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A B S T R A C T

The increasing prevalence of antibiotic-resistant microorganisms imposes a global threat to public health. The
over reliant use of antibiotics in the food industry has contributed considerably to the dissemination of anti-
biotics into various environments, yet the mechanisms by which antibiotic dissemination influences the as-
sembly of the microbial community continues to remain obscure. Here, we examine bacterial and fungal com-
munity assemblies in swine manure, compost, compost amended, and unamended agricultural soil in five
suburban areas of Beijing, China. Total antibiotic concentration decreased by factors of 10–1000 from manure
and compost to soils. The bacterial α-diversity was found to be low in manure and compost samples, while the
fungal α-diversity was similar across all samples. We detected significantly (p < 0.05) higher relative abun-
dances of well recognized pathogenic microbial taxa, virulence associated genes, and antibiotic resistance genes
(ARGs) in manure and compost than those in agricultural soils, revealing the higher microbial capacity of pa-
thogenicity, virulence and antibiotic resistance. Unexpectedly, the relative abundances of both bacterial and
fungal taxa did not predict the antibiotic concentration. A possible explanation was that bacterial and fungal
communities were mainly shaped by random assemblies. Rather, antibiotic concentration could be well pre-
dicted by relative abundances of antibiotic resistance, stress and virulence associated genes. Despite the weak
interconnection between ARGs and the microbiome, we demonstrate that microbial genes should be the focal
point in tracking the ecological effects of antibiotic dissemination by revealing microbial community patterns
along the dissemination chain of antibiotics.

1. Introduction

Livestock is commonly treated with antibiotics to prevent animal
disease, making livestock manure a large reservoir for the antibiotic
residuals. Composts of aerobic or anaerobic digestion of livestock
manure are commonly used as organic fertilizers for agricultural crops
worldwide (Marti et al., 2013). Antibiotic resistance genes (ARGs) and
their bacterial hosts, which are a part of the microbial resistome (Costa
et al., 2006), can be released into the soil environment along with the
dissemination of antibiotics from manure or compost (Su et al., 2015).

There are growing concerns about the possible contributions of both
manure and compost to increases of ARGs found in the soil resistome
and in known pathogenic bacteria. It was shown that the relative

abundance of β-lactam resistant bacteria was much higher in manure-
amended soil than in unamended soil (Gou et al., 2018). Excessive
application of manure with intensive sulfonamide increased soil ARGs
(Heuer et al., 2011). Since there is frequent exchange of ARGs between
bacteria in animal manure and clinical pathogens (Jiang et al., 2017),
an increase of ARGs in the soil resistome has potential consequences for
human health.

Ecological processes, including deterministic (e.g. abiotic and biotic
selection) and stochastic processes (e.g., birth, death, random im-
migration and dispersal limitation), are major forces in shaping mi-
crobial communities (Zhang et al., 2019; Zhou et al., 2014). Bacterial
diversity has been widely documented to decrease with higher anti-
biotic levels, owing to the antibiotic selection (Raymond et al., 2016).
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However, ARGs can enhance antibiotic resistance of certain bacterial
taxa (Larkin et al., 2006), which can use antibiotics as nutrient sources
(Dantas et al., 2008; Liao et al., 2017). In the presence of high con-
centrations of antibiotics, fungal growth might be favored because fungi
are not sensitive to antibiotics and are able to degrade complex organic
compounds (Deng et al., 2012).

It is still unclear whether ARGs can be predicted by microbial
community composition (Forsberg et al., 2014; Su et al., 2015). During
a lab-scale composting of sewage sludge, diversity and abundance of
ARGs were strongly correlated with bacterial compositions (Su et al.,
2015). Similarly, microbial phylogenetic and taxonomic structure are
the primary determinants of soil ARG content both across and within
soil types in global soil resistome (Forsberg et al., 2014). However,
other studies conclude that ARGs may not correlate with the taxonomic
signatures of specific microbial communities since ARGs can be highly
mobile with the help of genetic elements such as bacteriophages and
plasmids (Subirats et al., 2016). Resistance cluster alleles were enriched
in swine farms (Johnson et al., 2016), yet this enrichment was in-
dependent of the bacterial phylogenetic composition. Due to these
discrepancies in resistance allele enrichment being independent of
community composition, the response for microbial functionality and
assembly to antibiotic dissemination remains controversial.

