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• Soil microbial functional structure dif-
fers among SBFs.

• The MBF has the highest soil microbial
functional α-diversity but the lowest
functional β-diversity.

• The MBF has the highest functional ca-
pabilities in nutrient cycling processes.

• Edaphic variables are more correlated
with soil microbial functional structure
than plant-related ones in SBFs.
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Soil microorganisms play important roles in the ecosystem functioning of subtropical broad-leaved forests
(SBFs). However, the patterns and environmental indicators of soil microbial functional structure remain unclear
in SBFs. In the present work, we used a functional microarray (GeoChip 4.0) to examine the soil microbial
functional structure of three types of SBFs, including a deciduous broad-leaved forest (DBF), a mixed
evergreen-deciduous broad-leaved forest (MBF), and an evergreen broad-leaved forest (EBF).We found thatmi-
crobial functional structure was significantly different among SBFs (P< 0.05). Compared to the DBF and the EBF,
the MBF had higher functional α-diversity (P= 0.001, F = 12.55) but lower β-diversity (P < 0.001, F = 61.09),
and showed more complex functional gene networks. Besides, the MBF had higher relative abundances of func-
tional genes for carbon (C) decomposition, C fixation, nitrogen (N) cycling, sulfur (S) cycling, and phosphorus
(P) cycling (P< 0.05), indicating strongermicrobial functional capabilities of nutrient cycling processes. Edaphic
variables (i.e., soil pH and soil nutrient content) were revealed as better indicators of soil microbial functional
structure than plant-related ones (i.e., vegetation type and plant diversity) in SBFs. For example, functional
gene structure of the DBF was significantly related to soil total S (P = 0.041), that of the MBF was significantly
related to soil organic C (P = 0.027) and plant available P (P = 0.034), and that of the EBF was significantly
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related to soil pH (P = 0.006) and total potassium (K) (P = 0.038). Overall, through the analysis of microbial
functional gene profiles, this study yields unique insights into the environmental indicators of patterns and
mechanisms of soil microbial functional structure in SBFs.

© 2021 Published by Elsevier B.V.
1. Introduction

Soil microorganisms play important roles in ecosystem functioning
including organic carbon (C) decomposition (De Graaff et al., 2010), C
fixation (Lynn et al., 2017), nitrogen (N) cycling (Harter et al., 2014),
phosphorus (P) cycling (Dai et al., 2020), sulfur (S) cycling (Ulrich
et al., 1998), etc. Plant-related variables and edaphic variables are com-
monly considered as direct or indirect indicators of soil microbial func-
tions (Berg and Smalla, 2009). For example, higher plant diversity could
increase the turnover rate of plant biomass aswell as soil nutrient input,
and therefore positively stimulates soil microbial functions in nutrient
cycling processes (Zak et al., 2003). Besides, given that the C decompo-
sition ability of soil microorganisms probably reflects the substrates
present in the soil C pool, plant type (or plant cover composition) may
also influence soil microbial functions (Chodak et al., 2015). Patterns
and mechanisms of microbial functional structure are keys to under-
standing functional capabilities of soil microorganisms and functional
variabilities of soil microhabitats (Ettema andWardle, 2002). However,
this information in subtropical broad-leaved forests (SBFs) remains lim-
ited, despite SBFs make considerable contributions to global biodiver-
sity and nutrient cycling (Yu et al., 2014).

Generally, deciduous broad-leaved plant species and evergreen ones
co-occur in SBFs, forming vegetation types including deciduous broad-
leaved forests (DBFs), evergreen broad-leaved forests (EBFs), and
mixed evergreen-deciduous broad-leaved forests (MBFs) (Yu et al.,
2014). Associated with distinct plant properties (e.g., evergreen forests
are often of poorer leaf nutrients, lower photosynthetic capacity, and a
smaller specific leaf area than deciduous ones) (Antúnez et al., 2001;
Pearse et al., 2014; Takashima et al., 2004), litter properties (e.g., litter
quality and quantity) (Pérez-Suárez et al., 2009), and soil properties
(e.g., lower root exudation rates and net N mineralization rate in ever-
green forests than in deciduous ones) (Wang et al., 2021), distinct pat-
terns of soil microbial taxonomic structure among vegetation types
have also been reported (Cheng et al., 2020; Ding et al., 2015b). Al-
though high throughput sequencing technologies have allowed for
rapid characterization of microbial taxonomy, perhaps the biggest chal-
lenge at present is how to linkmicrobial taxonomywith their ecological
functions (Torsvik and Øvreås, 2002). In the last decade, functional mi-
croarrays, such as GeoChip, have been intensively used to assay func-
tional capacities of microbial members in environmental samples
(Levy-Booth et al., 2014; Ma et al., 2019; Yergeau et al., 2007;
Zimmerman et al., 2016). GeoChip primarily targets microbial genes
with biogeochemical functions (e.g., C, N, S, and P cycling, organic con-
taminant degradation, metal resistance, virulence) (He et al., 2007). As
a quantitative tool of microbial functional genes, GeoChip has been par-
ticularly powerful in determining microbial functional capabilities in
various natural habitats including grasslands (Wang et al., 2016), arctic
tundra (Xue et al., 2016), mangroves (Bai et al., 2013), deep-sea hydro-
thermal vents (Wang et al., 2009), etc.

