1 2	Supplementary Information for
3	Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation
4	in a decade-long grassland study
5 6	Oun Gao ^{a#} , Gangsheng Wang ^{b#} , Kai Xue ^{b,c} , Yunfeng Yang ^{a*} , Jianping Xie ^{b,d} , Hao Yu ^{b,e,f} ,
7	Shijie Bai ^{b,g} , Feifei Liu ^{b,h} , Zhili He ^{b,i} , Daliang Ning ^b , Sarah E Hobbie ^j , Peter B Reich ^{k,l} and
8	Jizhong Zhou ^{a,b,m*}
9 10 11 12 13	* Corresponding authors: Dr. Yunfeng Yang; E-mail: <u>yangyf@tsinghua.edu.cn</u> ; Dr. Jizhong Zhou; E-mail: <u>jzhou@ou.edu</u>
14 15	This PDF file includes:
16	Supplementary text
17	Figures S1 to S3
18	Tables S1 to S15
19	SI References
20	

21 Supplementary Information Text

22 Detailed modeling methods

23 a. Data sources. Daily GPP values were obtained from a corrected 8-day GPP product 24 based on the MODIS GPP (MOD17A2/MOD17A2H) (1) and used for the model 25 simulation of the aCaN plots. We calculated the sum of aboveground plant biomass and 26 ingrowth root biomass to estimate the net primary production (NPP) (2) for each plot and 27 averaged NPP across plots for each treatment. The ratio of the averaged NPP of each 28 treatment relative to that in the control (aCaN) was calculated and was multiplied to the 29 MODIS GPP values to obtain the daily GPP values of eCaN, aCeN, and eCeN treatments, 30 considering that there is generally a linear relationship between NPP and GPP (3). 31 Meanwhile, data sets measured in four CO₂ and N treatment plots across all years were 32 also used for model simulations, including soil temperature and moisture and the soil CO_2 33 efflux.

34

35 **b.** C-only TECO model. The non-microbial C-only terrestrial ecosystem (TECO) model 36 is a variant of the CENTURY model (4) that is designed to simulate C input from 37 photosynthesis, C transfer among plant and soil pools, and respiratory C releases to the 38 atmosphere (Fig. S2b). C dynamics in the TECO model can be described by a group of 39 first-order ordinary differential equations, where the C turnover rates are modified by soil 40 temperature (T) and moisture (W) (5). We assumed that the C turnover rate was distributed 41 uniformly in a range. We used the Shuffled Complex Evolution (SCE) algorithm (6-8) to 42 determine model parameters. We also applied the probabilistic inversion (Markov Chain Monte Carlo) to quantity parameter uncertainties (9). By performing TECO modeling,
daily soil CO₂ efflux was simulated for four CO₂ and N treatments from 1998 to 2009.

46 c. C-N coupled Microbial-ENzyme Decomposition (MEND) model

47 **c.1. MEND model description**. We developed a new version of the Microbial-ENzyme 48 Decomposition (MEND) model, i.e., the C-N coupled MEND model (Fig. S2a), which is 49 an improvement over the C-only MEND model by incorporating both N cycling processes 50 and microbial functional traits. The C-only MEND describes SOM decomposition 51 processes by explicitly representing relevant microbial and enzymatic physiology (8). The 52 SOM pool consists of two particulate organic matter (POM) pools and one mineral-53 associated organic matter (MOM) pool. The two POM pools are decomposed by oxidative 54 and hydrolytic enzymes, respectively. The MOM is decomposed by enzymes EM. The C-55 N coupled MEND model represents additional C-N transformation processes: soil organic 56 N (SON) decomposition following the SOC decomposition, N mineralization and 57 immobilization by microbes, nitrification, denitrification, and nitrifier denitrification (10). 58 In contrast to traditional models that use fixed SOM C:N ratios (11, 12), we use flexible 59 stoichiometry (i.e., time-variant C:N ratio) for SOM and microbial biomass pools to more 60 realistically represent the adaption of microbes in response to the stoichiometric imbalance 61 of available resources (13). Model state variables, governing equations, component fluxes, 62 and parameters are described in Table S14–S17, respectively. A model parameter (reaction 63 rate) in MEND may be modified by soil moisture, temperature, or pH (8). MEND 64 represents nitrification, denitrification, microbial dormancy, resuscitation, mortality, and 65 enzymatic decomposition in response to changes in moisture, as well as shifting of

66 microbial and enzymatic activities with changing temperature (14). MEND simulates soil 67 CO₂ efflux (R_s) as the sum of autotrophic (root) respiration (R_a) and heterotrophic 68 (microbial) respiration (R_h) fluxes:

$$69 R_s = R_a + R_h (1a)$$

$$70 \quad R_a = f_{Ra} \times GPP \tag{1b}$$

71
$$R_h = R_{h,g} + R_{h,m} + R_{h,o}$$
 (1c)

where R_a is calculated as a fraction ($f_{Ra} \in (0.1, 0.4)$) of gross primary production (*GPP*, g C m⁻² d⁻¹); and R_h is the sum of microbial growth ($R_{h,g}$), maintenance ($R_{h,g}$), and overflow ($R_{h,g}$) respiration fluxes (see Eq. S11 in Table S13 and Eqs. S27–S31 in Table S14).

75

76 c.2. Model Parameterization. The model parameters were determined by achieving high 77 goodness-of-fit of model simulations against experimental observations, such as $R_{\rm s}$, 78 concentrations of ammonium (NH_4^+) and nitrate (NO_3^-) , relative abundances of genes 79 encoding oxidative (EnzCo) and hydrolytic enzymes (EnzCh) in this study (Table S11). 80 We implemented multi-objective calibration of the model (6, 14). Each objective evaluates 81 the goodness-of-fit of a specific observed variable, e.g., R_s , or relative gene abundances 82 (Table S11). Note that the GeoChip gene abundances were used to constrain the MEND 83 modeling as additional objective functions. The parameter optimization is to minimize the 84 overall objective function (J) that is computed as the weighted average of multiple single-85 objectives (Table S15) (15)

86
$$J = \sum_{i=1}^{m} w_i \cdot J_i$$
(2)

87
$$\sum_{i=1}^{m} w_i = 1 \text{ with } w_i \in [0,1]$$
(3)

88 where *m* denotes the number of objectives and w_i is the weighting factor for the *i*th (*i* = 89 1,2,...,*m*) objective (*J_i*). In this study, *J_i* (*i*=1,2,...,*m*) refers to the objective function value 90 for *R*_s, EnzCo and EnzCh, respectively.

91 As the overall objective function *J* is minimized in the parameter optimization 92 process, the individual objective function J_i may be calculated as $(1 - R^2)$, *MARE*, *|PBIAS|* 93 (absolute value of *PBIAS*):

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} [Y_{sim}(i) - Y_{obs}(i)]^{2}}{\sum_{i=1}^{n} [Y_{obs}(i) - \overline{Y}_{obs}]^{2}}$$
(4)

94

95
$$MARE = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{Y_{sim}(i) - Y_{obs}(i)}{Y_{obs}(i)} \right|$$
(5)

$$|PBIAS| = \left| \frac{\bar{Y}_{sim} - \bar{Y}_{obs}}{\bar{Y}_{obs}} \right| \times 100\%$$
(6)

where R^2 denotes the Coefficient of Determination (16). The R^2 quantifies the proportion 97 98 of the variance in the response variables that is predictable from the independent variables. A higher R^2 ($R^2 \le 1$) indicates better model performance. *MARE* is the Mean Absolute 99 100 Relative Error (MARE), and lower MARE values (MARE ≥ 0) are preferred (17). MARE 101 represents the averaged deviations of predictions (Y_{sim}) from their observations (Y_{obs}) . 102 *PBIAS* is the percent bias between simulated and observed mean values (18). n is the number of data; Y_{obs} and Y_{sim} are observed and simulated values, respectively; and \overline{Y}_{obs} and 103 \overline{Y}_{sim} are the mean value for Y_{obs} and Y_{sim} , respectively. 104

Different objective functions are used to quantify the goodness-of-fit for different variables (Table S15), depending on the measurement method and frequency of variables. The coefficient of determination (\mathbb{R}^2) (16) is used to evaluate the variables (e.g., soil CO₂ efflux) that are frequently measured, and the absolute values can be directly compared 109 between observations and simulations. The *MARE* or *PBIAS* is used to evaluate the 110 variables (e.g., microbial biomass and enzyme concentrations) with only a few 111 measurements, and the absolute values can be directly compared.