Here, we examine how bacterial and fungal communities respond to
the residual antibiotics found in manure from swine farms, compost,
compost-amended agricultural soil, and -unamended agricultural soil
(control soil). We hypothesize that: (1) ARG and virulence gene abun-
dance decay from manure to compost to compost-amended soil, which
corresponds to changes of antibiotic concentrations; (2) bacterial but
not fungal diversity is lower in manure and compost than in soils; (3)
due to the functional redundancy inherent in microbial communities,
composition of microbial ARGs can be decoupled from microbial tax-
onomy (Galand et al., 2018; Louca et al., 2018). Therefore, ecological
processes underlying microbial taxonomy assembly might differ from
those of regulating microbial gene structure along the dissemination
chain of antibiotics.

2. Material and methods

2.1. Sample collection and measurements of geochemical factors

In April 2015, we collected samples from five swine farms located in
the suburban area of Beijing, China (Fig. S1). In each swine farm, four
manure samples and four aerobic compost samples were taken. Four
soil samples applied with the compost (i.e., compost-amended soil)
were also taken from a nearby agricultural field. Four control soil
samples were taken from soils without compost amendment in the
agricultural field. Compost-amended soil and control soil samples were
mixed by three soil cores and were taken at the 0–15 cm depth.

The temperature was measured on-site for three times by thermo-
meter and averaged for each sample. Similarly, water content was
measured three times by hygrometer and averaged. We focused on
antibiotics of tetracyclines, sulfonamides, and quinolones since these
three categories of antibiotics are commonly used in livestock practices
(Yang and Carlson 2003). Concentrations of chlortetracycline, oxyte-
tracycline, tetracycline, norfloxacin, ofloxacin, sulfadiazine, sulfadimi-
dine, sulfamerazine, and sulfamethoxazole were analyzed using a pre-
viously published method (Zhao et al., 2010). Briefly, 0.1 g of Na2EDTA
and 10 mL of an extraction solution containing phosphate buffer
(pH = 3.0) and acetonitrile (1:1 vol/vol) were used. After sonication
for 30 min, the samples were then centrifuged at 7,000 × g for 10 min.
The extraction process was performed three times for each sample. The
obtained supernatants were combined and then diluted to 500 mL with
deionized water, filtered through 0.45 μm filters, and acidified to pH
3.0 before solid-phase extraction. The samples were extracted using
6 mL of Oasis HLB extraction cartridges. Final extracts were transferred
to 2 mL amber vials for analysis of liquid chromatography-MS/MS (ABI

3200 Q TRAP, Applied Biosystems, California, USA).
Metals including zinc, copper, lead, arsenic, and mercury were

measured for each sample. 0.1 g of air-dried and milled samples were
weighed into 50 mL polypropylene digest tubes. Then, 2 mL of con-
centrated HNO3, 3 mL of HCl, and 1 mL of HClO4 were added se-
quentially. Tubes were capped and stood overnight. Tubes were ran-
domized and heated in a microwave-assisted digestion system (CEM
Corporation, Matthews, NC). The temperature was raised to 120 °C
within 15 min with a holding time of 20 min. Temperature was then
raised to 170 °C within 15 min with a holding time of 30 min. After
cooling to room temperature, liquid in tubes was transferred to 50 mL
volumetric flasks. The liquid was stored and passed through a
0.45 μm × 13 m nylon filter (Membrana, Corp., and Gelman Sciences)
before analysis. For quality control, reference materials of GBW-07401
and GBW-07405 (IGGE IRMA, China, 590 ± 80 ng g−1) were included
in the analysis. The average recovery rate was 90%. In addition, con-
centrations of metals were measured by 7500cx inductively coupled
plasma mass spectrometry (Agilent, Forrest Hill, Victoria, Australia).

2.2. DNA extraction

DNA was extracted from 1.5 g of each sample by a freeze-grinding
and SDS-based lysis as described previously (Zhou et al., 1996), and
purified with a MoBio PowerSoil DNA isolation kit (MoBio Labora-
tories, Carlsbad, CA, USA) according to the manufacturer’s protocol.
The DNA quality was assessed based on 260/280 nm and 260/230 nm
absorbance ratios using a NanoDrop ND-1000 Spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE, USA). PicoGreen was
used in quantifying the final DNA concentrations with a FLUOstar
Optima fluorescence plant reader (BMG Labtech, Jena, Germany). DNA
was stored at −80 °C until further analysis.