Here, we applied GeoChip to reveal the patterns and mechanisms of
microbial functional structure of a DBF, a MBF, and an EBF in south-
central China. Microbial functional traits including composition, diver-
sity, relative abundance, and network topology of functional genes
were compared among the three vegetation types. According to a previ-
ous study demonstrating that aboveground plant community could be a
major driving force of belowground community (Lamb et al., 2011), we
hypothesized that 1) patterns of soil microbial functional structure
would be different among the three vegetation types, 2) the difference
2

of soil microbial functional structure among forests could be attributed
to both the aboveground plant-related variables and belowground
edaphic ones, and 3) edaphic variables would be better indicators of
soil microbial functional structure than plant-related ones due to
GeoChip itself targets biogeochemical cycles.

2. Methods & materials

2.1. Study area

Soil samples were collected from three SBFs in south-central China,
including a DBF located at the Saiwudang Natural Reserve in Hubei
Province (32°25′51.29″N, 110°45′4.29″E, 1108 m above sea level), a
MBF located at the Badagongshan Natural Reserve in Hunan Province
(29°46′24.23″N, 110°4′26.95″E, 1453m above sea level), and an EBF lo-
cated at the Houhe National Nature Reserve in Hubei Province (30°4′
43.00″N, 110°32′58.89″E, 1568 m above sea level) (Fig. S1). The geo-
graphical distance between Saiwudang and Badagongshan is 652 km,
and that between Saiwudang and Houhe is 516 km, and that between
Badagongshan and Houhe is 183 km (Fig. S1). All the three forests
were historically used as forestry farms for timber and charcoal harvest-
ing, and have become natural restorations since deforestation was
prohibited in the 1980s. The soil type of the three forests is similar,
i.e., mountain yellow-brown soil. The DBF has a mean annual tempera-
ture (MAT) of 10.67 °C and a mean annual precipitation (MAP) of
1009.5 mm, dominated by Quercus glandulifera (Fagaceae), Platycarya
strobilacea (Juglandaceae), and Castanea henryi (Fagaceae). The MBF
has a MAT of 11.56 °C and a MAP of 1527.1 mm, dominated by Carpinus
chuniana (Betulaceae), Sorbus folgneri (Rosaceae), and Cyclobalanopsis
multinervis (Fagaceae). The EBF has a MAT of 11.18 °C and a MAP of
1465.6 mm, dominated by Sycopsis sinensis (Hamamelidaceae),
Cyclobalanopsis glauca (Fagaceae), and Cyclobalanopsis oxyodon
(Fagaceae).

2.2. Plant survey

A detailed description of the plant survey has been previously re-
ported (Cheng et al., 2020). In brief, we randomly selected 9 plots
(20 × 20m) in each forest and identified all visible plants to the species
level. For those trees with the diameter at breast height (DBH) > 5 cm,
we classified them as canopy trees andmeasured their richness, height,
and DBH to calculate the Importance Value Index (IVI) (Curtis and
Mcintosh, 1951) of each canopy tree species. Each canopy tree species
was determined to be either deciduous or evergreen. IVI values of all de-
ciduous canopy tree species in a plot were summed up, and we defined
the sum as “dIVI”, a quantitative indicator of vegetation types. Plant
richness, Shannon-Wiener index, and Pielou's evenness, were calcu-
lated based on the survey of all plant species in a plot, including canopy
trees, shrubs (5 cm ≥ DBH > 1 cm), and herbs.

2.3. Soil sampling, DNA extraction & edaphic variable measurements

We collected soil samples in September 2012 before the defoliation
of deciduous trees. A total of 10–15 random top-soil cores (0–10 cm)
per plot were collected and thoroughly mixed as one sample. Coarse
gravels and plant roots were removed using a 2 mmmesh. Soil samples
were stored on ice and delivered to the laboratory for DNA extraction
and edaphic variable measurements.
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We extracted soil DNA using theMoBio PowerSoil DNA Isolation Kit
(MoBio Laboratories, Carlsbad, CA, USA) and purified the DNA products
using the Genomic DNA Clean & Concentrator Kit (Zymo Research,
Irvine, CA, USA). DNA quality and concentration were measured
through a NanoDrop ND-1000 Spectrophotometer (NanoDrop
Technologies Inc., Wilmington, DE, USA) and a FLUOstar OPTIMA
fluorescence plate reader (BMG LABTECH, Jena, Germany), respectively.

We measured a range of edaphic variables following the previously
described protocols (Bao, 2000; Ding et al., 2015b), including soil pH,
soil organic C, total N, total potassium (K), total S, total P, alkali-
hydrolysable N, NH4

+-N, NO3
−-N, plant available P, and Fe3+.

