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• Bacterial taxonomic compositions
changed from the dominance of
Firmicutes to Proteobacteria alongside
antibiotic transmission.

• Ofloxacin and tetracycline were most
predictive antibiotics for bacterial and
functional network properties, respec-
tively.

• Modularity was consistently much
higher in functional networks than bac-
terial networks.

• Modularity of association networks can
be an indicator of system stability for
microbial communities.

• Microbial community assembly is one of
the primary mechanisms underlying
microbial interactions.
⁎ Corresponding author.
E-mail address: yangyf@tsinghua.edu.cn (Y. Yang).

https://doi.org/10.1016/j.scitotenv.2020.143712
0048-9697/© 2020 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 22 July 2020
Received in revised form 18 October 2020
Accepted 10 November 2020
Available online 14 November 2020

Editor: Fang Wang

Keywords:
Antibiotics
Bacterial networks
Functional networks
Modularity
Community assembly
Interspecies interaction is an essential mechanism for bacterial communities to develop antibiotic resistance via
horizontal gene transfer. Nonetheless, how bacterial interactions vary along the environmental transmission of
antibiotics and the underpinnings remain unclear. To address it, we explore potential microbial associations by
analyzing bacterial networks generated from 16S rRNA gene sequences and functional networks containing a
large number of antibiotic-resistance genes (ARGs). Antibiotic concentration decreased by more than 4000-
fold along the environmental transmission chain from manure samples of swine farms to aerobic compost,
compost-amended agricultural soils, and neighboring agricultural soils. Both bacterial and functional networks
became larger in nodes and linkswith decreasing antibiotic concentrations, likely resulting from lower antibiotics
stress. Nonetheless, bacterial networks became less clustered with decreasing antibiotic concentrations, while
functional networks became more clustered. Modularity, a key topological property that enhances system resil-
ience to antibiotic stress, remained high for functional networks, but themodularity values of bacterial networks
were the lowest when antibiotic concentrations were intermediate. To explain it, we identified a clear shift from
deterministic processes, particularly variable selection, to stochastic processes at intermediate antibiotic
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concentrations as the dominant mechanism in shaping bacterial communities. Collectively, our results revealed
microbial network dynamics and suggest that themodularity value of association networks could serve as an im-
portant indicator of antibiotic concentrations in the environment.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The excessive use of antibiotics, which iswidely occurring, promotes
the proliferation of antibiotic resistance genes (ARGs). Environmental
dissemination routes for ARGs have been widely reported to be impor-
tant for the spread of antibiotic resistance (Bengtsson-Palme et al.,
2017; Bengtsson-Palme and Larsson, 2015). ARGs can evolve, mobilize,
transfer and disseminate in diverse environmental settings, such as live-
stock gut and manure (Allen, 2014; Bengtsson-Palme, 2017), sewage
treatment plants (Bengtsson-Palme et al., 2016; Rizzo et al., 2013),
water bodies (Bengtsson-Palme et al., 2014; Cabello, 2006), biofilm
(Lundström et al., 2016) and the food supply chain (Bengtsson-Palme
et al., 2017; Rolain, 2013). Considering that ARGs could spread among
bacterial taxa by horizontal gene transfer, intimate interactions among
taxa could lead to substantial antibiotic resistance, which poses a public
health risk for challenges in treating pathogenic infections. For example,
contamination of river waters by quinolones has promoted the transfer
of chromosomally encoded qnr genes to the plasmid, resulting in resis-
tance of new bacterial hosts to quinolones (Poirel et al., 2005).
Bacteriophage-host interactions act as vectors for the horizontal gene
transfer of ARGs among bacteria, whereby the phage carries a genetic
trait from a donor bacterial cell to a recipient cell (Balcazar, 2014).
Therefore, understanding how interaction among bacterial taxa enables
the spread of antibiotic resistance and gives rise to dynamic population
behaviors is a fundamental issue in environmental science (Kelsic et al.,
2015). Nonetheless, the mechanisms of microbial interactions that con-
tribute to antibiotic resistance remain elusive in complex environments.

The application of manure to agricultural soils remarkably increases
antibiotic residues, ARG abundance, and antibiotic-resistant bacteria
(ARB) population in soils (Zhang et al., 2020). Fifteen-year application
of manure to soils largely increased the abundance of indigenous soil
ARGs and mobile genetic elements that further facilitate the spread of
ARGs (Wang et al., 2020). Although composting could effectively reduce
ARG abundance (Zhang et al., 2020), the residues of antibiotics in com-
post products may still pose selection pressure for the evolvement of
ARGs and ARB (Y.-J. Zhang et al., 2019). The ARG abundance in root en-
dophyte and rhizosphere was increased after manure and compost ap-
plication (Zhang et al., 2018), revealing ARG transmission frommanure
to agricultural soils. Those studies provide a strong rationale for the
transmission of ARGs and ARB from manure/compost to agricultural
soil and other soil environments.