2.3. Amplicon sequencing experiments and raw data analyses

The V4 hypervariable regions of 16S rRNA genes were amplified
with the primer pair 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and
806R (5′ GGACTACHVGGGTWTCTAAT-3′). Fungal ITSs between 5.8S
and 28S rRNA genes were amplified with the primer pair ITS7F
(5′-GTGARTCATCGARTCTTTG-3′) and ITS4R (5′-TCCTCCGCTTATTGA
TATGC-3′). The sequencing experiment was carried out on a MiSeq
equipment (Illumina, San Diego, CA, USA) using 2 × 250 pair-end
format. Raw sequences were submitted to our open-source Galaxy se-
quence analysis pipeline (http://zhoulab5.rccc.ou.edu:8080) (Guo
et al., 2019). Firstly, each sequence was assigned to its corresponding
sample according to the barcode. Before combining the forward and
reverse reads, the primer sequences at the end of each read were
trimmed by the Btrim program, then a quality control threshold>30
over a 5 base pair (bp) window size was used to filter the reads (Kong
2011). Secondly, paired-end reads with at least a 50 bp overlap
and< 5% mismatches were joined using FLASH (Magoč and Salzberg
2011). Any joined sequences with an ambiguous base, or a length
of< 245 bp for the 16S rRNA gene or< 220 bp for the ITS were dis-
carded. Thirdly, sequences were clustered into OTUs using UPARSE7 at
97% identity (Edgar 2013), and singleton OTUs (with only one read)
were removed. All sequences were randomly resampled to the depth of
31,109 sequences per sample for the 16S rRNA gene and 10,269 se-
quences per sample for ITS. Representative sequences from each OTU
were taxonomically annotated by the Ribosomal Database Project
(RDP) Classifier on the website (https://rdp.cme.msu.edu/classifier/
classifier.jsp) with 50% confidence estimates (Wang et al., 2007). The
version of “16S rRNA training set 14” on the website was used for 16S
rRNA gene classification, and the version of “UNITE fungal ITS trainset
07-04-2014” was used for ITS sequence classification.
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2.4. GeoChip hybridization and raw data processing

The functional gene array GeoChip 5.0 was used for DNA micro-
array hybridization. Scanning of GeoChip hybridization and data pro-
cessing were performed as described previously (Liu et al., 2015). In
short, DNA samples were labeled with fluorescent dye Cy-3 dUTP and
hybridized with the slides with GeoChip 5.0 M in a rotator/incubator at
67 °C plus 10% formamide and rotated at 20 rpm for 24 h. After hy-
bridization, the slides were scanned with a NimbleGen MS200 Micro-
array Scanner (Roche, South San Francisco, CA, USA), and the scanned
images were digitally extracted using the Agilent Feature Extraction
software v11.5. Raw data were submitted to the Microarray Data
Manager on the website (http://ieg.ou.edu/microarray). We removed
spots with the signal-to-noise ratio below 2, considered as poor quality.
Both the universal standard and functional gene spot intensities were
used to normalize the signals among arrays.

2.5. Statistical analyses

Differences in antibiotic and metal concentrations in different
samples were determined by Principal Component Analysis (PCA)
based on Euclidean distance. Mantel test was used to evaluate corre-
lations between dissimilarity matrices of microbial genes (based on
GeoChip data), bacterial community, fungal community and dissim-
ilarity matrices of environmental factors including antibiotics, metals
and soil geochemical factors. In the Mantel test, Bray-Curtis distance
was used to obtain dissimilarity matrices of microbial genes as well as
bacterial and fungal OTUs. Euclidean distance was used to obtain dis-
similarity matrices of environmental factors. We also used a Mantel test
to examine correlations between dissimilarity matrices of ARGs (Bray-
Curtis distance) and dissimilarity matrices of bacterial or fungal com-
munities (Bray-Curtis distance). Comparisons of bacterial and fungal
diversities between different farms were examined by ANOVA test. All
analyses were performed in R.

The response ratios of treatment to control were used to compare
relative abundances of microbial genes in different sample types. ARGs,
virulence, metal resistance, organic remediation, secondary metabo-
lism, carbon degradation, and virus-associated genes covered by
GeoChip were examined. Since there are multiple gene probes for each
individual gene on the GeoChip microarray, relative abundances of all
probes for an individual gene were summed. Then, the response ratio
was calculated for each gene. A source-tracking program (Knights et al.,
2011) was performed to compare the community composition in
compost-amended soil to that in manure, compost, and control soil to
track sources of microbial OTUs detected in compost-amended soil.

Random forest was used for the regression between predictors (i.e.,
the abundance of individual microbial genes or bacterial/fungal OTUs)
and total antibiotic concentration. Random forest models were con-
structed using ‘randomForest’ function in the R package by following
steps (Liaw and Wiener 2002): (i) drawing n bootstrap samples from the
dataset; (ii) for each bootstrap sample, growing regression trees
(n = 500) by randomly sampling mtry (number of predictors randomly
sampled as candidates at each split) of the predictors and choosing the
best split from these predictors at each tree node. By default, mtry = p/
3, where p is the total number of predictors; (iii) predicting new data by
aggregating the predictions of n bootstrap samples, i.e., majority votes
for averages of regressions. Accordingly, the parsimonious random
forest model is the outcome of an ensemble of decision trees based on
bootstrapped samples from a dataset (Breiman 2001). The Pseudo-R2,
which represents how much of the variation in antibiotic concentration
is explained by the random forest model, was reported. The predictors
were selected based on mean decrease accuracy values. The mean de-
crease accuracy value represents the decreasing prediction accuracy if
one predictor is replaced by others. Therefore, predictors with higher
mean decrease accuracy values were selected. The squared correlation
coefficient (r2) for the correlation between the relative abundance of