We used the modified Shuffled Complex Evolution (SCE) algorithm (6, 7) to calibrate model parameters for the aCO₂-aN plots. We then validated the model by using the same set of model parameters calibrated for aCO₂-aN to simulate R_h and R_s , enzyme concentration, and soil mineral N in the eCO₂-aN, aCO₂-eN, and eCO₂-eN treatment plots. Model simulations for each treatment were driven by the corresponding data: GPP, soil temperature, soil moisture, and soil mineral N (NH₄⁺ and NO₃⁻) input.

118

119 c.3. Uncertainty quantification. The parameter uncertainty in the MEND model was 120 quantified by the Critical Objective Function Index (COFI) method (8). The COFI method 121 is based on a global stochastic optimization technique (e.g., SCE in this study). It also 122 accounts for model complexity (represented by the number of model parameters) and 123 observational data availability (represented by the number of observations). The 124 confidence region of parametric space was determined by selecting those parameter sets 125 resulting in objective function values (J) less than the COFI value (J_{cr}) from the feasible 126 parameter space (8). We used the coefficient of variation (CV) to quantify the uncertainty 127 for 10 calibrated model parameters. The CV values of all calibrated parameters of gMEND, 128 tMEND, and TECO were compared (Fig. 3b).

129

130 **c.4. Estimation of elevated-CO₂ and/or enriched-N induced soil** R_h . To examine extra 131 soil heterotrophic respiration (R_h) caused by eCO₂ and/or eN, percent changes of simulated

132 R_h in response to eCO₂ and/or eN treatment (% $\Delta R_{h,treatment}$) was calculated based on Eq.

- 133 7. As a preliminary test of global significance, we extrapolated our results to the world's
- 134 grasslands (19): the annual soil CO₂ efflux (R_s) was 8.0 Pg C yr⁻¹ in the global grasslands,
- 135 which meant $R_{h,global} = 4.2 \text{ Pg C yr}^{-1}$ in global grasslands based on the relationship between
- 136 R_h and R_s reported by Bond-Lamberty & Thomson (20). We then estimate eCO₂ and/or eN
- 137 would result in more soil C loss as additional $R_h(\Delta R_{h,global})$:

138
$$\Delta R_{h,global} = R_{h,global} \times \% \Delta R_{h,treatment} = R_{h,global} \times \frac{R_{h,treatment} - R_{h,aCO_2 - aN}}{R_{h,aCO_2 - aN}}$$
(7)

- 139 where $R_{h,global}$ (Pg C yr⁻¹) is annual R_h from global grasslands; $\Delta R_{h,global}$ is the extra R_h
- 140 (Pg C yr⁻¹) from global grasslands; R_{h,aCO_2-aN} denotes the mean annual R_h (g C m⁻² yr⁻¹)
- 141 at aCO₂-aN, and $R_{h,treatment}$ is the mean annual R_h (g C m⁻² yr⁻¹) under a specific
- 142 treatment, i.e., eCO₂-aN, aCO₂-eN, or eCO₂-eN.

145 Figure S1. The elevated CO₂ (eCO₂) and enriched N (eN) effects on soil and plant 146 variables. Yellow bars represent aCO_2 plots and blue bars represent eCO_2 plots. The 147 eCO₂ and the eN effect in Phase I (1998-2005) and Phase II (2006-2009) are shown. Percent changes of means of the variables in eCO₂ plots relative to aCO₂ plots at low and 148 149 high N supply, respectively, are labeled in black above the bars. Percent changes in the 150 means of all eN plots relative to all aN plots are labeled in red above the bars. a-b, soil net N mineralization rate (mg kg⁻¹ day⁻¹, averaged for one mid-growing season period per 151 year). c-d, aboveground plant N concentration (%, measured once in August per year). e-152 f, root biomass (g/m², 0-20 cm depth measured twice per year). g-h, total plant N pool (g 153 154 N m⁻², measured once in August per year). **i-j**, soil C/N ratio (measured once in 2002 and 155 2007, respectively). p values of the permutation t-test are labeled as *** when p < 0.01, 156 ** when *p* < 0.01 and * when *p* < 0.10. 157

159 Figure S2. Structure of ecosystem models. a, Carbon-Nitrogen coupled Microbial-160 ENzyme Decomposition (MEND) model. R_a and R_h are autotrophic and heterotrophic 161 respiration, respectively. POM_O and POM_H are particulate organic matter (POM) 162 decomposed by oxidative (EP₀) and hydrolytic enzymes (EP_H), respectively. MOM is 163 mineral-associated OM, which is decomposed by a mixed enzyme group EM. Dissolved 164 OM (DOM) interacts with the active layer of MOM (QOM) through sorption and desorption. Litter enters POM₀, POM_H, and DOM. Microbes consist of active (MB_A) and 165 dormant (MB_D) microbes. DOM can be assimilated by MB_A. Ammonium (NH₄⁺) and 166 167 nitrate (NO₃⁻) can be immobilized by microbes and taken up by plants. **b**, Terrestrial ECOsystem (TECO) model. 168

170 Figure S3. a, Comparison of eCO₂ induced percent changes of hydrolytic and oxidative enzymes observed by GeoChip to the simulated effects by gMEND (gene-incorporated 171 172 MEND model) and traditional MEND without gene information (tMEND) at high N supply. b, Comparison of gMEND-simulated (sim) versus observed (obs) mean soil 173 174 ammonium (NH₄⁺) and nitrate (NO₃⁻) concentrations across 12 experimental years. The 175 percentages represent the absolute values of percent bias (|PBIAS/) between simulated and 176 observed mean concentrations. |PBIAS| < 70% is generally considered as satisfactory for 177 N simulations (21).

Table S1. Trend tests for detecting the changing point of CO₂×N interactive effects on

180 soil CO₂ efflux.

Trand tast	Change	'n	Change	n
Tienu test	monui	p	year	p
	(n = 47)		(n = 12)	
Pettitt's test	June-2005	0.0005	2005	0.0490
Buishand range test	June-2005	0.0030	2005	0.1037
Buishand U test	June-2005	0.0021	2005	0.0290
Standard Normal				
Homogeneity Test	July-2005	0.0014	2005	0.0338
(SNHT)				

Table S2. Summary of the three-way interactive effects of CO_2 , N, and phase on soil and183plant variables based on repeated-measures mixed model across 296 plots. Significant (p184< 0.05) effects are bolded.</td>

Category	Variables	CO ₂ ×N	×Phase ^[1]
		F	р
Soil processes and variables	Soil CO ₂ flux	5.260	0.022
	Soil net N mineralization	33.587	<0.001
	Soil temperature	0.039	0.843
	Soil moisture	0.012	0.913
	Soil pH	0.593	0.441
Aboveground plant variables	Aboveground plant N concentration	13.778	< 0.001
	Aboveground plant C/N ratio	0.119	0.730
	Aboveground plant N pool ^[2]	0.018	0.894
	Aboveground plant biomass	0.075	0.785
Root variables	Root N concentration	0.890	0.345
	Root C/N ratio	1.527	0.217
	Root N pool ^[2]	0.453	0.501
	Root biomass	0.354	0.552

186 ^[1] Two levels of Phase: Phase I (1998-2005) and Phase II (2006-2009)

187 ^[2] The N pool was calculated as plant biomass × plant N concentration (%)

Table S3. Main and interactive effects of CO₂, N, and plant diversity (PD) on soil CO₂

efflux in Phase I and Phase II based on repeated-measures mixed model across 296 plots.