A closely related question is howmicrobial interactions evolve along
the environmental transmission of antibiotics. At high antibiotic con-
centrations, antibiotics support the survival of microorganisms by serv-
ing as ‘defense weapons’ against competitors (Linares et al., 2006;
Macheleidt et al., 2016), which benefits individuals but comes at the ex-
pense of reducing population diversity and stability (Xavier, 2011). At
low antibiotic concentrations, antibiotics serve as signaling molecules
that regulate homeostasis of microbial communities by stimulating
inter-species and intra-species communication or by conferring an ad-
vantage in nutrient acquisition (Goh et al., 2002). Consequently, micro-
bial interactions may be enhanced. Low concentrations of antibiotics
can also induce biofilm formation, increase bacterial motility, and trig-
ger secreting virulence factors required for pathogenesis (Linares
et al., 2006; Rumbaugh et al., 2009). Considering that the antibiotic
transmission chain varies by antibiotic concentrations, investigatingmi-
crobial dynamics along the transmission chain provides an important
opportunity for evaluating the different roles of low and high antibiotic
concentrations in antibiotic resistance development.
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Association networks have recently been used to identify keystone
ARGs, functional groups, and biochemical pathways that act in concert
to modulate bacterial responses to antibiotics (Gardner et al., 2003;
Kohanski et al., 2007; Kohanski et al., 2008). In a simulated network,
antibiotic-degrading taxa attenuated the inhibitory interactions be-
tween antibiotic-producing taxa and antibiotic-sensitive taxa (Kelsic
et al., 2015). Such three-way interactions among taxa were also ob-
served in biofilms in a laboratory experiment (Narisawa et al., 2008).
In another network study, tetM and aminoglycoside resistance genes
were identified as keystone genes that can be used to quantitatively es-
timate the abundance of 23 other co-occurring genes responsible for
aminoglycoside, bacitracin, and β-lactam resistance (Li et al., 2015).
These findings provide novel insights into potential interactions
among ARGs and their possible hosts beyond common analyses of com-
munity diversity and composition.

Methods of ecological process analyses have been developed to ex-
plain the phylogenetic assembly of microbial communities (Stegen
et al., 2013; Zhao et al., 2019). Both deterministic (e.g., abiotic or biotic
selection) and stochastic processes (e.g., birth, death, and immigration)
are essential in shaping microbial interactions (Z. Zhang et al., 2019;
Zhou et al., 2014). For example, high antibiotic concentrations in the en-
vironment could impose severe stress on the microbial community so
that cooperation among microorganisms is necessary for survival (Hui
et al., 2013). In comparison, microbial interactions in a less stressful en-
vironment could change with random birth-death events, colonization,
and immigration (Ning et al., 2019). However, it has seldombeen exam-
ined whether deterministic or stochastic processes play dominant roles
in affecting microbial interaction along the environmental transmission
chain of antibiotics.

In this study, we collected manure samples in five swine farms lo-
cated in the suburban area of Beijing, China. As animal manure is regu-
larly treated by aerobic compost before applying to agricultural fields,
we also took compost samples and compost-amended agricultural
soils. Since compost-amended agricultural fields can potentially affect
neighboring soils, we collected agricultural soils without compost
amendment from the same agricultural field. Along this environmental
transmission chain, antibiotic concentrations decreased rapidly from
16,761 μg/kg to 4 μg/kg. We divided the samples into ten groups
based on their antibiotic concentrations. We generated bacterial associ-
ation networks using sequencing data of 16S rRNA gene amplicons. We
generated functional association networks using a large number of
ARGs detected by a microarray-based tool named GeoChip (Shi et al.,
2019). We aim to test three hypotheses: (i) Since high antibiotic stress
reduces bacterial coexistence, bacterial networks would become more
intricate with decreasing antibiotic concentrations; (ii) since high anti-
biotic stress enhances community resistance, functional networks
would become less complex with decreasing antibiotic concentrations;
and (iii) deterministic processes imposed by antibiotic stress would
play less important roles in determiningmicrobial interactionswith de-
creasing antibiotic concentrations.

2. Materials and methods

2.1. Sample collection and measurements of geochemical factors

In April 2015, we collected four manure and four aerobic compost
samples from each of five swine farms located in the suburban area of
Beijing, China.We also collected four soil samples onemonth after com-
post amendment (compost-amended soil) from a nearby agricultural
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field. Since compost could be further disseminated to neighboring soils,
we collected four soil samples without compost amendment in the
same agricultural field. Totally, 80 samples were collected (4 manure
samples + 4 compost samples + 4 compost-amended soil samples +
4 unamended soil samples) × 5 swine farms. For each sample of
compost-amended soil and unamended soil, three soil cores were
taken at the 0–15 cm soil depth and thoroughly mixed to have enough
samples for soil geochemistry and microbiology analyses. All samples
were stored in a portable 4 °C refrigerator. After immediate transporta-
tion to the laboratory, each sample was divided into two parts: onewas
stored at 4 °C for analyses of antibiotic concentrations, and the other one
was stored at−80 °C for microbial DNA extraction.

