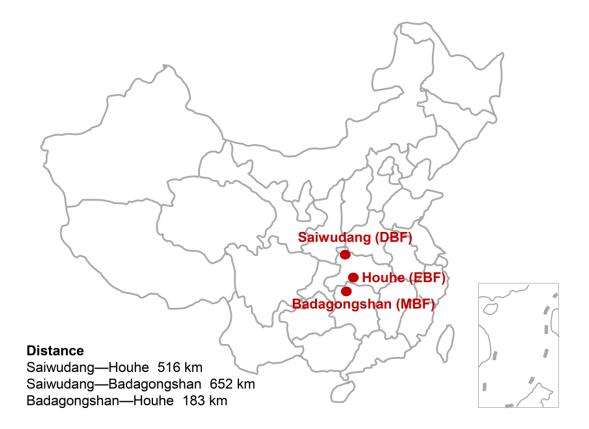
Edaphic variables are better indicators of soil microbial functional structure than plant-related ones in subtropical broad-leaved forests

Jingmin Cheng^{a,b,c}, Zhongjie Han^d, Jing Cong^e, Jingjing Yu^a, Jizhong Zhou^{b, f, g}

Mengxin Zhao^{a,c,*}, and Yuguang Zhang^{a,**}

^aResearch Institute of Forest Ecology, Environment and Protection, and the Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China ^bState Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China ^cState Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China ^dFaculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China

^eCollege of Marine Science and biological engineering, Qingdao University of Science and Technology, Qingdao, 266042, China


^fInstitute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA ^gEarth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Email addresses for all authors: Jingmin Cheng,

<u>chengjm17@mails.tsinghua.edu.cn;</u> Zhongjie Han, <u>zhongjiehan@emails.bjut.edu.cn;</u> Jing Cong, yqdh77@163.com, Jingjing Yu, <u>15034576002@163.com</u>; Mengxin Zhao, <u>zhaomengxin11@tsinghua.org.cn</u>; Jizhong Zhou, <u>jzhou@ou.edu</u>; Yuguang Zhang, <u>yugzhang@sina.com.cn</u>

Correspondence authors:

*State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China *E-mail address:* <u>zhaomengxin11@tsinghua.org.cn</u> (Mengxin Zhao) **Research Institute of Forest Ecology, Environment and Protection, and the Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China *E-mail address:* <u>yugzhang@sina.com.cn</u> (Yuguang Zhang)

Figure S1. The geographical locations of forest sites. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest.