2.4. GeoChip 4.0 hybridization

GeoChip 4.0 (NimbleGen,Madison,WI, USA)was used to investigate
microbial functional structure, which contains 83,992 oligonucleotide
probes (50-mer) targeting 410 gene categories in association with the
biogeochemical cycling of C, N, P, and S, organic contaminants, stress,
virulence, etc. (Lu et al., 2012). For each sample, 1 μg of DNAwas labeled
with Cy5 fluorescent dye (GE Healthcare, Madison, WI, USA) and hy-
bridized with GeoChip microarrays at 45 °C for 10 h. Unbounded DNA
was washed away. GeoChip microarrays were scanned by a NimbleGen
MS 200 Microarray Scanner (Roche, Basel, Switzerland). Signal intensi-
ties were measured using ImaGene 6.0 (Biodiscovery, El Segundo, CA),
and only those with a signal-to-noise ratio (SNR) > 2.0 [SNR = (signal
intensity − background intensity) / standard deviation of the back-
ground] were used for further analyses. The following data transforma-
tion included: (1) removing genes detected in less than 3 of 9 samples in
each forest; (2) dividing the signal intensity of each gene by the sum of
each sample, and then multiplying it by the average of all samples; and
(3) performing natural log-transformation.

2.5. Statistical analyses

Plant-related variables (including dIVI, Shannon-Wiener index, rich-
ness, and Pielou's evenness) and edaphic variables (including soil pH,
total C, total N, total K, total P, total S, NH4

+-N, NO3
−-N, alkali-

hydrolysable N, plant available P, and Fe3+) have been previously ana-
lyzed and published (Cheng et al., 2020). Microbial functional gene
structure was visualized via the PCoA (principal coordinates analysis)
plot, performed by the function ‘pco’ in the R package vegan. Dissimilar-
ity of microbial functional gene structure across forests was examined
via three non-parametric multivariate analyses, including the multi-
response permutation procedure (MRPP), the multivariate analysis of
variance (Adonis), and the analysis of similarity (ANOSIM), performed
by functions ‘mrpp’, ‘adonis2’, and ‘anosim’ in vegan. For each non-
parametric multivariate analysis, three types of dissimilarity including
Bray-Curtis, Euclidean, and Horn were selected to ensure reliability.
Multiple comparisons of microbial functional gene α-diversity
(i.e., Shannon-Wiener index), richness (i.e., number of gene probes de-
tected), β-diversity (i.e., variation among sampling plots within a for-
est), and relative abundance of functional genes across forests were
carried out with Tukey HSD after the general linear model using the
sampling plot as a random factor, performed by the IBM SPSS statistics
software (version 23.0). P-values were adjusted by the Benjamini &
Hochberg (BH) correction via the function ‘p.adjust’ in the R package
stats. In this study, we only focused on those microbial functional
genes for nutrient cycling processes, including C decomposition genes,
C fixation genes, N cycling genes, P cycling genes, and S cycling genes.
Linkages betweenmicrobial functional gene structure and environmen-
tal variables (including plant-related ones and edaphic ones) were de-
tected by partial Mantel tests using the function ‘mantel.partial’ in
vegan. Moreover, to estimate the relative importance of plant-related
variables and edaphic variables, we conducted the MRM (multiple re-
gression on distance matrices) using the function ‘MRM’ in the R pack-
age ecodist. Before performing the partial Mantel test and MRM,
3

environmental variables were transformed via the function ‘scale’ in
the R package base.

2.6. Network construction

To estimate potential interactions among functional genes or micro-
organisms containing those genes (Zhou et al., 2011), we constructed
molecule ecological networks using the microbial functional gene
data. Forest-specific networks of genes for C decomposition, C fixation,
N cycling, P cycling, and S cyclingwere constructed separately. Network
constructionwas based on theRandomMatrix Theory (RMT) algorithm,
via the pipeline of Molecular Ecological Network Analyses (MENA)
(http://ieg4.rccc.ou.edu/mena/) (Deng et al., 2012; Zhou et al., 2011).
For the C decomposition networks, not all genes were included for net-
work construction, because the data table uploaded to MENA should be
less than 5,000 rows. Since we detected a total of 7,243 gene probes for
C decomposition, which exceeded themaximum row number ofMENA,
we selected the top 10 abundant genes for network construction, in-
cluding the endoglucanase gene, chitinase gene, ligninase gene, amyA,
cellobiase gene, phenol oxidase gene, endochitinase gene, exoglucanase
gene, exochitinase gene, and xylanase gene. The top 10 abundant genes
had 4,022 probes in total (i.e., row number= 4,022). For the C fixation,
N cycling, P cycling, and S cycling networks, all genes were included for
network construction. Overall network topological characteristics in-
cluding threshold (i.e., the minimum Spearman's correlation coefficient
between pairwise functional genes for network construction), total
nodes, total edges, R2 of power-law, average connectivity, average clus-
tering coefficient, and modularity were calculated via MENA. Thresh-
olds for network construction were automatically identified by MENA:
Briefly, RMT identified the transition points from Gaussian orthogonal
ensemble statistics to Poisson distribution and used the transition
points as thresholds (Deng et al., 2012). To compare network topologi-
cal characteristics among vegetation types, we chose the same thresh-
old from RMT-identified transition points to construct forest-specific
networks. Cytoscape (version 3.8.0) was used to visualize network
topology.