Soil temperature was in situ measured three times by thermometer
and averaged for each sample. Similarly, water content was measured
three times by hygrometer and averaged.We focused on several classes
of antibiotics including tetracyclines (chlortetracycline, oxytetracycline,
and tetracycline), sulfonamides (sulfadiazine, sulfadimidine, sulfamera-
zine, and sulfamethoxazole), and quinolones (norfloxacin and
ofloxacin) because they are commonly used and employed in many
large scale livestock practices (Yang and Carlson, 2003). Concentrations
of those antibiotics were analyzed by a previously published method
(Zhao et al., 2010). Briefly, 0.1 g of Na2EDTA and 10 ml of an extraction
solution containing phosphate buffer (pH = 3.0) and acetonitrile (1:1
vol/vol) were used. After sonication for 30 min, samples were centri-
fuged at 7000 ×g for 10min. The soil extraction process was performed
three times in each sample. The obtained supernatants were combined
and then diluted to 500 ml with deionized water, filtered through
0.45 μm filters, and acidified to pH 3.0 before solid-phase extraction.
The samples were extracted using 6 ml of Oasis HLB extraction car-
tridges. Final extracts were transferred to 2 ml amber vials for analysis
of liquid chromatography-MS/MS (ABI 3200 Q TRAP, Applied
Biosystems, California, USA).

2.2. DNA extraction

DNA was extracted from 1.5 g of the sample by freeze-grinding and
SDS-based lysis as described previously (Ding et al., 2015), and purified
with a MoBio PowerSoil DNA isolation kit (MoBio Laboratories, Carls-
bad, CA, USA) according to the manufacturer's protocol. DNA quality
was assessed based on 260/280 nm and 260/230 nm absorbance ratios
using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technolo-
gies Inc., Wilmington, DE, USA). Final DNA concentrations were quanti-
fied by PicoGreen using a FLUOstar Optima fluorescence plant reader
(BMG Labtech, Jena, Germany). DNA was stored at−80 °C until further
analyses.

2.3. Amplicon sequencing experiments and raw data analyses

The V4 hypervariable regions of 16S rRNA genes were amplified
with the primer pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
806R (5′-GGACTACHVGGGTWTCTAAT-3′). The sequencing experiment
was carried out on a MiSeq platform (Illumina Inc., San Diego, CA, USA)
using a 2 × 150 pair-end format. Raw sequences were submitted to our
Galaxy sequence analysis pipeline (http://zhoulab5.rccc.ou.edu:8080)
(Wu et al., 2016). Raw sequenceswere assembled using FLASH. Joint se-
quences with an ambiguous base or a length of <245 bpwere discarded
for the 16S rRNA gene. After that, sequences were clustered into OTUs
using UPARSE17 at 97% identity. Singletons and chimeras were re-
moved from the remaining sequences. All sequences were randomly
resampled to the depth of 31,109 sequences per sample.

2.4. GeoChip hybridization and raw data processing

The functional genes were analyzed with a microarray-based tool
named GeoChip 5.0 (Agilent Technologies Inc., Santa Clara, CA, USA),
which contains 9277 probes belonging to antibiotic resistance gene
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families. Scanning of GeoChip hybridization and data processing were
performed as described previously (Liu et al., 2015; Yue et al., 2015).
In short, DNA samples were labeled with fluorescent dye Cy-3 dUTP
and hybridized with GeoChip 5.0 in a rotator/incubator at 67 °C plus
10% formamide and rotated at 20 rpm for 24 h. After hybridization,
the slides were scanned with a NimbleGen MS200 Microarray Scanner
(Roche Inc., South San Francisco, CA, USA), and the scanned images
were digitally extracted using the Agilent Feature Extraction software
v11.5. Raw data were submitted to the Microarray Data Manager on
the website (http://ieg.ou.edu/microarray) (Zhou et al., 2010). We re-
moved spots with the signal-to-noise ratio below 2, which was consid-
ered to be of poor quality. Both the universal standard and functional
gene spot intensities were used to normalize the signals among
microarrays.

2.5. Network analyses

We divided 80 samples into ten groups according to the total con-
centration of nine categories of antibiotics, with each group containing
eight samples (Table S1). The total antibiotic concentration decreased
from Group 1 to Group 10. The common and rare OTUs/ARGs across
samples in abundance versus prevalence plots are shown in Fig. S1. To
minimize the possibility of false-positive results, only OTUs or ARGs de-
tected in more than six samples of each group were used for the net-
work construction following previous protocols (Wu et al., 2016). In
brief, rank-based Spearman correlation, widely used for microbial net-
work construction (Barberan et al., 2012; Weiss et al., 2016; Wu et al.,
2016), was adopted to calculate the correlation matrix of OTUs or
ARGs. The correlation matrix was then converted to a similarity matrix,
which measures the degree of concordance between OTUs or ARGs
across different samples by taking the absolute values of the correlation
matrix (Yang et al., 2009). Then, randommatrix theory (RMT)was used
to automatically define the appropriate similarity threshold (St) (Wu
et al., 2016; Yang et al., 2009), which defines the minimal strength of
the connections between each pair of nodes. RMT distinguishes
system-specific, nonrandom associations from random associations
and thus enables robustness of the network to random noise. In order
to compare network topologies under the same condition, we used uni-
form St values to generate bacterial networks (St=0.95) and functional
works (St = 0.98). The uniform thresholds were determined by two
criteria: (i) eigenvalues of the correlationmatrices under this threshold
followed the Poisson distribution; and (ii) the threshold was as low as
possible (Yang et al., 2009). Subsequently, an adjacency matrix was ob-
tained by retaining all the OTUs or ARGs whose similarity values were
greater than the determined threshold.