	Phase I		Phase 1	II
	(1998-20	05)	(2006-	2009)
	F p		F	р
CO_2	147.61	<0.01	48.27	<0.01
Ν	12.01	<0.01	14.02	<0.01
PD	104.80	<0.01	13.96	<0.01
$CO_2 \!\!\times\!\! N$	3.35	0.07	26.90	<0.01
$CO_2 \times PD$	0.11	0.74	3.76	0.05
N×PD	0.17	0.68	0.34	0.56
$CO_2 \times N \times PD$	2.26	0.13	2.32	0.13

191 Significant (p < 0.05) effects are bolded.

Table S4. Pearson correlation between $CO_2 \times N$ effect (N influence on eCO_2 effect^[1]) on

Category	Variables	$r^{[2]}$	$p^{[2]}$
Soil processes	Soil net N mineralization	0.595	0.048
	Soil temperature	0.001	0.998
	Soil moisture	-0.353	0.260
	Soil pH	-0.567	0.055
Aboveground plant	Aboveground plant N concentration	0.607	0.037
variables	Aboveground plant C/N ratio	-0.619	0.032
	Aboveground plant N pool	0.458	0.134
	Aboveground plant biomass	-0.038	0.907
Root variables	Root N concentration	-0.233	0.467
	Root C/N ratio	-0.003	0.993
	Root N pool	0.073	0.822
	Root biomass	0.176	0.584

194 soil CO₂ efflux and CO₂×N effects on soil/plant variables from 1998 to 2009.

 $\overline{}^{[1]}$ eCO₂ effect: calculated by response ratio (RR); N influence on eCO₂ effect: RR at high

196 N supply – RR at low N supply

[2] *r*: correlation coefficient; *p*: significance of the correlation.

Table S5. eCO₂ effects on soil temperature, moisture, and root N concentration at low

and high N supply.

N treatment	CO ₂ treatment	Soil	Soil	Root N
		temperature	moisture	concentration
Low N	eCO ₂ v.s aCO ₂	$0.562^{[1]}$	0.773	0.981
High N	eCO ₂ v.s aCO ₂	0.248	0.564	0.248

 $^{[1]}p$ values of the Wilcox test

- 203 **Table S6.** Main and interactive effects of CO₂, N, and plant diversity (PD) on overall
- 204 relative abundance of microbial functional genes based on permutational multivariate

	Overall a functional	Overall abundance of functional genes ^[1]				
	F	p				
CO ₂	1.82	0.01				
Ν	1.61	0.03				
PD	2.39	<0.01				
$CO_2 \times N$	1.38	0.04				
$CO_2 \times PD$	1.38	0.06				
N×PD	1.15	0.18				
$CO_2 \times N \times PD$	1.05	0.28				
Whole model R ²	0.04	0.04				

analysis of variance (Adonis) across 296 plots.

^[1] Abundance of microbial functional genes was the normalized signal intensity based on GeoChip hybridization. The GeoChip arrays contained a variety of functional genes involved in biogeochemical cycling processes (22). PD stands for plant diversity. Significant (p < 0.05) effects are bolded. Table S7. Correlations between the relative abundance of different microbial gene
categories and soil CO₂ efflux by Mantel test. The relative abundances of microbial genes
in different gene categories were measured in 2009. Soil CO₂ efflux was averaged in Phase
I (1998-2005) or Phase II (2006-2009) per plot for the correlation analysis.

Gene category	Pha	se I	Pha	se II
	r	p	r	р
Starch	-0.025	0.798	0.043	0.097
Hemicellulose	-0.040	0.909	0.041	0.100
Cellulose	-0.038	0.894	0.069	0.016
Chitin	-0.040	0.873	0.055	0.057
Pectin	-0.017	0.691	0.041	0.096
Lignin	-0.028	0.780	0.063	0.028
Assimilatory N reduction	-0.035	0.855	0.060	0.036
Dissimilatory N reduction	-0.040	0.887	0.047	0.073
Denitrification	-0.033	0.834	0.048	0.074
Ammonification	-0.023	0.746	0.050	0.048
Nitrification	-0.031	0.853	0.047	0.061
N fixation	-0.041	0.895	0.049	0.074

Gene category	Gene name	eCO ₂ effect at aN ^[1] (%)	eCO ₂ effect at eN ^[2] (%)	eN effect ^[3] (%)	OE ^[4] (%)	EE ^[5] (%)	OE- EE (%)	CO ₂ ×N interaction [6]	Adonis P ^[7]
	amyA	4.6	-1.71	1.62	2.56	6.22	-3.66	antagonistic	0.048
	amyX	10.26	12.26	16.47	21.49	26.73	-5.24	additive	0.154
	glucoamylase	9.88	-2.69	6.27	6.24	16.15	-9.91	antagonistic	0.006
Starch	pulA	6.22	-1.84	3.43	3.91	9.65	-5.74	antagonistic	0.008
	isopullulanase	33.42	-6.53	17.72	14.55	51.14	-36.59	antagonistic	0.002
	nplT	3.32	0.43	3.74	3.18	7.06	-3.87	additive	0.246
	ари	15.76	5.38	8.02	11.46	23.78	-12.33	additive	0.462
	ara	4.42	-2.67	1.06	1.33	5.48	-4.15	additive	0.085
Hemicel-	ara_fungi	5.58	-0.70	4.01	3.94	9.59	-5.65	additive	0.324
lulose	xylA	6.19	-2.12	3.18	3.32	9.37	-6.05	antagonistic	0.046
	xylanase	5.69	-1.18	2.45	3.37	8.14	-4.76	additive	0.150
	CDH	4.35	-2.34	1.86	1.75	6.21	-4.45	antagonistic	0.028
C.11.1	cellobiase	5.82	-0.85	5.00	4.5	10.82	-6.32	antagonistic	0.014
Centulose	endoglucanase	4.28	-1.17	2.01	2.66	6.29	-3.62	antagonistic	0.032
	exoglucanase	8.21	0.26	8.52	6.57	16.73	-10.16	antagonistic	0.020
	acetyl-	4.15	-1.99	1.31	1.79	5.46	-3.68	additive	0.216
	glucosaminida								
Chitin	-se								
	endochitinase	5.42	-1.68	2.37	3.31	7.79	-4.48	antagonistic	0.040
	exochitinase	4.81	1.79	6.01	5.68	10.82	-5.14	antagonistic	0.048
Pectin	pectinase	9.01	0.55	6.14	8.02	15.15	-7.13	antagonistic	0.011
Aromatic	limEH	5.08	-0.88	2.44	3.28	7.52	-4.24	additive	0.190
s Alomatic	vanA	3.47	-1.52	1.18	1.62	4.65	-3.03	additive	0.173
3	vdh	5.35	-1.86	2.31	2.47	7.66	-5.2	additive	0.153
	glx	4.94	-1.17	2.73	3.45	7.67	-4.23	antagonistic	0.014
	lip	6.6	-0.94	3.97	5.04	10.57	-5.53	antagonistic	0.036
Lignin	mnp	10.8	-2.42	5.36	6.85	16.16	-9.3	antagonistic	0.036
Liginii	phenol_oxidas	6.75	-1.29	3.59	4.74	10.34	-5.6	antagonistic	0.036
	е								
	camDCAB	7.41	-1.83	7.36	1.63	14.77	-13.13	antagonistic	0.016
Ν	napA	6.11	-0.79	3.15	4.36	9.26	-4.9	additive	0.234
reductio-	nrfA	3.83	-2.08	1.03	1.16	4.86	-3.7	antagonistic	0.042
n	nasA	7.94	-2.21	3.72	4.51	11.66	-7.15	antagonistic	0.020
	narG	4.25	-2.07	1.42	1.71	5.67	-3.95	additive	0.114
Denitrifi	nirK	5.76	-2.19	2.43	2.94	8.19	-5.25	additive	0.138
c-ation	nirS	9.3	-2.79	4.19	5.15	13.49	-8.34	antagonistic	0.019
v anon	norB	3.82	-0.15	3.16	2.91	6.98	-4.08	additive	0.090
	nosZ	8.87	-1.81	5.19	5.87	14.06	-8.19	antagonistic	0.031

Table S8. Interactive effects of CO₂ and N on C degradation and N cycling genes.