each predictor and total antibiotic concentration was also calculated.
We also used partial dependence plots to show how the relative
abundance of a given gene category changed in association with total
antibiotic concentration (Hastie et al., 2009).

We calculated Raup–Crick (RC) values to determine the assembly
processes of microbial communities (Stegen et al., 2013). We used Bray-
Curtis distance to examine whether the observed degree of community
assembly deviated from that expected if the community was assembled
by stochastic processes. |RC| > 0.95 indicates that turnover in com-
munity composition is governed primarily by a deterministic process
such as selection, dispersal limitation or homogenizing dispersal;
|RC| < 0.95 is indicative of stochastic assembly (Chase et al., 2011). In
addition, we calculated the standard effective size (SES) (Kraft et al.,
2011), which calculated β deviation as observed β diversity minus the
mean of the null distribution of β diversity values, divided by the
standard deviation of this distribution. We took a set of simulations
(n = 999) and applied the null model randomization to calculate β
deviation. Therefore, β deviation represents a standard effect size,
with + 2 and −2 representing 95% confidence intervals for the null
hypothesis that average SES equals zero. |SES|> 2 indicates that
community assembly is significantly different from the null hypothesis,
revealing deterministic processes. On the contrary, |SES|< 2 indicates
that community assembly is not different from null expectations, re-
vealing stochastic processes.

3. Results

3.1. Antibiotics, heavy metals, and soil variables

All target antibiotics were detected in every sample (Table S1).
Tetracycline antibiotics, which can be naturally produced by
Streptomyces (Aminov 2017; Jukes 1985), showed an average con-
centration of 96,204 μg·kg−1 in manure, 136,850 μg·kg−1 in compost,
3,042 μg·kg−1 in compost-amended soil, and 291 μg·kg−1 in control
soil. The concentration of quinolones, which are typically synthesized
antibiotics against animal infections (Aminov 2017), was high in
manure (6,727 μg·kg−1) and compost (737 μg·kg−1) but was low in
compost-amended soil (21 μg·kg−1) and control soil (8 μg·kg−1). Sul-
fonamides, which are also fully synthetic antibiotics (Aminov 2017),
showed the lowest concentrations for most of the samples, averagely
350 μg·kg−1 in manure, 661 μg·kg−1 in compost, 141 μg·kg−1 in
compost-amended agricultural soil and 65 μg·kg−1 in control soil.
Among sulfonamides, sulfamethoxazole had the highest concentrations,
ranging from 60 μg·kg−1 to 294 μg·kg−1. We also examined the var-
iation in antibiotic concentration between farms. The concentration of
six categories of antibiotics (chlortetracycline, oxytetracycline, tetra-
cycline, norfloxacin, sulfamerazine and sulfamethoxazole) and total
concentration of all antibiotics did not vary significantly between farms
(Fig. S2).

Principal Component Analysis (PCA) was used to assess differences
between the total antibiotic concentrations of different samples. The
samples were divided into two distinct clusters according to the total
antibiotic concentrations: the cluster constituted by manure and com-
post samples and the cluster constituted by compost-amended soil and
control soil samples (Fig. 1a). Relatively high antibiotic concentrations
in manure and compost decayed to low levels (near 0%) in compost-
amended soil for most antibiotics (Fig. 1c). However, sulfamethoxazole
and sulfadimidine showed lower decay rates than others.

Metals of lead and arsenic, often used as feed additives in livestock
farms, showed higher (F = 6.07, p < 0.05, ANOVA) concentrations in
manure and compost than in control soil (Table S1). The highest
average concentrations of lead and arsenic were 9,212 μg·kg−1 and
320 μg·kg−1, respectively. By contrast, zinc and copper showed higher
concentration in soils than in manure and compost (Table S1). Zinc and
copper are both strongly associated with soil organic matter and bind as
organic complexes (Han et al., 2001; Harrison et al., 1981). Animal
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manure and compost tend to have high dissolved organic carbon levels
in the percolating solution, which may increase the runoff of copper
and zinc complexes (Brock et al., 2006; Japenga and Harmsen 1990).
The highest average concentration of zinc was 533,223 μg·kg−1, and
that of copper was 46,215 μg·kg−1. The concentration of mercury was
the lowest among all detected metals, ranging from 13 to 23 μg·kg−1.
PCA analysis showed that samples were also partitioned into two
clusters based on metal concentrations, with one cluster constituted by
manure and compost samples and the other constituted by compost-
amended soil and control soil samples (Fig. 1b). The concentration of
different metals did not vary significantly between farms (Fig. S2).