A total of 100 random networks corresponding to each network
were generated using the Molecular Ecological Network Analyses
(MENA) pipeline (http://ieg4.rccc.ou.edu/mena). The numbers of
nodes and links in randomnetworkswere constant, but all the links' po-
sitionswere rewired randomly so that the rewirednetworkwas compa-
rable to the empirical one (Maslov and Specificity, 2002). All network
properties were calculated individually for each random network. The
significance of network properties between the empirical and random
networkswas examined by Z-test using the ‘BSDA’ package in R. The to-
pological properties of each network were characterized using the
MENA pipeline. The topological properties included the total number
of nodes, the total number of links, average degree (avgK), centraliza-
tion of degree (CD), average clustering coefficient (avgCC), harmonic
geodesic distance (HD), centralization of betweenness (CB), centraliza-
tion of stress centrality (CS), network density, modularity, the number
of positive and negative links, and proportion of positive and negative
links. Detailed definitions of these properties are described in Table S2.
All networks were graphed using Gephi v. 0.92 (Bastian et al., 2009).
Nodes in the networks were classified into four categories according
to within-module connectivity (Zi) and among-module connectivity
(Pi): network hubs (highly connected nodes within the entire network,
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Zi > 2.5 and Pi > 0.62), module hubs (highly connected nodes within
the modules, Zi > 2.5 and Pi ≤ 0.62), connectors (nodes that connect
the modules, Pi> 0.62), and peripherals (nodes connected in the mod-
ules with few links, Zi< 2.5 and Pi ≤ 0.62) (Olesen et al., 2007;Wu et al.,
2016). Because network hubs, module hubs, and connectors have high
within-module and among-module connectivity, they are regarded as
putative keystone taxa.

To reduce the potential noise in network construction caused by the
sample number, we also divided 80 samples into three groups (Group 1,
Group 2, and Group 3) with decreasing antibiotic concentrations, with
each group containing 27 or 26 samples.We then constructed both bac-
terial and functional networks for each group. The topological proper-
ties of those networks were calculated.

2.6. Statistical analyses

We calculated α-diversity of bacterial and functional communities
in each group with three indices (i.e., richness, Simpson index, and In-
verse Simpson index), using the ‘Picante’ package in R. Pearson correla-
tion was calculated to relate α-diversity indices in each of 10 groups to
average antibiotic concentrations, which were natural logarithmic
transformed to normalize the data. ‘Cor.test’ function in the ‘stats’ pack-
age of R was used to calculate Pearson correlations. P values of Pearson
correlationswere adjusted by the 5% false discovery rate using ‘p.adjust’
function in the ‘stats’ R package.

We conducted the linear mixed-effects model with antibiotic con-
centration, soil water content, soil temperature, and sample type as
fixed effects while sampling site as the random effect by using the
‘lme4’ R package. Wald type II χc2 tests were used to calculate the P
values from the linear models by using the ‘car’ R package. One-way
ANOVAwas conducted to test whether network properties differed be-
tween groups by using the ‘aov’ function in R. For each network prop-
erty, the ANOVA model structure was set as a network
property~order. The order was labeled as “high” for Group 1 to Group
5 and “low” for Group 6 to Group 10 in the ANOVA model according
to average antibiotic concentrations of those groups. P values of the
ANOVA models were adjusted using ‘p.adjust’ function in R. To deter-
mine which category of antibiotics best explained the observed varia-
tions in network properties, the random forest analysis was
performed with 1000 permutations using ‘randomforest’ and
‘rfPermute’ packages (Banerjee et al., 2019). Antibiotics were regarded
as predictors. The best predictors were identified based on their impor-
tance using ‘importance’ and ‘varImpPlot’ functions. An increase in node
purity and mean square error were used to determine the significance
of the predictors using the package ‘randomForestExplainer’
(Paluszynska and Biecek, 2017). Significant (P < 0.05) predictors were
presented. MSEOOB was used to represent the mean squared out-of-
bag error of the random forest model (Liaw and Wiener, 2001).

2.7. Ecological process analyses

To investigate the relative importance of deterministic and stochas-
tic processes, we performed the null model analysis using abundance-
weighted similarity metrics of bacterial OTUs, as shown previously
(Stegen et al., 2013). First, we quantified the nearest-taxon index
(NTI) using function ‘ses.mntd’ in the ‘picante’ package. NTI is the nega-
tive of the output of function ‘ses.mntd’, which quantifies the number of
standard deviations that the observed mean nearest taxon distance is
from the mean of the null distribution. NTI that is significantly different
from zero indicates phylogenetic clustering (NTI > 0) or over-
dispersion (NTI < 0). Second, we quantified βNTI (β nearest-taxon
index) for all pairwise community comparisons using an in-house pipe-
line (http://166.111.42.42:8080/) (Wu et al., 2016). The βNTI is based
on a null model test of the phylogenetic βmean nearest-taxon distance
characterizing the turnover in phylogenetic community composition. A
value of |βNTI| > 2 indicates that the observed community assembly is
4

governed primarily by deterministic processes, while a value of
|βNTI| < 2 indicates that the observed community assembly is governed
primarily by stochastic processes.

3. Results

3.1. Bacterial taxa and ARGs

Alarmingly, all nine antibiotics measured here were detected in
most of the samples (Table S1). Total concentrations of nine antibiotics
decreased from 33,002 μg/kg to 1 μg/kg across samples. Based on the
total concentration of antibiotics,we divided 80 samples into ten groups
based on antibiotic concentrations, with eight samples in each group
(Fig. S2). Soil water content and temperature were significantly
(P < 0.05 by Wilcox test) higher in manure and compost than in
compost-amended soil and control soil (Fig. S3).