Ammoni	gdh	10.2	-2.64	5.97	6.09	16.17	-10.09	antagonistic	0.004
f-ication	ureC	4.02	-1.86	2.63	1.85	6.65	-4.8	antagonistic	0.038
Nitrificat	amoA	4.72	-0.96	2.97	3.23	7.69	-4.45	antagonistic	0.016
i-on									
Nitrogen	nifH	7.15	-0.74	4.92	5.64	12.07	-6.42	antagonistic	0.046
fixation									

216 ^[1] eCO₂ effect at aN (%): calculated as $100\% \times \frac{\overline{eCaN} - \overline{aCaN}}{\overline{aCaN}}$, where \overline{eCaN} and \overline{aCaN} 217 represent the mean of gene abundance in elevated CO₂-low N and ambient CO₂-low N 218 plots, respectively.

219 ^[2] eCO₂ effect at eN (%): calculated as $100\% \times \frac{\overline{eCeN} - \overline{aCeN}}{\overline{aCeN}}$, where \overline{eCeN} and \overline{aCeN} 220 represent the mean of gene abundance in elevated CO₂-high N and ambient CO₂-high N 221 plots, respectively.

222 ^[3] eN effect (%): calculated as $100\% \times \frac{\overline{aCeN} - \overline{aCaN}}{\overline{aCaN}}$, where \overline{aCeN} represent the mean of 223 gene abundance in ambient CO₂-high N plots.

^[4] Observed Effect (OE): calculated as $100\% \times \frac{\overline{eCeN} - \overline{aCaN}}{\overline{aCaN}}$, where \overline{eCeN} represent the mean of gene abundance in elevated CO₂-high N plots.

226 ^[5] Expected Effect (EE): calculated as $100\% \times \frac{\overline{eCaN} - \overline{aCaN}}{\overline{aCaN}} + 100\% \times \frac{\overline{aCeN} - \overline{aCaN}}{\overline{aCaN}}$.

^[6] Interactive effect is additive when EE does not differ from OE, synergistic when EE is

- significantly smaller than OE, or antagonistic when EE is significantly larger than OE.
- 229 ^[7] The significance of the $CO_2 \times N$ effect on the abundance matrix of each gene was tested
- by permutational multivariate analysis of variance (Adonis). Significant (p < 0.05) effects
- are bolded.
- 232

Kingdom	Gene name	eCO ₂ effect at aN ^[1] (%)	eCO ₂ effect at eN ^[2] (%)	eN effect ^[3] (%)	OE ^[4] (%)	EE ^[5] (%)	OE- EE (%)	CO ₂ ×N interaction [6]	Adonis P ^[7]
	amyA	1.64	-1.72	4.52	2.49	6.17	-3.67	antagonistic	0.05
	glucoamylase	5.61	-3.81	11.24	6.20	16.8	-10.6	antagonistic	0.04
	xylA	3.06	-2.14	6.11	3.21	9.17	-5.96	antagonistic	0.05
	CDH	1.85	-2.34	4.34	1.74	6.20	-4.45	antagonistic	0.04
	exochitinase	5.72	2.17	3.81	5.05	9.54	-4.48	antagonistic	0.05
Bacteria	nrfA	1.03	-2.08	3.82	1.15	4.85	-3.70	antagonistic	0.03
	nirS	4.32	-2.90	9.36	5.05	13.68	-8.63	antagonistic	0.01
	nosZ	5.12	-1.94	8.89	5.74	14.01	-8.26	antagonistic	0.03
	gdh	5.99	-3.24	10.84	6.29	16.84	-10.54	antagonistic	0.01
	ureC	2.67	-2.08	4.16	1.75	6.83	-5.08	antagonistic	0.02
	amoA	2.24	-1.27	4.22	2.47	6.46	-3.98	antagonistic	0.05
	glucoamylase	18.90	0.63	16.72	15.65	35.62	-19.97	antagonistic	0.03
Fungi	endoglucanase	4.30	0.73	5.80	5.52	10.10	-4.58	antagonistic	0.04
	pectinase	6.50	0.72	7.22	6.18	13.73	-7.54	antagonistic	0.01

233 **Table S9.** Interactive effects of CO_2 and N on bacterial and fungal genes related to C

234 degradation and N cycling.

235 ^{[1], [2], [3], [4], [5], [6], [7]} The parameters are described in Table S8.

236 Only genes that are significantly (p < 0.05) affected by CO₂×N are shown.

238 **Table S10.** Predictions of significant changes between eCO_2 and aCO_2 at low or high N 239 supply based on the two competing theories: stoichiometric decomposition and microbial 240 N mining. The following predictions are based on literature analyses and synthesis. Since 241 the interactive effects between CO₂ and N on the responses of ecosystems are very 242 complicated, the following listed predictions could vary considerably among different 243 ecosystems. For the purpose of this study, we attempt to just list the possible $CO_2 \times N$ effects 244 based on data available from BioCON experimental sites. Those effects are not necessarily 245 applicable to other ecosystems. +, significantly stimulation; -, Significantly repress; 0, no 246 significant changes.

Droparties	Stoichiometric d	lecomposition	Microbial N mining		
Properties	low N	high N	low N	high N	
Soil CO ₂ efflux	$-^{[1]}$ or $+^{[2]}$	$+^{[3]}$	$+^{[6]}$	_[7]	
Labile C genes	_[1]	$+^{[4]}$	$+^{[6]}$	$+^{[8]}$	
Recalcitrant C	_[1]	+ ^[5]	$+^{[6]}$	_[7]	
N genes	_[1]	+ ^[5]	+ ^[5]	_[7]	
Interactive effects	Synergistic	Synergistic	Antagonistic	Antagonistic	

^[1] eCO₂ generally increases the C/N ratios of plant tissues, leading to higher litter and soil
C/N ratios (23, 24). Higher substrate C/N ratio may, in turn, result in nutrient limitation,
which inhibits microbial growth and reduces microbial activity like C decomposition and
respiration rate (25-28).

^[2] Low N availability will not inhibit the microbial uptake of both substrate C and other
nutrients, but excessive C is routed to overflow respiration (29, 30).

^[3] Plant N content relative to C is one to two orders of magnitude lower than microbial

biomass (31). Because of this different stoichiometry and considering that eCO₂ generally

increases plant C and N ratios (23, 24), microbes degrade plant litter with an initial higher

256 N concentration more quickly.

^[4] Due to the larger contribution of rapid-growing microbes (r-strategists) utilizing eCO₂

- stimulated labile C inputs (32).
- ^[5] Due to co-metabolism of soil C and other nutrients (33).

^[6] eCO₂ generally increases labile C inputs into soils (34), resulting in a larger contribution

261 of slow-growing microbes (K-strategists) to utilize labile C as the energy source to

262 decompose recalcitrant C for N acquirement (32, 35).

- 263 ^[7] Due to suppressed microbial mining of recalcitrant C for N in soils with high N
- 264 availability (25, 36).
- ^[8] High N availability increases the rate of labile C utilization by microbes for growth
- 266 (increase in microbial assimilation rates) (25, 37).

- 267 **Table S11.** Objective functions used for different response variables in the MEND
- 268 model parameterization.

Response Variable	Description	Objective Function
R_s (CO ₂)	Soil CO ₂ efflux = root respiration (R_a) + microbial respiration (R_h)	^[1] R^2 between Simulated R_s and Observed R_s
$\mathrm{NH_4}^+$	Ammonium concentration	^[2] <i>PBIAS</i> between Simulated and Observed NH ₄ ⁺
NO ₃ ⁻	Nitrate concentration	<i>PBIAS</i> between Simulated and Observed NO ₃ ⁻
EnzCo	Concentration (EnzC) of Oxidative Enzyme	$MARE^{[3]}$ between Simulated EnzC and Expected EnzC Expected EnzC = Simulated EnzC at ambient N × RR ^[4]
EnzCh	Hydrolytic Enzyme Concentration	<i>MARE</i> between Simulated EnzC and Expected EnzC Expected EnzC = Simulated EnzC at ambient $N \times RR$

269 $\overline{[1] R^2}$ denotes the coefficient of determination, see Method Eq. 4.