Mean soil temperature was the highest in compost samples (28 °C),
followed by manure (25 °C), control soil (24 °C), and compost-amended
soil (22 °C) (Table S1). Mean soil water contents were much higher in
manure (95%) and compost (63%), compared to those in compost-
amended soil (28%) and control soil (17%) (Table S1).

3.2. Bacterial and fungal taxa

We identified 74,676 bacterial OTUs and 6,359 fungal OTUs among
80 samples. Rarefaction curves showed that both bacterial and fungal
sequencing had reached saturation (Fig. S3). A total of 31,109 bacterial
sequences and 10,269 fungal sequences were subsampled based on
their rarefaction curves. There was a dominance of bacterial phyla
Firmicutes (73%) and Bacteroidetes (11%) in manure and compost, while
there was a dominance of bacterial phyla Proteobacteria (47%) and
Actinobacteria (23%) in compost-amended soil and control soil (Fig.
S4a). Clostridiales constituted 53% among the 229 orders in manure and
compost. Other major orders included Lactobacillales (14%), Bacteroi-
dales (7%), and Pseudomonadales (4%). At the genus level, Clostridium,
Streptococcus and Lactobacillus were highly abundant in manure and
compost (Fig. 2), while Ohtaekwangia and Serpens were the most
abundant genera in compost-amended soil. Streptomyces was the most
abundant genus in the control soil.

Ascomycota (53%) and Basidiomycota (16%), which include many

opportunistic human pathogens, were the most abundant fungal phyla
(Fig. S4b). Saccharomycetales (20%), Eurotiales (9%), Xylariales (8%),
Neocallimastigales (7%), and Diversisporales (5%) were the most abun-
dant orders in manure and compost. By contrast, Saccharomycetales
(10%), Hypocreales (7%), Chytridiomycota (6%), Sporidiobolales (5%),
and Ascomycota (5%) were the most abundant orders in compost-
amended soil and control soil. Kazachstania (27%) was the most
abundant genus in manure, followed by Hyponectriaceae (13%) and
Piromyces (10%) (Fig. 2). Aspergillus (15%) was the most abundant
genus in compost, followed by Diversisporaceae (10%) and Mortierella
(8%). Bionectria, Basidiomycota, Sporormiella, Archaeorhizomyces, and
Chytridiomycota were the most abundant genera in compost-amended
soil. Ascomycota was the most abundant genus in the control soil.

Bacterial community composition in compost-amended soil was si-
milar to that in the control soil (Fig. S5a). This was consistent with the
finding that there were 49.3% of OTUs overlapped (based on the pre-
sence or absence of OTUs) between compost-amended soil and control
soil (Table S2), much higher than the percentage of overlapped OTUs
between compost-amended soil and manure (11.4%) and between
compost-amended soil and compost (10.6%). In contrast, 26–29%
fungal OTUs in manure, compost, and control soil overlapped with
fungal OTUs in compost-amended soil (Fig. S5b and Table S2).

3.3. Microbial genes encoding diverse functions

Relative abundances of ARGs were higher in manure and compost
compared to compost-amended soil and control soil (the response ratio
analysis, Fig. 3a). Specifically, relative abundances of chromosomally
encoded β-lactamase genes, tet genes, and mfs genes were higher in
manure and compost compared to that in compost-amended soil and
control soil. Relative abundances of mobile ARGs encoded episomally,
such as plasmid-borne smr genes associated with multidrug resistance
efflux and abc genes associated with ATP-binding cassette transporters,
were also more abundant in manure and compost. According to our
analysis using the Mantel test, 8 out of 27 ARGs were significantly

Fig. 1. Principal Component Analysis (PCA) of
the total concentration of (a) antibiotics and (b)
metals in different samples. (c) The radar plot for
nine categories of antibiotics in manure (M),
compost (C), compost-amended soil (CS) and
control soil (S). Abbreviations: CTC, chlorte-
tracycline; OTC, oxytetracycline; TCN, tetra-
cycline; NOR, norfloxacin; OFL, ofloxacin; SDZ,
sulfadiazine; SMN, sulfadimidine; SMR, sulfa-
merazine; SMX, sulfamethoxazole.
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correlated with bacterial OTUs. Only one ARG was correlated with
fungal OTUs (r = 0.10, p < 0.01, Table S3), suggesting that ARGs
were weakly related to bacterial and fungal phylogeny. In addition, we
detected more abundant virus associated genes responsible for the eu-
karyotic and prokaryotic structure and replication in manure and
compost than in soils (Fig. 3b), and more abundant virulence associated
genes responsible for secretion, toxin, and antiphagocytosis (Fig. 3c).