A total of 31,109 16S rRNA gene amplicon sequences were obtained,
reaching saturation that was evident by the rarefaction curve (Fig. S4).
Subsequently, 74,676 bacterial OTUs were generated based on the 97%
identity criterion, with an average of 5447 OTUs per sample. α-
diversity indices (i.e., OTU richness, Shannon index, and inverse
Simpson index) were negatively correlated (r = −0.81 to −0.66,
P < 0.01 by Pearson correlation) with antibiotic concentrations
(Fig. S5), verifying that antibiotics imposed an adverse impact on bacte-
rial communities. Bacterial community was correlated with nine antibi-
otics (r = 0.09–0.35, P < 0.05 by Mantel test; Table S3) and soil water
content (r = 0.23, P < 0.05), but not with soil temperature. There was
a sharp transition of bacterial community composition from Group 5
to Group 6 (Fig. S6), wherein antibiotic concentrations were intermedi-
ate. Specifically, Group 1 to Group 5 was dominated by phylum
Firmicutes (80%), followed by Bacterioidetes (8%) and Proteobacteria
(5%). The largest three modules of bacterial networks were dominated
by Clostridiales (69%), followed by orders Bacteroidales (9%) and
Lactobacillales (8%) (Table S4). The most abundant phylum from
Group 6 to Group 10 was Proteobacteria (37%), followed by
Actinobacteria (18%) and Acidobacteria (15%) (Fig. S6). The most abun-
dant orders (8%) in the largest three modules of bacterial networks
were Rhizobiales and Gp6, followed by orders Actinomycetales (6%) and
Myxococcales (6%) (Table S4).

A total of 9278 unique ARGs were detected, with an average of 5172
ARGs per sample. Relative abundances of 14 ARG categories were simi-
lar across ten groups (Fig. S7a), suggesting that functional potentials of
antibiotic resistance were stable. Nonetheless, α-diversity indices of
ARGs (i.e., richness, Shannon index, and inverse Simpson index) were
negatively correlated (r=−0.63 to−0.52, P<0.05 by Pearson correla-
tion) with antibiotic concentrations (Fig. S7b), probably reflecting a re-
duced functional redundancy of ARGs at high antibiotics concentrations.
ARGs were correlated with nine antibiotics (r= 0.12–0.52, P < 0.05 by
Mantel test; Table S3), but not with soil water content and soil temper-
ature. The largest three modules of 10 functional networks were domi-
nated byMFS efflux transporter genes (>56%), followed byMex (>22%)
and ABC (>4%) genes (Table S4).

3.2. Topological properties of association networks

We constructed bacterial networks and functional networks for each
of the ten groups (Fig. 1). The network topology of bacterial and func-
tional networks fit the power-law distribution very well (Tables S5 &
S6), suggesting that only a few nodes of the networks outnumbered in
links compared to the rest nodes of the networks (Wu et al., 2016).
The bacterial and functional networks significantly (P < 0.05 by Z-
test) differed from corresponding random networks generated with
the same numbers of nodes and links (Tables S5 & S6), suggesting that
the observed network properties were nonrandom. The harmonic geo-
desic distance (HD) values of all networkswere close to the logarithmof
the number of network nodes, suggesting that those networks

http://166.111.42.42:8080/


Fig. 1. (a) Bacterial and (b) functional networks divided into ten groups. Networkswere constructed based on randommatrix theory (RMT) algorithms. There are eight biological replicates
in each group, wherein nodes represent OTUs in bacterial networks or ARGs in functional networks. Links between the nodes indicate significant correlations.Modules in each network are
randomly colored, except that modules with less than ten nodes are colored in black.

Table 1
The main and interactive effects of environmental factors on bacterial and functional net-
work properties by linear mixed-effects models.

Dfa Bacterial network Functional network

P P

LnTotalb 2 0.04c 0.02
Water 2 0.99 0.99
Temp 1 0.79 0.78
Type 4 0.98 0.87
LnTotal × Water 1 0.89 0.72
LnTotal × Temp 1 0.70 0.81
Water × Temp 1 0.98 0.55
LnTotal × Type 3 0.85 0.76
Water × Type 3 0.99 0.98
Temp × Type 3 0.95 0.99
LnTotal × Water × Temp 1 0.82 0.90
LnTotal × Water × Type 3 0.98 0.99
LnTotal × Temp × Type 3 0.99 0.99
Water × Temp × Type 3 0.99 0.99
LnTotal × Water × Temp × Type 3 0.95 0.95

a Df: the degree of freedom.
b Abbreviations: LnTotal, the natural log-transformed total concentration of antibiotics;

Water, soil water content (%); Temp, soil temperature; Type, sample types including ma-
nure, compost, compost-amended soil, and unamended agricultural soil.

c Significant (P < 0.05) values are labeled in bold.
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possessed the typical property of a small world (Yang et al., 2017). Pos-
itive links accounted formore than 74%of all links in bacterial networks,
except for the network of Group 6 containing only 47% positive links
(Table S5). Therefore, most of the bacterial taxa tended to be co-
occurring (i.e., positive links) rather than co-excluding (i.e., negative
links). Similarly, positive links accounted for more than 56% of all links
in functional networks (Table S6). Interestingly, functional networks
of high antibiotic concentrations (from Group 1 to Group 5) only
contained several links, resulting in isolated networks (Fig. 1).