3. Results

3.1. Plant-related and edaphic variables

According to our previouswork (Cheng et al., 2020), theDBF and the
MBF exhibited a higher plant Shannon-Wiener index than the EBF. The
EBF exhibited higher soil pH than the DBF and the EBF. Compared to the
MBF and the EBF, the DBF exhibited higher plant available P but lower
soil organic C, total N, total P, total S, NO3

−-N, and Fe3+ (see Table S1
for more information).

3.2. Patterns of soil microbial functional structure

A total of 23,820 probes of 345 functional genes were detected from
the overall 27 soil samples, among which 60 genes were in association
with C decomposition, 56 geneswith Cfixation, 20 geneswithN cycling,
3 genes with P cycling, and 15 genes with S cycling. In line with our
Hypothesis 1, we found significantly different patterns of functional
gene structure among the three forests (Table 1, P < 0.05; Fig. 1a).
Compared to the DBF (10.02) and the EBF (10.03), the MBF (10.06) ex-
hibited significantly higher functional α-diversity (Fig. 1b, P = 0.001,
F = 12.55). Besides, the MBF exhibited significantly higher gene
richness (DBF: 22,833; MBF: 23,124; EBF: 23,576) (Fig. 1c, P = 0.001,
F = 11.76) but significantly lower functional β-diversity (DBF: 0.037;
MBF: 0.019; EBF: 0.028) (Fig. 1d, P < 0.001, F = 61.09).

3.2.1. C decomposition genes
Significant difference of C decomposition genes was observed

among forests (P < 0.001, F = 25.53). For example, genes for relatively

http://ieg4.rccc.ou.edu/mena/


Table 1
Dissimilarity test results of microbial functional gene composition between each pair of
forests. Dissimilarity tests include the multi-response permutation procedure (MRPP),
the non-parametric multivariate analysis of variance (Adonis), and the analysis of
similarity (ANOSIM). DBF: the deciduous broad-leaved forest. MBF: themixed deciduous-
evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Bold values
indicate significance at the P < 0.01 level.

Distance method MRPP Adonis ANOSIM

δ P F P R P

DBF vs. MBF Bray-Curtis 0.028 0.001 5.786 0.001 0.457 0.001
Euclidean 195.400 0.001 5.786 0.002 0.248 0.001
Horn 0.014 0.002 5.786 0.001 0.220 0.001

DBF vs. EBF Bray-Curtis 0.327 0.001 3.048 0.001 0.351 0.001
Euclidean 230.200 0.003 3.048 0.001 0.157 0.003
Horn 0.019 0.007 3.048 0.001 0.148 0.001

MBF vs. EBF Bray-Curtis 0.024 0.001 7.625 0.001 0.574 0.001
Euclidean 178.100 0.001 7.625 0.001 0.239 0.001
Horn 0.011 0.001 7.625 0.001 0.226 0.001
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labile C decomposition including starch decomposition (the amyA
encoding α-amylase), hemicelluloses decomposition gene (the
xylanase gene), cellulose decomposition genes (the cellobiase gene,
the endoglucanase gene, and the exoglucanase gene) were more
Fig. 1. (a) The PCoA (principal coordinates analysis) plot of microbial functional gene compositi
richness (i.e., number of gene probes detected) of microbial functional genes; and (d) The β-
mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Lett
forests.
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abundant in the MBF than in the DBF and the EBF (Fig. 2, P < 0.05). In
addition, genes for the decomposition of relatively recalcitrant C,
e.g., the chitinase gene and the endochitinase gene for chitin decompo-
sition, the phenol oxidase gene for lignin decompositionwere alsomore
abundant in theMBF (Fig. 2, P< 0.05). Among the three forests, relative
abundances of amyA, endoglucanase gene, and phenol oxidase gene
were the lowest in the DBF (Fig. 2, P < 0.05).