270 ^[2] *PBIAS* is the percent bias between observations and simulations, , see Method Eq. 6.

271 ^[3] *MARE* is the mean absolute relative error, see Methods Eq. 5.

^[4] RR is the ratio of gene abundance at eCO₂-aN or eCO₂-eN to that at aCO₂-aN or aCO₂-

273 eN, i.e., $RR_{aN} = eCO_2 - aN/aCO_2 - aN$, $RR_{eN} = eCO_2 - eN/aCO_2 - eN$.

ID	Soil C and/or N pool	Pool Name	Variable name in equations
1	Particulate organic matter (POM)	POMo	C pool: P_0 ;
	decomposed by oxidative enzymes		N pool: <i>PN</i> o
2	POM decomposed by hydrolytic enzymes	POM _H	$P_{\rm H}; PN_{\rm H}$
3	Mineral-associated organic matter	MOM	M; MN
4	Dissolved organic matter	DOM	D; DN
5	Active MOM interacting with DOM	QOM	Q; QN
6	Active microbial biomass	MB_A	BA; BAN
7	Dormant microbial biomass	MB_D	BD; BDN
8	Oxidative enzymes decomposing POM _O	EPo	$EP_{O}; EPN_{O}$
9	Hydrolytic enzymes decomposing POM _H	EP _H	$EP_{\rm H}; EPN_{\rm H}$
10	Enzymes decomposing MOM	EM	EM; EMN
11	Ammonium	$\mathbf{NH_{4}^{+}}$	NH_4
12	Nitrate	NO_3^-	NO_3

Table S12. Soil C and N pools (state variables) in the MEND model.

Governing Equation	Eq#
Soil C (state variable, e.g., P ₁ , denotes the C content):	
$\frac{dP_0}{dt} = I_{P0} + (1 - g_D) \cdot g_{P0} \cdot F_{14} - F_1$	(S1)
$\frac{dP_{H}}{dt} = I_{PH} + (1 - g_{D}) \cdot (1 - g_{PO}) \cdot F_{14} - F_{2}$	(S2)
$\frac{dM}{dt} = (1 - f_D) \cdot (F_1 + F_2) - F_3$	(\$3)
$\frac{dQ}{dt} = F_4 - F_5$	(S4)
$\frac{dD}{dt} = I_D + f_D \cdot (F_1 + F_2) + F_3 + g_D \cdot F_{14} + F_{16} - F_6 - (F_4 - F_5)$	(\$5)
$\frac{dBA}{dt} = F_6 - (F_7 - F_8) - (F_9 + F_{10} + F_{11}) - F_{14} - F_{15}$	(\$6)
$\frac{dBD}{dt} = (F_7 - F_8) - (F_{12} + F_{13})$	(S7)
$\frac{dEP_0}{dt} = F_{15,EPO} - F_{16,EPO}$	(S8)
$\frac{d\tilde{E}P_H}{dt} = F_{15,EPH} - F_{16,EPH}$	(\$9)
$\frac{dEM}{dt} = F_{15,EM} - F_{16,EM}$	(S10)
$\frac{dCO_2}{dt} = R_h = (F_9 + F_{10} + F_{11}) + (F_{12} + F_{13})$	(S11)
$\frac{d}{dt}(P_O + P_H + M + Q + D + BA + BD + EP_O + EP_H + EM)$	(S12)
$= (I_{PO} + I_{PH} + I_D) - (F_9 + F_{10} + F_{11}) - (F_{12} + F_{13})$	
Soil N (state variable, e.g., PN1, denotes the N content):	1
For PN_0 , PN_H , MN , QN , and DN , the N flux is calculated as: $FN_i = F_i/CN_{source}$	(S13)
where F_i is the C flux, and CN_{source} is the C:N ratio of the (upstream) source pool	(24.1)
$\frac{dBAN}{dt} = \frac{F_6}{CN_D} - \left(\frac{F_7}{CN_{BA}} - \frac{F_8}{CN_{BD}}\right) - \frac{F_{12}}{CN_{BA}} - \frac{F_{13}}{CN_{ENZ}} - FN_{mn,BA}$	(\$14)
$+ (FN_{im,NH4 \rightarrow BA} + FN_{im,NO3 \rightarrow BA})$	
$\frac{dBDN}{dt} = \left(\frac{F_7}{CN_{\rm PA}} - \frac{F_8}{CN_{\rm PD}}\right) - FN_{mn,BD}$	(S15)
$\frac{dNH_4}{dt} = I_{NH4} + (FN_{mn,BA} + FN_{mn,BD}) - FN_{im,NH4 \to BA} - FN_{nit}$	(S16)
$\frac{dU}{dt} = I_{NO3} + FN_{nit} - FN_{nit-denit} - FN_{denit} - FN_{im,NO3 \to BA}$	(S17)
$\frac{d}{d}(PN_0 + PN_H + MN + QN + DN + BAN + BDN + EPN_0 + EPN_H + EMN + NH_4 + NO_3)$	(S18)
$at = (IN_{PO} + IN_{PH} + IN_D + I_{NH4} + I_{NO3}) - (FN_{nit-denit} + FN_{denit})$	
[]] The state consideration (C and N and L) and described in Table C10. For C11 india	1

277 **Table S13.** Governing equation for each soil C or N pool in the MEND model^a.

^[1] The state variables (C and N pools) are described in Table S12; Eq. S11 indicates the total heterotrophic respiration flux (R_h); Eq. S12 and S18 express the overall mass balance of C and N, respectively. The transformation fluxes (F or FN) are elucidated by Eqs. S19– S41 in Table S14.