The topological properties of bacterial and functional networks be-
came substantially different among groups, as indicated by the ANOVA
test (Table S7). The linear mixed-effect model showed that antibiotic
concentrations exerted significant effects on topological properties of
both bacterial (P = 0.04 by Wald type II χc2 test) and functional (P =
0.02 byWald type II χc2 test) networks (Table 1). In contrast, the effects
of other environmental factors, including sample type, soil water con-
tent, soil temperature, and the interactions among them, were not sig-
nificant. The total number of nodes was negatively correlated (r =
−0.91, P < 0.05 by Pearson correlation) with antibiotic concentrations
in both bacterial and functional networks (Fig. 2), consistentwith an ex-
pectation that high antibiotic stress decreased network sizes. As the
number of nodes relates to the total link number, we showed that the
average number of links per node was insignificantly correlated
5



Fig. 2. Pearson correlations between antibiotic concentrations and selected topological properties of (a) bacterial and (b) functional networks. The topological properties of different
networks are colored differently based on the group. Y-axis: values of network topological properties based on formulas in Table S2. AvgCC represents the average clustering
coefficient, and HD represents harmonic geodesic distance.
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(P>0.05 by Pearson correlation)with antibiotic concentrations (Fig. 2).
Nonetheless, the average clustering coefficient, density, and transitivity
of bacterial networks were positively correlated (r = 0.58–0.84,
P < 0.05 by Pearson correlation) with antibiotic concentrations
(Fig. 2a), suggesting that bacterial networks became less connected
when antibiotic stress was lower. In contrast, topological properties of
functional networks, including average clustering coefficient, average
path distance, harmonic geodesic distance, and node connectedness,
were negatively correlated (r = −0.77 to −0.59, P < 0.05 by Pearson
correlation) with antibiotic concentrations (Fig. 2b), suggesting that
functional networks were more connected at lower antibiotic
concentrations.

The networks of each group were reconstructed from only eight
samples, which could have high noise because the number of n is
small. To evaluate it, we re-divided all samples into three groups
based on antibiotic concentrations. We showed that the total number
of nodes of networks increased with lower antibiotic concentrations
(Fig. S8). The average clustering coefficient and transitivity of bacterial
networks decreased, while the average clustering coefficient, average
path distance, and connectedness of functional networks increased
with lower antibiotic concentrations (Fig. S8). The results suggested
that the relationships between network properties and antibiotic con-
centrations were not affected by the number of samples used for net-
work construction.

Random forest modeling revealed that ofloxacin best explained
(P< 0.05) average clustering coefficient, network density, and negative
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link number of bacterial networks (Fig. S9a). In contrast, tetracycline
best explained the average clustering coefficient, average path distance,
and network connectedness of functional networks (Fig. S9b).

Modularity is a topological property to describe howwell a commu-
nity could be divided into modules (Wu et al., 2016). Both bacterial and
functional networks were modular because themodularity values were
significantly (P< 0.05 by Z-test) higher than those of the corresponding
randomized networks (Tables S5 & S6). Themodularity values of bacte-
rial networks ranged from 0.42 to 0.76, while that of functional net-
works ranged from 0.72 to 0.99 (Fig. 3). Interestingly, the modularity
values of bacterial networks were humped (unimodal) in response to
antibiotic concentrations (Fig. 3a), which was not observed in func-
tional networks (Fig. 3b).

3.3. Putative keystone taxa and ARGs of association networks

Module hubs and connectors in bacterial networks from Group 1 to
Group 5 were dominated by Clostridiales (67%), followed by
Lactobacillales (13%) and Bacteroidales (9%) (Table S8). In networks
from Group 6 to Group 10, 12% of module hubs and connectors
belonged to Clostridiales, followed by Gp6 (10%) and Rhizobiales (7%).
Notably, only a few module hubs and connectors were present in
more than one network (Table S9). OTU 1631 affiliated to the genus
Clostridium sensu stricto was identified as a module hub in networks
of Group 5 and Group 6. OTU 74513 affiliated to the genus Sporobacter
was identified as a module hub in networks of Group 2 and Group 4.



Fig. 3. (a) Variation in themodularity values of bacterial networks over ten groups; (b) variation in themodularity values of functional networks over ten groups; (c) variation inmicrobial
phylogenetic indices of nearest taxon index (NTI), β nearest-taxon index (βNTI) over ten groups; and (d) variation in the explanation power of variable selection for bacterial community
assembly over ten groups. Antibiotic concentrations are natural log-transformed. Group numbers are labeled in circles.
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OTU 52794 affiliated to the genus Rudaea was identified as a module
hub in networks of Group 7 and Group 10.

Only four network hubswere detected in bacterial networks. Among
them, three network hubs, i.e., OTU 32445 affiliated to the genus
Terrisporobacter, OTU 7034 affiliated to the genus Clostridium sensu
stricto and OTU 140488 affiliated to the genus Arthrobacter, were pres-
ent in the network of Group 6. OTU 98648 affiliated to the genus
Phascolarctobacteriumwas a network hub of Group 4 (Table S9).