3.2.2. C fixation genes
We detected significantly higher relative abundances of C fixation

genes in theMBF than in other forests (P< 0.001, F = 27.72), including
the carboxysome gene for enhancing C fixation efficiency, key genes in-
volved in the Calvin cycle (such as the fructose 1, 6-bisphosphate (FBP)
gene, the FBP aldolase gene, the glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) gene, the phosphoglycerate kinase (PGK) gene,
the rpiA encoding ribose-5-phosphate isomerase, the ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco) gene, the
triosephosphate isomerase (TIM) gene, and the tktA encoding
transketolase), and the key gene involved in the reductive acetyl-CoA
pathway, i.e., the formyltetrahydrofolate synthetase (FTHFS) gene. Rel-
ative abundances of carboxysome gene, FBP aldolase gene, and Rubisco
gene in the DBF were the lowest in the DBF (Fig. S1, P < 0.05).
on; (b) Theα-diversity (i.e., Shannon-Wiener index) ofmicrobial functional genes; (c) The
diversity of microbial functional genes. DBF: the deciduous broad-leaved forest. MBF: the
ers including “a” “b” and “c” above bars indicate significant difference (P < 0.05) among



Fig. 2. Comparison of microbial functional genes for C decomposition among forests. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest.
EBF: the evergreen broad-leaved forest. Letters including “a” “b” and “c” above bars indicate significant difference (P < 0.05) among forests.
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3.2.3. N cycling genes
Significant differences in relative abundances of N cycling genes

were observed among forests (P < 0.001, F = 22.67). For example,
genes for ammonification, including the gdh encoding glutamate
dehydrogenase and the ureC encoding urease, were more abundant in
the MBF than in the DBF and the EBF (Fig. 3, P < 0.05). Relative
Fig. 3. Comparison of microbial functional genes for N cycling among forests. DBF: the deciduou
evergreen broad-leaved forest. Letters including “a” “b” and “c” above bars indicate significant

5

abundances of the nirB encoding nitrite reductase for assimilatory N re-
duction (NO2

− → NH4
+), the amoA encoding ammonia monooxygenase

for nitrification, and the nifH encoding nitrogenase reductase for N fixa-
tion were also significantly higher in the MBF (Fig. 3, P< 0.05). In addi-
tion, genes for denitrification, including the nirK and nirS encoding
nitrite reductase (NO2

− → NO), as well as the nosZ encoding nitrous
s broad-leaved forest. MBF: themixed deciduous-evergreen broad-leaved forest. EBF: the
difference (P < 0.05) among forests.



Table 3
Results of the MRM (multiple regression on distance matrices) between microbial func-
tional gene composition and environmental variables. Plant-related variables include dIVI,
Shannon-Wiener index, richness, and Pielou's evenness. Edaphic variables include pH, or-
ganic C, total N, total K, total P, total S, NH4

+-N, NO3
−-N, alkali-hydrolysable N, plant avail-

able P, and Fe3+. Bold values indicate significance at the P < 0.01 level.

Coefficient P-value F-value of MRM model (P-value)

Plant-related variables 0.79 0.86 24.67 (< 0.01)
Edaphic variables 10.47 < 0.01

Table 4
Topological characteristics of forest-specific networks based onmicrobial functional genes
for nutrient cycling. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-
evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest.

Network topological characteristics DBF MBF EBF

C decomposition
Threshold 0.980 0.980 0.980
Total nodes 1136 1978 1053
Total edges 877 3944 790
R2 of power-law 0.944 0.886 0.887
Average connectivity 1.544 3.988 1.500
Average clustering coefficient 0.137 0.224 0.091
Modularity 0.990 0.822 0.983

C fixation
Threshold 0.960 0.960 0.960
Total nodes 1172 1636 1174
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oxide reductase (N2O → N2), were more abundant in the MBF than in
others (Fig. 3, P < 0.05). Among the three forests, relative abundances
of ureC, nasA encoding nitrate reductase for assimilatory N reduction
(NO3

−→NO2
−), nirA encoding nitrite reductase for assimilatory N reduc-

tion (NO2
− → NH4

+), narG encoding nitrate reductase for denitrification
(NO3

− → NO2
−), nirS, and norB encoding nitric oxide reductase for deni-

trification (NO → N2O) were the lowest in the DBF (Fig. 3, P < 0.05).

3.2.4. P cycling genes
We detected significantly higher relative abundances of P cycling

genes in theMBF than in other forests (P< 0.001, F = 32.59), including
the phytase gene for the step-wise removal of phosphate from phytate,
the ppk encoding polyphosphate kinase for the formation of
polyphosphate from ATP, and the ppx encoding exopolyphosphatase
for the degradation of polyphosphate. Relative abundances of ppk and
ppxwere the lowest in the DBF (Fig. S2, P < 0.05).

3.2.5. S cycling genes
We detected significantly higher relative abundances of S cycling

genes in theMBF than in other forests (P< 0.001, F = 27.48), including
the aprA encoding adenosine-5′-phosphosulfate reductase for sulfate
reduction, the cysJ encoding sulphite reductase flavoprotein, the dsrA
and dsrB encoding dissimilatory sulfate reductase, and the soxY
encoding sulfur covalently binding protein for sulfur oxidation. Relative
abundances of cysJ and soxY were the lowest in the DBF (Fig. S3,
P < 0.05).