283 Table S14. Component fluxes in the MEND model (parameters are described in Table

284 S10).

Flux description	Equation	Ea#
Particulate organic matter (POM) pool	$Vd_{PO} \cdot EP_O \cdot P_O$	-1.
(oxidative) (P_0) decomposition (F_1)	$F_1 = \frac{10}{K_{PO} + P_O}$	(S19)
POM pool (hydrolytic) ($P_{\rm H}$) decomposition	$Vd_{PH} \cdot EP_H \cdot P_H$	
	$F_2 = \frac{K_{PU} + R_{U}}{K_{PU} + R_{U}}$	(S20)
Mineral-associated organic matter (MOM M)	$Vd_{M} \cdot EM \cdot M$	
decomposition	$F_3 = \frac{V M_M 2 M M_1}{K_1 + M_2}$	(S21)
Adsorption (F_{ℓ}) and desorption (F_{ℓ}) between	$\frac{K_M + M}{F - k} + \frac{(1 - 0/0)}{(1 - 0/0)} + D$	
dissolved organic matter (DOM D) and	$F_{4} = k_{ads} (1 Q/Q_{max}) D$	(S22)
adsorbed DON (OOM Q)	$\Gamma_5 = \kappa_{des} \left(Q / Q_{max} \right)$	(S23)
DOM(D) untake by microbes	$1 \downarrow BA \cdot D$	
Down (D) uptake by microbes	$F_6 = \frac{1}{V} \left(V_g + V_m \right) \cdot \frac{1}{K} + D$	(S24)
Domesney (E) and reactivation (E) between	$I_{g} \qquad \qquad$	
Dominancy (F_7) and reactivation (F_8) between	$F_7 = [1 - D/(K_D + D)] \cdot V_m \cdot BA$	(S25)
active (MD_A , DA) and dominant (MD_D , DD)	$F_8 = [D/(K_D + D)] \cdot V_m \cdot BD$	(S26)
MB_{\star} (<i>BA</i>) growth respiration (<i>E_x</i>) and	(1) $V \cdot RA \cdot D$	
maintenance respiration (F_{10})	$F_9 = \left(\frac{1}{W} - 1\right) \cdot \frac{v_g + DA + D}{W + D}$	(S27)
maintenance respiration (P ₁₀)	$Y_g = K_D + D$	
	$F_{m} = \left(\frac{1}{m} - 1\right) \cdot \frac{V_m \cdot BA \cdot D}{m}$	(220)
	$\begin{pmatrix} Y_{10} - \langle Y_g \rangle \end{pmatrix} K_D + D$	(\$28)
$MB_A(BA)$ overflow respiration (F_{11})	$F_{11} = max\{0, BA - BAN \cdot CN_{BA max}\}$	(S29)
$MB_{D}(BD)$ maintenance respiration (F_{12})	$F_{12} = \beta \cdot V_m \cdot BD$	(\$30)
MB_D (<i>BD</i>) overflow respiration (<i>F</i> ₁₃)	$F_{12} = max\{0 BD - BDN : CN_{\text{PA}} = max\}$	(\$31)
MB_{A} (<i>BA</i>) mortality	$F_{13} = max(0, BB - BBR - OR_{BA,max})$ $F_{13} = \gamma \cdot V \cdot BA$	(\$32)
Synthesis of enzymes for P_{0} (EP_{0} $E_{15 EP0}$)	$F_{14} = \gamma V_m DA$ $F_{14} = \gamma V_m DA$	(032)
enzymes for $P_{\rm H}$ ($FP_{\rm H}$, F_{15} cours for	$F_{15,EPO} = \frac{P_{10}}{P_{10}} \left(\frac{P_{10}}{P_{10}} + \frac{P_{10}}{P_{10}} \right) \left(\frac{P_{10}}{P_{10}} + \frac{P_{10}}{$	
$M(EM, F_{15 \text{ EM}})$	$F_{15,EPH} = f_{H} + (f_{0} + f_{H}) p_{EP} v_{m} DA$ $F_{L} = f_{m} + m + V + BA$	(S33)
	$F_{15,EM} - \int p_{EM} \cdot p_{EP} \cdot v_m \cdot DA$	
Turner of commence (ED ED EM)	$F_{15} = F_{15,EPO} + F_{15,EPH} + F_{15,EM}$	
1 urnover of enzymes (EP_0, EP_H, EM)	$F_{16,EPO} = r_E \cdot EP_O, F_{16,EPH} = r_E \cdot EP_H$	(02.4)
	$F_{16,EM} = r_E \cdot EM$	(\$34)
	$F_{16} = F_{16,EP0} + F_{16,EPH} + F_{16,EM}$	
N immobilization by microbes	$FN_{im,NH4 \rightarrow BA}$	
	$= \frac{(VN_{im,NH4} \cdot YN_g) \cdot BA \cdot NH_4}{(VN_{im,NH4} \cdot YN_g) \cdot BA \cdot NH_4}$	(\$35)
	$KS_{NUA} \cdot \left(1 + \frac{NH_4}{VG_4} + \frac{NO_3}{VG_3} + \frac{BA}{VG_4}\right)$	()
	$\frac{100NH4}{10} \left(\frac{1}{K} K S_{NH4} + K S_{NO3} + K S_{NH4} \right)$	
	$FN_{im,NO3 \rightarrow BA}$	
	$= \frac{(V N_{im,NO3} \cdot Y N_g) \cdot BA \cdot NO_3}{(V N_{im,NO3} \cdot Y N_g) \cdot BA \cdot NO_3}$	(S36)
	$KS_{NO3} \cdot \left(1 + \frac{NH_4}{KC} + \frac{NO_3}{KC} + \frac{BA}{KC}\right)$	
N minoralization	$= (1 \text{VN}) \cdot \text{EN}$	
IN IIIIIeranzation	$FN_{mn,BA} - (1 - FN_g) \cdot FN_6$	(S37)
	$YN_{a} = \left(\frac{CN_{BA} - CN_{BA,min}}{M_{BA,min}}\right)^{T}$	(020)
	$(CN_{BA,max} - CN_{BA,min})$	(\$38)
Nitrification	$FN_{nit} = VN_{nit} \cdot NH_4$	(S39)
Nitrifier Denitrification	$FN_{nit-denit} = FN_{nitrif} \cdot [1 - f(O_2)]$	
	$f(0) = \frac{(1 - WFP)^{4/3}}{(1 - WFP)^{4/3}}$	(S40a)
	$f(O_2) = \frac{1}{0.5^{4/3} + (1 - WFP)^{4/3}}$	(S40b)
	WFP is water-filled porosity	
Denitrification	$FN_{denit} = VN_{denit} \cdot NO_3$	(S41)

ID	Parameter	Description	Units	Eq#
1	LF_0	Initial fraction of $P_{\rm O}$, $LF_0 = P_{\rm O}/(P_{\rm O}+P_{\rm H})$		-
2	r_0	Initial active fraction of microbes, $r_0 = BA/(BA+BD)$		
3	fINP	Scaling factor for litter input rate		
4	Vd _{PO}	Maximum specific decomposition rate for P_0	$mg C mg^{-1} C h^{-1}$	S19
5	Vd_{PH}	Maximum specific decomposition rate for $P_{\rm H}$	$mg C mg^{-1} C h^{-1}$	S20
6	Vd_M	Maximum specific decomposition rate for M	$mg C mg^{-1} C h^{-1}$	S21
7	K _{PO}	Half-saturation constant for $P_{\rm O}$ decomposition	mg C cm ⁻³ soil	S19
8	K _{PH}	Half-saturation constant for $P_{\rm H}$ decomposition	mg C cm ⁻³ soil	S20
9	K _M	Half-saturation constant for <i>M</i> decomposition	mg C cm ⁻³ soil	S21
10	Q_{\max}	Maximum sorption capacity	mg C cm ⁻³ soil	S22
11	K _{ba}	Binding affinity, Sorption rate $k_{ads} = k_{des} \times K_{ba}$	$(mg C cm^{-3} soil)^{-1}$	S22
12	k _{des}	Desorption rate	mg C cm ⁻³ soil h ⁻¹	S23
13*	r_E	Turnover rate of EP_{O} , EP_{H} , and EM	$mg C mg^{-1} C h^{-1}$	S34
14*	<i>p</i> _{EP}	$[V_m \times p_{EP}]$ is the production rate of $EP (EP_O + EP_H)$,	_	S33
		V_m is the specific maintenance rate for BA		
15*	fp _{EM}	$fp_{EM} = p_{EM}/p_{EP}$, $[V_{mt} \times p_{EM}]$ is the production rate of	—	S33
		EM		
16*	f_D	Fraction of decomposed $P_{\rm O}$ and $P_{\rm H}$ allocated to D		S 3
17*	<i>g</i> _D	Fraction of dead BA allocated to D		S 1
18*	V_g	Maximum specific uptake rate of D for growth	mg C mg ⁻¹ C h ⁻¹	S24
19*	α	$= V_m / (V_g + V_m)$		S24
20*	K _D	Half-saturation constant for microbial uptake of D	mg C cm ⁻³ soil	S24
21*	$Y_g(T_{\rm ref})$	True growth yield at reference temperature (T_{ref})		S24
22	k_{Yg}	Slope for Y_g dependence of temperature	1/°C	S24
23*	Q_{10}	Q ₁₀ for temperature response function		S24
24	γ	Max microbial mortality rate = $V_m \times \gamma$	_	S32
25	β	Ratio of dormant maintenance rate to V_m	—	S30
26	ΨA2D	Soil water potential (SWP) threshold for microbial	-MPa	S49
		dormancy; both ψ_{A2D} & $\psi_{D2A} < 0$		
27	τ	$\psi_{D2A} = \psi_{A2D} \times \tau, \ \psi_{D2A}$ is the SWP threshold for	—	S50
		microbial resuscitation		
28	ω	Exponential in SWP function for microbial	—	S50
		dormancy or resuscitation		
29	VN _{im,NH4}	Max specific immobilization rate for NH ₄ ⁺	mg N mg ^{-1} C h ^{-1}	S35
30	VN _{im,NO3}	Max specific immobilization rate for NO ₃ ⁻	mg N mg ^{-1} C h ^{-1}	S36
31	KS _{NH4}	Half-saturation constant for NH4 ⁺ immobilization	mg N cm ⁻³ soil	S35
32	KS _{NO3}	Half-saturation constant for NO3 ⁻ immobilization	mg N cm ⁻³ soil	S36
33	VN _{nit}	Max nitrification rate	h^{-1}	S39
34	VN _{denit}	Max denitrification rate	h^{-1}	S41

Table S15. MEND model parameters.