For metal resistance associated genes, arsenite transporter genes
arsB, copper transporter genes ycnJ, lead uptake genes pbrT, mercury
resistant genes merT, and zinc transporter genes zrc1 and zrt3 were
more abundant in manure and compost than in compost-amended soil
and control soil (Fig. S6a). Relative abundances of most of the carbon
degradation associated genes were higher in manure and compost (Fig.
S6b), suggestive of higher microbial carbon degradation capacities.
Consistently, nfsa, nifb and nbac genes associated with nitroaromatics
degradation, hcaacd genes associated with aromatic carboxylic acid
degradation, pchcf and tutfdg genes associated with benzene compounds
degradation as well as cbaa genes associated with chlorinated aromatics
degradation were more abundant in manure and compost.

To examine the effect of antibiotics on microbial genes encoding
different functions, we compared the relative abundances of microbial
genes in compost-amended soil to those in control soil. ARGs, virus-
associated genes, metal resistance-associated genes, and carbon de-
gradation associated genes were more abundant in compost-amended
soil than in control soil (Fig. S7).

3.4. Linkages between antibiotics and microbial communities

Bacterial α-diversity was the highest in control soil but was sig-
nificantly (F = 9.05, p < 0.05, ANOVA) lower in compost-amended
soil (Fig. S8a). However, fungal α-diversity was similar between two
soil types (Fig. S8b). Notably, the antibiotic concentration was

negatively correlated with bacterial α-diversity within soil samples
(compost-amended soil and control soil) (r = -0.39, p = 0.02) and
manure samples (r = -0.45, p = 0.04) but not in compost (Table 1). No
correlation was observed between the antibiotic concentration and
fungal α-diversity. Mantel test results showed that the bacterial com-
munity had the strongest association with sulfamethoxazole con-
centration, while microbial genes had the strongest associations with
chlortetracycline concentration (Fig. 4). The fungal community had few
associations with antibiotics, metals, and soil geochemical factors.

We carried out random forest modeling to further explore correla-
tions between individual microbial genes or OTUs with antibiotic
concentrations. Random forest model based on microbial genes had an
overall high (Pseudo-R2 = 0.88) prediction accuracy for variance of the
total antibiotic concentration. The best predictors were genes that be-
longed to functional categories of virulence (e.g., hrpB2, algK), stress
(e.g., baeR, kata, soxR), organic remediation (e.g., adpb, pcpb) and metal
resistance (e.g. pbrA) (Fig. 5a and Table S4). In addition, there was a
significant (r2 = 0.42–0.63, p < 0.05) correlation between the relative
abundance of each most predictive gene and total antibiotic con-
centration (Fig. 5a). Although individual ARGs were not among the
most predictive genes for antibiotics, total abundance of all individual
ARGs significantly increased in response to increasing antibiotic con-
centration, as shown by partial dependence plots (Fig. S9). In sharp
contrast, the random forest model based on bacterial (Pseudo-
R2 = 0.54) and fungal (Pseudo-R2 = 0.20) OTUs had much lower
prediction accuracy for antibiotics (Table S5). The predictive bacterial
OTUs were mainly from phylum Actinobacteria, and the predictive
fungal OTUs were mainly from phylum Ascomycota (Table S5). Col-
lectively, the results suggest that functional traits are more useful than
phylogenetic markers in predicting antibiotic concentrations.

Fig. 2. Heat map representing bacterial and fungal genera that constitute > 1% of the community in manure (M), compost (C), compost-amended soil (CS) and
control soil (S).
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3.5. Deterministic assembly of microbial functional communities versus
stochastic assembly of taxonomic communities

Overall microbial functional community (based on all genes in
GeoChip assays) showed |RC|> 0.95 and |SES|> 2 across samples
except for compost-amended soil (Fig. 5b and c), revealing a largely
deterministic assembly of microbial functions (Kraft et al., 2011). By
contrast, bacterial and fungal communities showed |RC| < 0.95 and
|SES| < 2 in manure and compost, which was suggestive of stochastic
assembly for microbial communities in high-antibiotic concentration
settings. In compost-amended soil and control soil, both bacterial and
fungal communities showed |RC| > 0.95 and |SES| > 2 (Fig. S10),
revealing deterministic assembly under low antibiotic concentration

settings.