3.3. Environmental indicators of soil microbial functional structure

PartialMantel tests demonstrated that soil microbial functional gene
structure of the DBF was significantly related to soil total S (rM =0.450,
P = 0.041), that of the MBF was significantly related to soil organic C
(rM = 0.416, P = 0.027) and plant available P (rM = 0.378, P =
0.034), and that of the EBF was significantly related to soil pH (rM =
0.425, P = 0.006) and total K (rM = 0.442, P = 0.038) (Table 2). None
of the plant-related variables were revealed as significant indicators of
soil microbial functional gene composition (Table 2). In accordance,
the MRM results also verified that edaphic variables (P < 0.01) were
more important than plant-related ones (P = 0.86) in predicting soil
microbial functional structure (Table 3).
Table 2
Results of the partial Mantel test between microbial functional gene composition and en-
vironmental variables. DBF: the deciduous broad-leaved forest. MBF: the mixed decidu-
ous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Bold values
indicate significance at the P < 0.05 level.

Environmental variables DBF MBF EBF

rM P rM P rM P

Plant-related variables
dIVI −0.057 0.350 −0.329 0.976 0.282 0.178
Shannon-Wiener index −0.016 0.410 −0.346 0.986 0.120 0.290
Richness 0.143 0.186 −0.225 0.829 0.110 0.228
Pielou's evenness −0.140 0.670 −0.367 0.997 0.027 0.441
All −0.003 0.457 −0.204 0.831 0.111 0.236

Edaphic variables
Soil pH 0.045 0.308 0.084 0.359 0.425 0.006
Organic carbon (C) 0.205 0.196 0.416 0.027 −0.542 0.986
Total nitrogen (N) 0.271 0.208 0.389 0.058 −0.536 0.996
Total potassium (K) 0.003 0.321 −0.066 0.535 0.442 0.038
Total phosphorus (P) 0.294 0.133 0.311 0.107 0.186 0.225
Total sulfur (S) 0.450 0.041 0.250 0.076 0.184 0.211
NH4

+-N −0.110 0.640 0.166 0.245 0.013 0.446
NO3

−-N −0.189 0.788 0.230 0.089 −0.106 0.735
Alkali-hydrolysable N 0.167 0.268 0.376 0.056 −0.526 0.985
Plant available P −0.194 0.757 0.378 0.034 −0.038 0.541
Fe3+ −0.010 0.402 −0.074 0.617 0.306 0.077
All 0.359 0.049 0.420 0.025 −0.107 0.645
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3.4. Network topological characteristics

Functional molecule ecological networks showed clearly different
topological properties among forests (Table 4). Compared to networks
of the DBF and the EBF, networks of the MBF were more complex and
intensive, which contained more nodes and edges and had higher aver-
age connectivity and average clustering coefficient (Figs. 4, 5 & S4–S6).
For example, with the threshold of 0.980, the C decomposition network
of MBF had a larger node number (1978) than that of the DBF (1136)
and EBF (1053), and the edge number of MBF (3944) was 4–5 times
larger than that of the DBF (877) and EBF (790) (Fig. 4 & Table 4). Aver-
age connectivity of the C decomposition network of MBF (3.988) was
2–3 times larger than that of the DBF (1.544) and EBF (1.500). Average
Total edges 1112 4449 1064
R2 of power-law 0.888 0.817 0.891
Average connectivity 1.898 5.439 1.813
Average clustering coefficient 0.192 0.329 0.177
Modularity 0.970 0.759 0.969

N cycling
Threshold 0.960 0.960 0.960
Total nodes 1449 1982 1384
Total edges 1438 7286 1392
R2 of power-law 0.889 0.823 0.912
Average connectivity 1.985 7.352 2.012
Average clustering coefficient 0.204 0.360 0.190
Modularity 0.971 0.710 0.952

P cycling
Threshold 0.920 0.920 0.920
Total nodes 610 735 547
Total edges 770 2813 637
R2 of power-law 0.848 0.735 0.856
Average connectivity 2.525 7.654 2.329
Average clustering coefficient 0.205 0.336 0.200
Modularity 0.906 0.639 0.875

S cycling
Threshold 0.960 0.960 0.960
Total nodes 658 1041 624
Total edges 563 2382 486
R2 of power-law 0.943 0.841 0.926
Average connectivity 1.711 4.576 1.558
Average clustering coefficient 0.143 0.319 0.157
Modularity 0.962 0.769 0.983



Fig. 4. Topology of forest-specific networks based onmicrobial functional genes for C decomposition. DBF: the deciduous broad-leaved forest. MBF: themixed deciduous-evergreen broad-
leaved forest. EBF: the evergreen broad-leaved forest. Each dot indicates a node and each line indicates an edge. Nodes are separated by genes, which are indicated by different colors.
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clustering coefficient of the C decomposition network of MBF (0.224)
was 1–3 times larger than that of the DBF (0.137) and EBF (0.091)
(Fig. 4 & Table 4). Similar topological patterns were also detected for C
fixation networks (Fig. S4), N cycling networks (Fig. 5), P cycling net-
works (Fig. S5), and S cycling networks (Fig. S6).