In functional networks, β-lactamase genes associated with β-
lactamase resistance, ABC genes associated with ABC transporter ATP-
binding, SMR genes associated with multidrug efflux system proteins,
MATE genes associated with multidrug and toxic compound extrusion,
tet genes associated with tetracycline resistance, Mex genes encoding
multidrug resistance proteins, andMFS genes encoding drug resistance
transporters were identified as module hubs or connectors (Fig. S7c).
Unlike observations in bacterial networks, none of those keystone
ARGs was present in more than one functional network. No network
hub was detected in functional networks.

3.4. Ecological processes of bacterial community assemblies

To elucidate the underlying mechanism of the sharp transition of
bacterial community composition from Group 5 to Group 6, we exam-
ined the relative importance of deterministic versus stochastic pro-
cesses in shaping bacterial community assemblies. NTI values were
significantly (P < 0.05 by null model) higher than zero (Fig. 3c) from
Group 1 to Group 5, showing the phylogenetic clustering of bacterial
communities. The observed bacterial community turnover was signifi-
cantly (P< 0.05 by null model) greater than the null model expectation
(|βNTI| > 2), suggesting that deterministic processeswere dominant for
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the community assembly. In contrast, NTI values in Group 6 to Group 10
were significantly (P < 0.05 by null model) lower than zero, showing
phylogenetic over-dispersion of bacterial communities. The observed
community turnover was significantly (P < 0.05 by null model) less
than the null model expectation (|βNTI| < 2), suggesting that stochastic
processes were dominant for the community assembly. A closer exam-
ination showed that the relative importance of variable selection de-
creased from 75% to 0.2% from Group 1 to Group 10 (Fig. 3d), which
demonstrated that antibiotic selection was a major driver of bacterial
communities at high antibiotic concentrations.

4. Discussion

With much of current work focusing on the diversity and composi-
tion of bacterial or functional communities, our understanding ofmicro-
bial association networks, which represent potential ecological
relationships within microbial communities, remains rudimentary. In
the present study, bacterial networks were constructed with bacterial
OTUs from 16S rRNA gene sequencing and functional networks were
constructed with ARGs detected by GeoChip. The RMT-based networks
are advantageous in its excellent capacity in tolerating noise (Luo et al.,
2007), which is important for dealing with the large-scale data such as
high-throughput sequencing and GeoChip. These networks can simplify
complicated relationships among microbial members and identify key-
stone taxa with important roles in maintaining community structure
and function (Power and Tilman, 1996; Wu et al., 2020). Thus, the net-
works provide a holistic angle for characterizing communities, consid-
ering the lack of other tractable methodologies in exploring species
associations in diverse and largely uncultivated microbial communities
(Zhou et al., 2011). However, the correlation-based association
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networksmay not represent physical interaction or cell-to-cell commu-
nication amongmicroorganisms. Therefore, species associations and ex-
perimentally determined species interactions are often inconsistent
(Barner et al., 2018).

The association networks delineate variations among nodes, which
reflect their responses to environmental perturbations or shared niches
(Shi et al., 2016). Network density, connectivity, and transitivity quan-
tify how quickly the community responds to external perturbations be-
cause densely connected nodes coordinate better, rendering the
network more resilient to perturbations (De Anda et al., 2018). Gener-
ally, higher antibiotic stress could lead to reduced diversity of microbial
communities, which will simplify the community structure and reduce
species connectivity (Kraemer et al., 2019). It could also hold truewhen
concentrations of heavy metal or other organic pollutants are high
(Kong et al., 2006; Szekeres et al., 2018), as they can be toxic for micro-
organisms. In the present study, we observed positive correlations be-
tween antibiotic concentrations and topological properties of average
clustering coefficient, network density, and network transitivity of bac-
terial communities (Fig. 2a), suggesting that bacterial networks were
more intensively connected and more robust to stress when antibiotic
concentrations were high, whichmight be due to the following reasons.

Multidrug-resistant organisms can form interactive networks under
antibiotic exposure, which aggravates risks of development and coloni-
zation of other resistant microorganisms (Wang et al., 2017).When ex-
posed to antibiotics, a small number of resistant cells of Escherichia coli
can protect other vulnerable cells by producing indole, which acted as
a cell-signaling chemical (Lee et al., 2010). As a result, antibiotics
could foster greater direct and indirect interactions among bacteria.
Nonetheless, it is also likely that some of the synchronized variations
in bacterial networks represent niche sharing between taxa (Berry
and Widder, 2014). Therefore, more bacterial network connectivity at
high antibiotic concentrations (Fig. 2a) could result from both intensive
taxa interactions and the development of shared guilds or niches. In
contrast, connectivity among ARGs (i.e., average clustering coefficient)
was negatively correlatedwith antibiotic concentrations (Fig. 2b), prob-
ably reflecting a reduced functional redundancy owing to antibiotic se-
lection. The decreased connectivity among ARGs might be attributed to
the decreased number of ARGs caused by taxa loss. Antagonistic interac-
tions among different antibiotics can also reduce the functional redun-
dancy of ARGs (Yeh et al., 2009).