287 *denotes the 10 parameters calibrated for C cycling processes in this study.

References

290	1.	X. Zhu et al., Underestimates of Grassland Gross Primary Production in MODIS
291		Standard Products. Remote Sensing 10, 1771 (2018).
292	2.	K. Fiala, I. Tůma, P. Holub, Interannual variation in root production in grasslands
293		affected by artificially modified amount of rainfall. The Scientific World Journal
294		2012 , 1-10 (2012).
295	3.	R. Waring, J. Landsberg, M. Williams, Net primary production of forests: a
296		constant fraction of gross primary production? <i>Tree physiology</i> 18 , 129-134
297		(1998).
298	4.	W. Parton, D. S. Schimel, C. Cole, D. Ojima, Analysis of factors controlling soil
299		organic matter levels in Great Plains grasslands. Soil Science Society of America
300		Journal 51 , 1173-1179 (1987).
301	5.	Z. Shi et al., Experimental warming altered rates of carbon processes, allocation,
302		and carbon storage in a tallgrass prairie. <i>Ecosphere</i> 6 , 1-16 (2015).
303	6.	Q. Y. Duan, S. Sorooshian, V. Gupta, Effective and efficient global optimization
304		for conceptual rainfall-runoff models. <i>Water Resources Research</i> 28, 1015-1031
305		(1992).
306	7.	G. Wang, J. Xia, J. Chen, Quantification of effects of climate variations and
307		human activities on runoff by a monthly water balance model: a case study of the
308		Chaobai River basin in northern China. Water resources research 45, 1-12
309		(2009).
310	8.	G. Wang <i>et al.</i> , Microbial dormancy improves development and experimental
311		validation of ecosystem model. ISME J. 9, 226-237 (2015).
312	9.	T. Xu, L. White, D. Hui, Y. Luo, Probabilistic inversion of a terrestrial ecosystem
313		model: Analysis of uncertainty in parameter estimation and model prediction.
314		Global Biogeochemical Cycles 20, 1-15 (2006).
315	10.	G. Wang, S. Chen, Evaluation of a soil greenhouse gas emission model based on
316		Bayesian inference and MCMC: Model uncertainty. <i>Ecological modelling</i> 253 ,
317		97-106 (2013).
318	11.	P. E. Thornton, N. A. Rosenbloom, Ecosystem model spin-up: Estimating steady
319		state conditions in a coupled terrestrial carbon and nitrogen cycle model.
320		<i>Ecological Modelling</i> 189 , 25-48 (2005).
321	12.	G. B. Bonan, M. D. Hartman, W. J. Parton, W. R. Wieder, Evaluating litter
322		decomposition in earth system models with long - term litterbag experiments: an
323		example using the Community Land Model version 4 (CLM 4). <i>Global change</i>
324		<i>biology</i> 19 , 957-974 (2013).
325	13.	N. Fanin, N. Fromin, S. Barantal, S. Hättenschwiler, Stoichiometric plasticity of
326		microbial communities is similar between litter and soil in a tropical rainforest.
327		Scientific reports 7, 12498 (2017).
328	14.	G. Wang, W. Huang, G. Zhou, M. A. Mayes, J. Zhou, Modeling the processes of
329		soil moisture in regulating microbial and carbon-nitrogen cycling. <i>Journal of</i>
330		Hydrology 585, 124777 (2020).
331	15.	G. Wang, S. Chen, A review on parameterization and uncertainty in modeling
332		greenhouse gas emissions from soil. Geoderma 170, 206-216 (2012).