4. Discussion

Soil microbial taxonomic structure has been widely investigated in
numerous studies (Cheng et al., 2020; He et al., 2012; Hu et al., 2014),
while only a few have attempted to integrate microbial taxonomy
with function (Mendes et al., 2014; Navarrete et al., 2015; Pérez-
Jaramillo et al., 2019). In the present study, we investigated patterns
of soil microbial functional structure in three types of subtropical
broad-leaved forests (i.e., DBF, MBF, and EBF), which were indicated
by functional gene quantification via GeoChip. Although caution is re-
quiredwhen interpreting the functional gene data due to the lack of en-
zyme activity measurements, GeoChip has been successfully used in a
range of ecosystem types (He et al., 2007; Ma et al., 2019; Wang et al.,
2017). As expected, significantly different patterns of functional struc-
ture were observed among forests (Fig. 1a & Table 1), indicating differ-
ent soilmicrobial functional capabilities of the three vegetation types. In
our previous study, higher taxonomic diversity of soil bacteria and ar-
chaea communities (based on 16S rRNA gene sequencing) was ob-
served in the DBF than in the MBF and the EBF (Cheng et al., 2020).
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However, the DBF did not show the highest functional gene diversity
in our present study (Fig. 1b & c). The inconsistency between taxonomic
diversity and functional diversity probably means a high degree of mi-
crobial functional redundancy (i.e., different microbial taxa play the
same functional role in ecosystems) (Loreau, 2004) in the DBF. Higher
functional β-diversity in the DBF and EBF (Fig. 1d) indicated higher
site-to-site differentiation of soil microbial functions below the decidu-
ous stands and evergreen ones (Socolar et al., 2016). Whereas, lower
functionalβ-diversity in theMBF indicated higher site-to-site functional
homogenization below the mixed stands (Socolar et al., 2016).

Compared to the DBF and the EBF, higher functional gene diversity
(Fig. 1b & c) and gene abundances for nutrient cycling processes
(Figs. 2, 3 & S1–S3) of theMBF indicated that soilmicrobial communities
below themixed deciduous-evergreen stands had higher functional ca-
pabilities in more ecological processes. A possible explanation is litter
mixing effects, i.e., litter from different vegetation types could promote
themicrobe-mediated decomposition and nutrient turnover, which has
been observed in several studies (Hu et al., 2006; Liu et al., 2016; Wang
et al., 2019; Wang et al., 2020). For example, a previous study showed
that mixed litter from deciduous species and evergreen ones acceler-
ated litter decomposition in a Chinese subtropical forest (Liu et al.,
2016). In addition, mixed litter from coniferous species and broad-
leaved ones promoted degradative enzyme activities and functional
gene abundances of specific microbial taxa (Wang et al., 2020). Most
microbial functional genes in association with C, N, P, and S cycling



Fig. 5. Topology of forest-specific networks based onmicrobial functional genes for N cycling. DBF: the deciduous broad-leaved forest. MBF: themixed deciduous-evergreen broad-leaved
forest. EBF: the evergreen broad-leaved forest. Each dot indicates a node and each line indicates an edge. Nodes are separated by genes, which are indicated by different colors.
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were significantly higher in the MBF than in the other two vegetation
types, but the MBF did not exhibit significantly higher or lower corre-
sponding soil nutrients (Table S1). A possible reason is that higher
abundances of functional genes measured by GeoChip only indicate
higher functional capabilities or potentials but not higher microbial ac-
tivities in nutrient cycling processes (He et al., 2007). According to a
previous study showing that higher precipitation could enhance the
abundance of microbial enzymes for C decomposition (Ren et al.,
2017), we suspected that higher MAP (1527.1 mm of the MBF vs.
1009.5 mm of the DBF, 1465.6 mm of the EBF) might be another expla-
nation of the highermicrobial capability in C decomposition in theMBF.
Unfortunately, we could not evaluate the effects ofMAP in this study be-
cause our MAP data were vegetation-type specific instead of sampling-
plot specific, i.e., each vegetation type has only one MAP regardless of
nine sampling plots. Additional studies are needed to interpret the rela-
tionship of climatic variables and soil microbial functional structure.

Network analysis is a convenient way to reveal potential microbial
interactions. Topological properties of the constructed networks could
somewhat reflect whole-network differences among different natural
or experimental settings, which has been justified by plenty of recent
articles (Barberán et al., 2012; Cordero and Datta, 2016; de Vries et al.,
2018). In this study, higher average connectivity and average clustering
coefficient of networks of theMBF (Figs. 4, 5 & S4–S6; Table 4) indicated
that soil microbial communities under this vegetation type could func-
tion more closely in nutrient cycling processes and be more resistant
to environmental disturbance (de Vries et al., 2018). This finding also
implies that forest restoration can benefit from the co-existence of de-
ciduous plant species and evergreen ones. However, one should always
be careful when interpreting microbial ecological networks since most
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true microbial interactions remain largely intractable experimentally,
except symbionts. Moreover, we should bear in mind that the small
sampling size of networks (9 replicates) suggests that we may run the
risk of getting spurious correlations.