Topological properties of bacterial networks were best explained by
ofloxacin (Fig. S9a), one of themost commonly used fluoroquinolone an-
tibiotics for animal disease control (Massé et al., 2014). Ofloxacin de-
grades very slowly and could persist in the environment for a long time
(Massé et al., 2014). However, fluoroquinolone-resistant bacteria could
survive high concentrations of ofloxacin and repopulated after ofloxacin
treatment ceased (Gardner et al., 2004). Therefore, our finding of the sig-
nificant impact of ofloxacin on bacterial interactions could serve as a hith-
erto overlookedmechanism to facilitate the transfer of ARGs. In contrast,
the topological properties of functional networks were best explained by
tetracycline (Fig. S9b). We detected highly abundantMFS efflux genes in
functional networks (Fig. S7a), whichwas vital for soil bacteria resistance
to tetracycline via detoxification of metabolic intermediates, virulence,
and signal trafficking (Gibson et al., 2014; Sailer et al., 2003).

Keystone taxa are highly connected taxa, which affect the network
stability substantially when they are removed. Themajority of keystone
bacterial taxa belong to the order Clostridiales, many of which are well
known as opportunistic pathogens that produce toxic chemicals
(Africa et al., 2014). OTU 1631 from the genus Clostridium sensu stricto
was a module hub in bacterial networks of Group 5 and Group 6
(Table S9), unveiling potential risks of pathophoresis through taxa con-
nections. OTU 74513 from the genus Sporobacterwas also identified as a
module hub in bacterial networks of Group 2 and Group 4. Sporobacter
can grow exclusively on a limited range of aromatic compounds,
which facilitate its survival at high antibiotic concentrations (Grech-
mora et al., 1996).
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Mathematically, network modularity can predict system failure
since higher modularity enhances system resilience of both natural
and constructed networks by reducing signal cascades (Haldane and
May, 2011). More specifically, highmodularity could provide an advan-
tage for bacterial communities to be more resilient to antibiotic stress
(Newman, 2006). As bacterial network modularity decreased dramati-
cally at the intermediate antibiotic concentration (Fig. 3a), it could be
a sensitive indicator for bacterial community variations in response to
environmental perturbation. Both heterogeneity and connectivity of
nodes are strongly related to network modularity (van Nes and
Scheffer, 2005). In a community wherein taxonomic diversity is high,
a modular feature allows different groups of taxa to perform indepen-
dent functions, resulting in less overlap and connectivity among bacte-
rial taxa (Faust and Raes, 2012). As a result, the network can be robust
and resilient to environmental perturbation. As connectivity
(i.e., average clustering coefficient in Fig. 2a) of bacterial networks fur-
ther increased with increasing antibiotic concentrations, highly con-
nected networks could easily cascade into a systemic transition when
a local perturbation occurs (van Nes and Scheffer, 2005).

Ecological processes are keymechanisms for alteringmicrobial com-
munity compositions, thus interactions among microbes (Wong et al.,
2017). High antibiotic concentrations select for phylogenetically con-
served bacterial taxa (Fig. 3c), which could form clusters of densely
interacting nodes that perform similar functions or share similar niches
(Sharan and Ideker, 2006). The resulting networks have high inner con-
nectivity within modules while being loosely connected to the rest of
the network, leading to high modularity of the network (Bebek and
Yang, 2007; Erten et al., 2009; Koyutürk et al., 2006). In contrast, taxa
may randomly interact within and among themselves, which helps
maintain network stability when most connected nodes are removed
from the network (Memmott et al., 2004). Therefore, the shift from de-
terministic processes to stochastic processesmight confer robustness to
the bacterial community compositions undergoing considerable
changes from Group 5 to Group 6 (Fig. S6).

To validate those observations experimentally, one can explore a
bottom-up approach designing community with known species that
grow on culture mediums with decreasing gradient of antibiotic con-
centrations. The association networks based on the experimental data
can be compared with the empirical networks. Community assembly
mechanisms could also be inferred from the experimental data and
compared with the empirical assemblies.

The nature of the amplicon-based data, such as compositionality and
sparsity, could bring in spurious correlations in the network (Gloor
et al., 2017; Layeghifard et al., 2017). The compositional effects should
be considered for communities with low effective numbers of species
(inverse Simpson index < 13), but it is suggested that the effects are
generally insignificant for highly diverse communities (Weiss et al.,
2016), which is verified here since the inverse Simpson index of bacte-
rial communities is larger than 17 across samples and that of ARGs is
larger than 300 (Figs. S5 & S7). We also accounted for some of the spar-
sity by filtering out rare OTUs prior to network construction. Addition-
ally, the different sample types did not evenly represent different
microbial groups in our study, owing to different nutrient levels and
physical properties of samples. It was recently shown that antibiotic
pollution-induced community tolerance was enhanced upon additional
soil amendmentwith fresh pig slurry, signifying the importance of sam-
ple types in affecting microbial communities (Schmitt et al., 2005).

5. Conclusions

Our study highlights that bacterial networks became more con-
nected in environments with higher antibiotic concentrations, which
may facilitate the transmission of antibiotic resistance within microbial
communities. Bacterial communities have undergone huge taxonomic
composition changes along the antibiotic transmission chain, and the
network modularity was a good indicator of the community changes
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in response to antibiotics. Shifts in microbial community assembly pro-
cesses were identified as the possible mechanisms underlying the dy-
namics of microbial interactions. Collectively, our study signifies the
potential roles of microbial interactions in tracking the transmission of
antibiotic resistance in the environment.
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