4. Discussion

In this study, we detected more abundant virulence and virus as-
sociated genes in manure and compost than in soils (Fig. 3b, response
ratio), consistent with the previous finding that in-feed antibiotics sig-
nificantly induced phages from swine gut bacteria (Allen et al., 2011).
ARGs transferred from phages to hosts could accelerate the evolution of
resistance in the microbiome (Allen et al., 2011). Bacterial pathogens
increase their susceptibility to hosts by promoting the expression of
virulence factors that facilitate the colonization and invasion of the host
(Tang et al., 2009). The potentially more abundant pathogens in
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Fig. 3. The response ratio analyses to compare relative abundances of (a) antibiotic resistance genes, (b) virus associated genes and (c) virulence associated genes in
manure/compost to those in compost-amended soil/control soil. For each gene (see Table S6 for details), the response ratio was calculated as the summed relative
abundances of all gene probes in manure and compost samples relative to the summed relative abundances of all gene probes in compost-amended soil and control
soil samples. Only significant changes at the confidence level of 0.95 are shown.

Table 1
Correlations between microbial communities and environmental factorsd.

Ma C CS S M&C CS&S

Bacteria antibioticsb c-0.454* 0.000 0.124 −0.028 −0.141 −0.386*
metals 0.341 −0.554** 0.154 0.033 −0.512** −0.042
temperature 0.096 0.743** −0.559** −0.153 0.407** −0.246
water content −0.078 −0.165 0.295 0.432 −0.042 0.161

Fungi antibiotics 0.270 0.198 0.580** 0.261 0.210 −0.276
metals −0.266 −0.100 0.155 −0.172 −0.248 −0.343*
temperature −0.385 0.229 −0.315 0.243 0.070 0.183
water content 0.121 0.039 0.418 −0.346 0.112 −0.117

a M represents manure; C represents compost; CS represents compost-amended soil and S represents control soil.
b Antibiotics represent the total concentration of all measured antibiotics. Metals represent the total concentration of all measured heavy metals.
c Correlation coefficient (r) of spearman correlation.
d Significance of the correlation is labeled as * when p < 0.05 and ** when p < 0.01.
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manure and compost might contribute to the higher abundance of
virulence-associated genes.

As one of the major orders of the bacterial community in manure
and compost, Pseudomonadales have typical large genome sizes (ap-
proximately 6 to 10 megabases) with high metabolic versatility that
helps degrade and resist the toxicity of antibiotics (Projan 2007).
Considering that microorganisms may replicate and mutate rapidly in
carbon-rich samples of manure and compost, there could be a wider
range of acquired resistance among microbial populations. In ac-
cordance, we observed that ARGs were more abundant in manure and
compost than in soils (Fig. 3a), likely owing to rich ARGs in gut bac-
teria. In gut of mice, streptomycin treatment increased enteric oxidized

sugars which S. Typhimurium used as food resources to grow rapidly
(Faber et al., 2016). In another study, antibiotic-induced disruption of
the microbial food web gave rise to microbiota-released sugars in the
gut that promoted the growth of S. Typhimurium (Ng et al., 2013).

There is a significantly (r = −0.46, p < 0.05) negative correlation
between antibiotic concentration and bacterial α-diversity in manure
samples but not in compost (Table 1), suggesting that high antibiotic
concentration inhibited some of the bacterial taxa while provided a
selective advantage only to those well-adapted species in manure
samples. Continuous perturbation from antibiotics could reset micro-
bial community composition to an alternative stable, beneficial state
(Sommer et al., 2017). Similarly, microbial community composition
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Fig. 5. (a) The most predictive microbial genes for the total antibiotic concentration based on random forest modeling (see detailed information of these genes in
Table S4). Correlations between the relative abundance of each functional gene and the natural logarithm transformed antibiotic concentration (the total con-
centration of the nine categories of antibiotics) are shown. (b) The ecological processes of microbial genes by the Raup–Crick (RC) index. (c) The ecological processes
by standardized effect size (SES).
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shifted to enriched microorganisms that were capable of hydrocarbon-
degradation after oil spill in the Gulf of Mexico (Hazen et al., 2010).
Composting could significantly increase the abundance and diversity of
bacterial communities, owing to increased dissolved organic carbon
and nitrogen (Xi et al., 2016). Bacterial diversity could undergo changes
during composting, possibly due to variations in temperature and the
availability of new metabolic substrates at different composting stages
(Bhatia et al., 2013).

Fungal communities are highly capable in degrading complex or-
ganic compounds (Deng et al., 2012). Ascomycota, the most abundant
phylum in manure and compost (Fig. S4b), was reported to have high
nutrient degrading abilities (Mannan et al., 2005). In addition, Pir-
omyces, one of the most abundant fungus in manure (Fig. 2), played key
roles in the digestion of recalcitrant carbon substrates to make them
available for hosts and other symbiotic species (Haitjema et al., 2017).