 (Brooks/Cole Cengage Learning, Florence, KY, 2008), pp. 768. C. W. Dawson, R. J. Abrahart, L. M. See, HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. <i>Environmental Modelling & Software</i> 22, 1034-1052 (2007). G. Wang, H. I. Jager, L. M. Baskaran, C. C. Brandt, Hydrologic and water quality responses to biomass production in the Tennessee river basin. <i>GCB Bioenergy</i> 10, 877-893 (2018). M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cottufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (201). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maizr residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). <lis. a.="" and="" carbon="" j.="" manzoni,="" mineral<="" nitrogen="" proproato,="" soil="" th=""><th>333</th><th>16.</th><th>J. L. Devore, <i>Probability and Statistics for Engineering and the Sciences (7th Ed.)</i></th></lis.>	333	16.	J. L. Devore, <i>Probability and Statistics for Engineering and the Sciences (7th Ed.)</i>
 C. W. Dawson, R. J. Abrahart, L. M. See, HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. <i>Environmental Modelling & Software</i> 22, 1034-1052 (2007). G. Wang, H. I. Jager, L. M. Baskaran, C. C. Brandt, Hydrologic and water quality responses to biomass production in the Tennessee river basin. <i>GCB Bioenergy</i> 10, 877-893 (2018). M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry foil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). <	334		(Brooks/Cole Cengage Learning, Florence, KY, 2008), pp. 768.
 evaluation metrics for the standardised assessment of hydrological forecasts. <i>Environmental Modelling & Software</i> 22, 1034-1052 (2007). G. Wang, H. I. Jager, L. M. Baskaran, C. C. Brandt, Hydrologic and water quality responses to biomass production in the Tennessee river basin. <i>GCB Bioenergy</i> 10, 877-893 (2018). M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory	335	17.	C. W. Dawson, R. J. Abrahart, L. M. See, HydroTest: a web-based toolbox of
 Environmental Modelling & Software 22, 1034-1052 (2007). G. Wang, H. I. Jager, L. M. Baskaran, C. C. Brandt, Hydrologic and water quality responses to biomass production in the Tennessee river basin. <i>GCB Bioenergy</i> 10, 877-893 (2018). M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564-575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Manzoni, J. A. Trofymow, R. B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, R. D. J	336		evaluation metrics for the standardised assessment of hydrological forecasts.
 G. Wang, H. I. Jager, L. M. Baskaran, C. C. Brandt, Hydrologic and water quality responses to biomass production in the Tennessee river basin. <i>GCB Bioenergy</i> 10, 877-893 (2018). M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. H <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). S. Manzoni, J. A. Trofymov, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Manzoni, J. A. Trofymov, R. B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson,	337		Environmental Modelling & Software 22, 1034-1052 (2007).
 responses to biomass production in the Tennessee river basin. <i>GCB Bioenergy</i> 10, 877-893 (2018). M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Manzoni, A. Porporato, Soil arbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 21, 644-686 (2008). S. Manzoni, P.	338	18.	G. Wang, H. I. Jager, L. M. Baskaran, C. C. Brandt, Hydrologic and water quality
 877-893 (2018). M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, A. Porporato, Soil carbon use efficiency in soils. <i>New Phytologist</i> 19	339		responses to biomass production in the Tennessee river basin. GCB Bioenergy 10,
 M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Racous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 21, 684-686 (2008). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometry of litter nitrogen m	340		877-893 (2018).
 respiration by accounting for land-use changes derived from remote sensing data. <i>Journal of environmental management</i> 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Raccous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-68	341	19.	M. Adachi, A. Ito, S. Yonemura, W. Takeuchi, Estimation of global soil
 Journal of environmental management 200, 97-104 (2017). B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. Biogeosciences 7, 1915-1926 (2010). D. N. Moriasi et al., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50, 885-900 (2007). Z. He et al., Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant and Soil 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. Ecology 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs 80, 89-106 (2010). R. L. Sinsabaugh et al., Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. Soil Biology and Biochemistry 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology and Biochemistry 41, 1355-1379 (2009). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, T. Agren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litte	342		respiration by accounting for land-use changes derived from remote sensing data.
 B. Bond-Lamberty, A. Thomson, A global database of soil respiration data. <i>Biogeosciences</i> 7, 1915-1926 (2010). D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: cr	343		Journal of environmental management 200, 97-104 (2017).
 Biogeosciences 7, 1915-1926 (2010). D. N. Moriasi et al., Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He et al., Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometry controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and	344	20.	B. Bond-Lamberty, A. Thomson, A global database of soil respiration data.
 D. N. Moriasi <i>et al.</i>, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, The global stoichiometry controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent prim	345		Biogeosciences 7, 1915-1926 (2010).
 accuracy in watershed simulations. <i>Transactions of the ASABE</i> 50, 885-900 (2007). 22. Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564-575 (2010). 23. Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). 24. R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). 25. J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). 26. S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). 27. R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). 28. S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). 29. S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). 30. S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. L. Ágren, Environmental and stoichiometry controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). 31. S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). 32. E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apaparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility</i>	346	21.	D. N. Moriasi et al., Model evaluation guidelines for systematic quantification of
 (2007). Z. He et al., Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecology Letters 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant and Soil 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. Ecology 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs 80, 89-106 (2010). R. L. Sinsabaugh et al., Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. Soil Biology and Biochemistry 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology and Biochemistry 21, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. L Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. Science 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apaparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils 45, 115-131 (2008). 	347		accuracy in watershed simulations. Transactions of the ASABE 50, 885-900
 Z. He <i>et al.</i>, Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. <i>Ecology Letters</i> 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	348		(2007).
 belowground microbial communities at elevated CO2. Ecology Letters 13, 564- 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant and Soil 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. Ecology 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs 80, 89-106 (2010). R. L. Sinsabaugh et al., Stoichiometry of soil enzyme activity at global scale. Ecology Letters 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. Soil Biology and Biochemistry 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology and Biochemistry 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. Science 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils 45, 115-131 (2008). 	349	22.	Z. He et al., Metagenomic analysis reveals a marked divergence in the structure of
 575 (2010). Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant</i> <i>and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	350		belowground microbial communities at elevated CO2. Ecology Letters 13, 564-
 Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant</i> <i>and Soil</i> 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralizations of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	351		575 (2010).
 response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant</i> and Soil 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i> <i>Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	352	23.	Y. Yang, Y. Luo, M. Lu, C. Schädel, W. Han, Terrestrial C:N stoichiometry in
 and Soil 343, 393-400 (2011). R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	353		response to elevated CO2 and N addition: a synthesis of two meta-analyses. <i>Plant</i>
 R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	354		and Soil 343 , 393-400 (2011).
 CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127, 153-165 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i> <i>Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	355	24.	R. J. Norby, M. F. Cotrufo, P. Ineson, E. G. O'Neill, J. G. Canadell, Elevated
 (2001). J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i> <i>Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	356		CO2, litter chemistry, and decomposition: a synthesis. <i>Oecologia</i> 127 , 153-165
 J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i> <i>Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	357		(2001).
 decomposition. <i>Ecology</i> 88, 2105-2113 (2007). S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i> <i>Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	358	25.	J. M. Craine, C. Morrow, N. Fierer, Microbial nitrogen limitation increases
 S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i> <i>Monographs</i> 80, 89-106 (2010). R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	359		decomposition. <i>Ecology</i> 88 , 2105-2113 (2007).
 on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i> <i>Monographs</i> 80, 89-106 (2010). 27. R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). 28. S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). 29. S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). 30. S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). 31. S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). 32. E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	360	26.	S. Manzoni, J. A. Trofymow, R. B. Jackson, A. Porporato, Stoichiometric controls
 <i>Monographs</i> 80, 89-106 (2010). 27. R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). 28. S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). 29. S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). 30. S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). 31. S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). 32. E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	361		on carbon, nitrogen, and phosphorus dynamics in decomposing litter. <i>Ecological</i>
 R. L. Sinsabaugh <i>et al.</i>, Stoichiometry of soil enzyme activity at global scale. <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	362		Monographs 80, 89-106 (2010).
 <i>Ecology Letters</i> 11, 1252-1264 (2008). S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	363	27.	R. L. Sinsabaugh et al., Stoichiometry of soil enzyme activity at global scale.
 S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on maize residue decomposition. <i>Soil Biology and Biochemistry</i> 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	364		<i>Ecology Letters</i> 11 , 1252-1264 (2008).
 maize residue decomposition. Soil Biology and Biochemistry 27, 1529-1538 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biology and Biochemistry 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. Science 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils 45, 115-131 (2008). 	365	28.	S. Recous, D. Robin, D. Darwis, B. Mary, Soil inorganic N availability: Effect on
 (1995). S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	366		maize residue decomposition. Soil Biology and Biochemistry 27, 1529-1538
 S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and models across scales. <i>Soil Biology and Biochemistry</i> 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	367		(1995).
 models across scales. Soil Biology and Biochemistry 41, 1355-1379 (2009). S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. Science 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. Biology and Fertility of Soils 45, 115-131 (2008). 	368	29.	S. Manzoni, A. Porporato, Soil carbon and nitrogen mineralization: theory and
 S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	369		models across scales. Soil Biology and Biochemistry 41, 1355-1379 (2009).
 stoichiometric controls on microbial carbon-use efficiency in soils. <i>New</i> <i>Phytologist</i> 196, 79-91 (2012). S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	370	30.	S. Manzoni, P. Taylor, A. Richter, A. Porporato, G. I. Ågren, Environmental and
 372 <i>Phytologist</i> 196, 79-91 (2012). 373 31. S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). 375 32. E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	371		stoichiometric controls on microbial carbon-use efficiency in soils. New
 373 31. S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global 374 stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). 375 32. E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects 376 and their dependence on soil microbial biomass and community structure: critical 377 review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	372		Phytologist 196, 79-91 (2012).
 stoichiometry of litter nitrogen mineralization. <i>Science</i> 321, 684-686 (2008). 32. E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	373	31.	S. Manzoni, R. B. Jackson, J. A. Trofymow, A. Porporato, The global
 375 32. E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects 376 and their dependence on soil microbial biomass and community structure: critical 377 review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	374		stoichiometry of litter nitrogen mineralization. Science 321, 684-686 (2008).
 and their dependence on soil microbial biomass and community structure: critical review. <i>Biology and Fertility of Soils</i> 45, 115-131 (2008). 	375	32.	E. Blagodatskaya, Y. Kuzyakov, Mechanisms of real and apparent priming effects
377 review. <i>Biology and Fertility of Soils</i> 45 , 115-131 (2008).	376		and their dependence on soil microbial biomass and community structure: critical
	377		review. Biology and Fertility of Soils 45, 115-131 (2008).

378 33. Y. Fang, L. Nazaries, B. K. Singh, B. P. Singh, Microbial mechanisms of carbon 379 priming effects revealed during the interaction of crop residue and nutrient inputs 380 in contrasting soils. Global Change Biology 24, 2775-2790 (2018). 381 34. R. P. Phillips, A. C. Finzi, E. S. Bernhardt, Enhanced root exudation induces 382 microbial feedbacks to N cycling in a pine forest under long-term CO2 383 fumigation. *Ecology Letters* 14, 187-194 (2011). 384 35. D. L. Moorhead, R. L. Sinsabaugh, A theoretical model of litter decay and 385 microbial interaction. Ecological Monographs 76, 151-174 (2006). 386 E. V. Blagodatskaya, S. A. Blagodatsky, T. H. Anderson, Y. Kuzyakov, Priming 36. 387 effects in Chernozem induced by glucose and N in relation to microbial growth 388 strategies. Applied Soil Ecology 37, 95-105 (2007). 389 M. P. Waldrop, D. R. Zak, R. L. Sinsabaugh, Microbial community response to 37. 390 nitrogen deposition in northern forest ecosystems. Soil Biology and Biochemistry 391 **36**, 1443-1451 (2004). 392