C). Figure S10. The relationship
between keystone species and microbial functional genes related to methane
generation depicted as colored segments in a CIRCOS plot. Ribbons connect-
ing two segments indicate the interaction between the two. The size of the
ribbon is proportional to the number of links. Table S1. Geographic informa-
tion of 13 sampling regions with 3 plots in each region. Table S2. The topo-
logical features of the co-occurrence network in each plot. Table S3. Partial
mantel test between network topology attributes and variables. Table S4.
Changes of network topology attributes with latitude. Table S5. Information
of 33 keystone OTUs involved in common co-occurrence relationship.
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