Considering the spread of antibiotics in the environment are com-
plex and hard to be controlled, the establishment of potential indicators
for antibiotic pollution is required. Overall, community resistance is a
potential predictor for antibiotics, as shown by the partial dependence
plot (Fig. S9). It is consistent with another study showing that manure
of swine fed with antibiotics harbored several to tens of thousands-fold
more ARGs than antibiotic-free manure (Zhu et al., 2013). Another
metagenomic study showed 30 times higher ARG abundance in animal
feces with anthropogenic antibiotic input than those in a pristine region
Tibet (Chen et al., 2016). In contrast, a manure fertilization experiment
in Finland farm showed that β-Lactamase and multidrug resistance
genes were not abundant in manure but were prevalent in unfertilized
soils (Muurinen et al., 2017), since those genes were more likely belong
to the intrinsic environmental resistome. Farmland soils could harbor
multiple resistance genes even years after the last manure application
(Schmitt et al., 2006). Therefore, the genetic context of ARGs and the
persistence of ARGs after application could also have important impacts
on ARG compositions.

Individual ARGs were not among the most predictive genes for
predicting antibiotic concentration, as shown by random forest (Table
S4). The result might be because the presence of individual ARGs was
sometimes relatively independent of their antibiotic inducer (Ji et al.,
2012). A previous study had shown weak positive correlations between
sulfonamide/tetracycline concentrations and their corresponding ARGs
in manure and agricultural soils (Ji et al., 2012). No clear associations
were detected between tet genes and tetracycline concentrations (Gao
et al., 2012) and between sulfonamides and sul genes (Xu et al., 2015)
in sewage treatment plants.

The total abundance of stress and virulence associated genes also
positively corresponded to increasing antibiotic concentration (Fig. S9).
There is increasing evidence showing that stress responses of bacteria
are likely to act as determinants of bacterial resistance to antibiotics
(Grant and Hung 2013; Poole 2012). For example, bacterial envelope
stress was found to enhance antibiotic resistance formation (Poole
2012). Our results are in line with another study showing that changes
in microbial gene abundance could predict uranium contamination (He
et al., 2018), indicating that microbial functional traits could serve as
bio-indicators of environmental perturbations. By contrast, antibiotics
could not be predicted by relative abundances of bacterial and fungal
taxa (Fig. S10), probably owing to high functional redundancy in an-
tibiotic resistance among microbial taxa (Anantharaman et al., 2016;
Louca et al., 2016). Consistently, we show that ARGs only weakly
correlate with bacterial phylogeny (Table S3). A possible reason was
that the vast majority of ARGs are acquired through horizontal gene
transfer from other taxonomically distant bacteria (Aminov 2009).

Diverse microbial genes had higher relative abundance in manure
and compost than in soils (Fig. 3a and Fig. S6), suggesting that mi-
crobial communities still sustain functional diversity at relatively high
antibiotic concentrations. The stochastic assembly of bacterial and
fungal communities would have little consequences for microbial
functions, reinforcing the uncoupled relationships between microbial

phylogeny and functions.
Notably, as antibiotics can be natural products of microorganisms in

the environment, it is possible that the detected antibiotics in compost,
manure, and soils contained both the residuals of the synthesized
compounds and natural products. In most cases, antibiotic concentra-
tions occurring in natural environments may be too low to exert any
lethal effects on the microbes; instead, they may play signaling and
regulatory roles in microbiome (Aminov 2009). Furthermore, the
bioavailability of antibiotics strongly depends on soil properties such as
pH and organic matter content (Wegst-Uhrich et al., 2014). Antibiotics
become largely inactive when being adsorbed to soil (Wang and Wang
2015), resulting in a lower antimicrobial effect from antibiotics.
Therefore, the bioavailability of antibiotics might also affect the actual
activity of antibiotics in the environment.

5. Conclusion

Here we examine microbial assemblage at both taxonomic and
functional trait levels along with the spread of antibiotics in the en-
vironment. Microbial taxonomic composition varied stochastically
under high antibiotic settings, while microbial functional traits under-
gone deterministic changes. This observation reflects the environmental
constraints on microbial functional traits to maintain community sta-
bility, which holds the promise to better understand and predict mi-
crobial community changes undergoing antibiotic stress. As a result,
functional traits could serve as potential bio-indicators of environ-
mental conditions. We thus highlight the importance of focusing on
community functional traits in a stressful environmental setting by
showing that microbial functions are highly connected with environ-
mental changes.
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