Variation of microbial functional gene structure is often accompa-
nied by variation of both plant and soil properties across a range of eco-
systems (Hu et al., 2019; Kandeler et al., 2006; Yang et al., 2014).
However, in contrast to our expectation, effects of plant-related vari-
ables on microbial functional gene structure were statistically insignifi-
cant (Tables 2 & 3). This result indicated that plant properties, especially
vegetation type and plant diversity, are not good to inform soil micro-
bial functional structure in SBFs, regardless of the obvious trophic link-
ages between plants (producers) and microorganisms (decomposers).
Similar findings were found in two previous studies that also targeted
on soil microbial functional structure of Chinese subtropical forests
(Ding et al., 2015a,b). Owing to the limited measurements of plant-
related variables, we should bear in mind that this study only evaluated
the effects of plant community as a whole, rather than individual plant
species. Other plant-related variables, e.g., plant litter, dominant tree
species, plant genotype, and plant phylogenetic diversity, have been re-
ported to impact soil microbial communities (Berg and Smalla, 2009;
Prescott and Grayston, 2013; Purahong et al., 2016; Schulz et al.,
2012), and should be concluded in future studies to better interpret
plant effects.

As expected, edaphic variables, including total S, organic C, plant
available P, soil pH, and total K, were revealed as better indicators of
soil microbial functional capabilities in SBFs than plant-related variables
(Tables 2 & 3). These results indicated that soil properties including soil
pH and nutrient content, rather than plant properties, strongly affected
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soil microbial functional structure in SBFs. Soil microbial functional
structures under different vegetation types had different environmental
indicators (Table 2), implying different mechanisms underlying their
formation. For example, soil total S, which was approximately two
times lower in the DBF than in the other two vegetation types
(Table S1), was the indicator of microbial functional structure of the
DBF (Table 2). These results indicated that soil total S was more limited
in the DBF, and such deficiency could strongly influence soil microbial
community at the functional gene level. Soil S availability is determined
by both microorganisms and plants, as microorganisms mineralize
organic S and uptake S for biomass, and plants provide litter containing
organic S into soil and uptake S for growth andproduction (Kumar et al.,
2018). According to a previous survey of forests, plant leaf S content of
DBFs (2.7 ± 0.5 mg g−1) is significantly higher than that of MBFs
(1.0 ± 0.1 mg g−1) and EBFs (0.8 ± 0.1 mg g−1) (Wu et al., 2017).
Therefore, it is highly likely that lower soil total S in the DBF results
from larger S uptake of plants. Likewise, soil pH and soil total K, both sig-
nificantly higher in the EBF than in others (Table S1), strongly influ-
enced the microbial functional structure under the EBF (Table 2). It is
not surprising to detect the importance of soil pH since this edaphic var-
iable has been revealed as a driving force of soil microbial communities
at the global scale, especially bacterial communities (Fierer and Jackson,
2006). However, the importance of soil total K suggested that K
element, which has long been understudied in comparison with N and
P elements (Tripler et al., 2006), may play critical roles in maintaining
soil microbial functional structure in forest ecosystems.

The predominant effects of edaphic variables in shaping soil micro-
bial functional structure have also been demonstrated previously
(Ding et al., 2015a,b). For example, quantity and quality of soil organic
matters were revealed as the best indicators of soil microbial functional
structure in two subtropical forests in Shennongjia Mountain (Ding
et al., 2015b). Plant community, soil, and microbial community form a
complex system with a variety of microhabitats and physicochemical
gradients (Torsvik and Øvreås, 2002), and one particularly intriguing
question is to what degree plant community influences microbial com-
munity (Prescott and Grayston, 2013). From the perspective of func-
tional structure, our results indicated that plant and microbial
communities were not directly linked but linked through soil habitats.
Soil served as a bridge between these two ecosystem components: Ac-
cumulated nutrient resources in the forms of litter and root exudates
are released by plant communities into the soil, which change soil phys-
icochemical properties (such as soil pH and nutrient content); Accord-
ingly, microbial communities change the functional structure to adapt
soil habitats and participate a range of nutrient cycling processes.

5. Conclusions

This study provides a direct quantification of microbial functional
gene profiles in three typical vegetation types of SBFs (i.e., a DBF, a
MBF, and an EBF). In conclusion,we found significantly different soilmi-
crobial functional traits including composition, diversity, relative abun-
dance, and network topology of functional genes among forests. To our
surprise, plant-related variables (i.e., vegetation type and diversity)
were not good indicators of soil microbial functional structure in SBFs.
Instead, edaphic variables (i.e., soil pH and nutrient contents) were
identified as better indicators of soil microbial functional structure.
This study highlights the importance of soil properties and improves
our understanding of patterns and mechanisms of soil microbial func-
tional structure in SBFs.
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