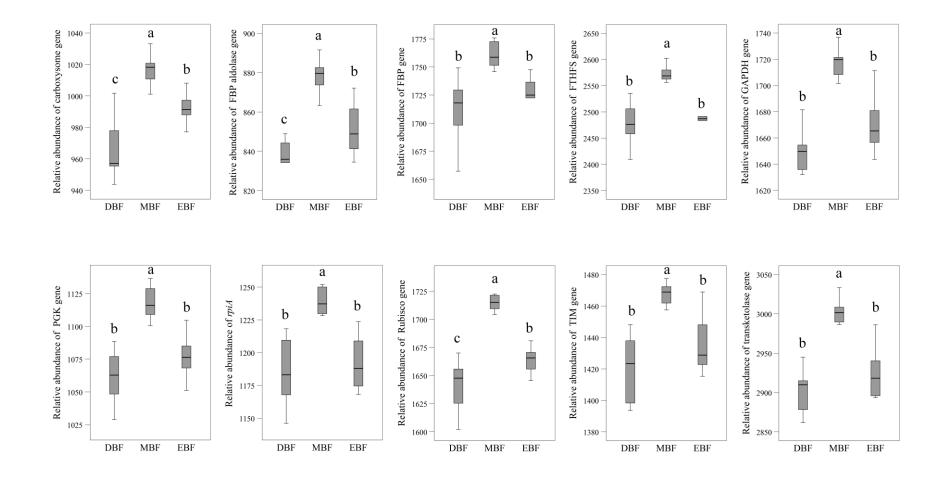
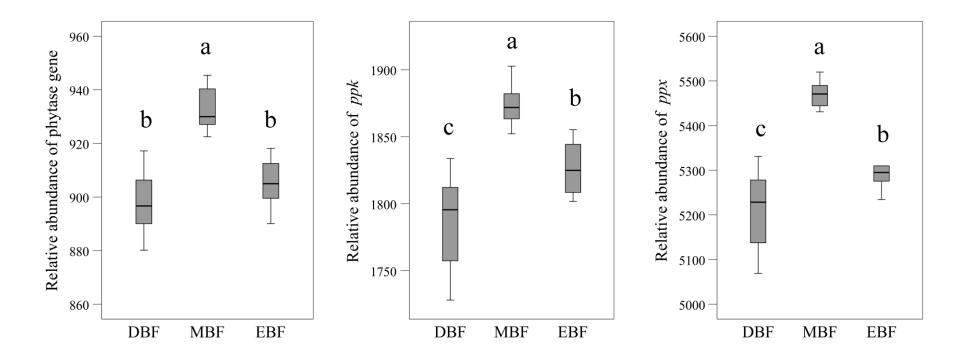
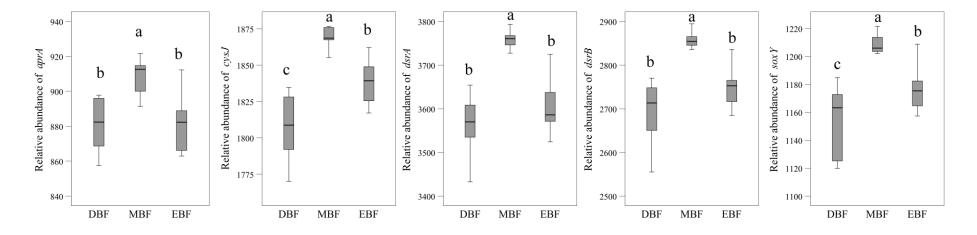
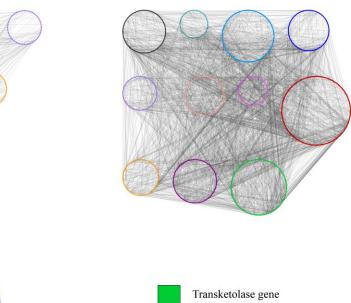


Figure S2. Comparison of microbial functional genes for C fixation among forests. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Letters including "a" "b" and "c" above bars indicate significant difference (P < 0.05, one-way ANOVA with Tukey HSD) among forests.


Figure S3. Comparison of microbial functional genes for P cycling among forests. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Letters including "a" "b" and "c" above bars indicate significant difference (P < 0.05, one-way ANOVA with Tukey HSD) among forests.

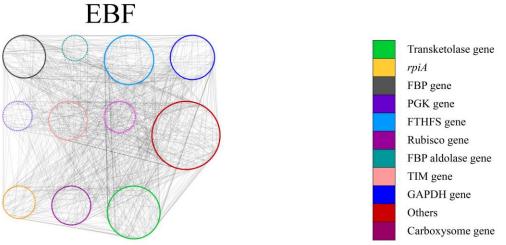
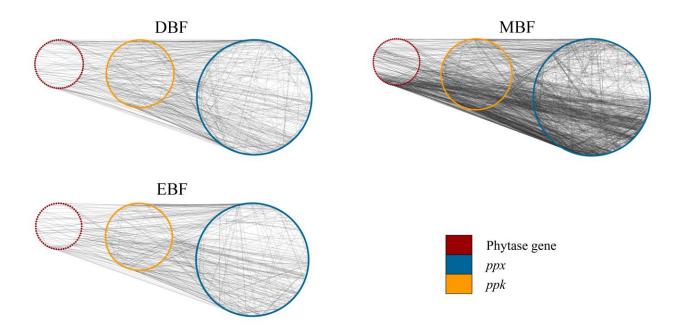


Figure S4. Comparison of microbial functional genes for S cycling among forests. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Letters including "a" "b" and "c" above bars indicate significant difference (P < 0.05, one-way ANOVA with Tukey HSD) among forests.



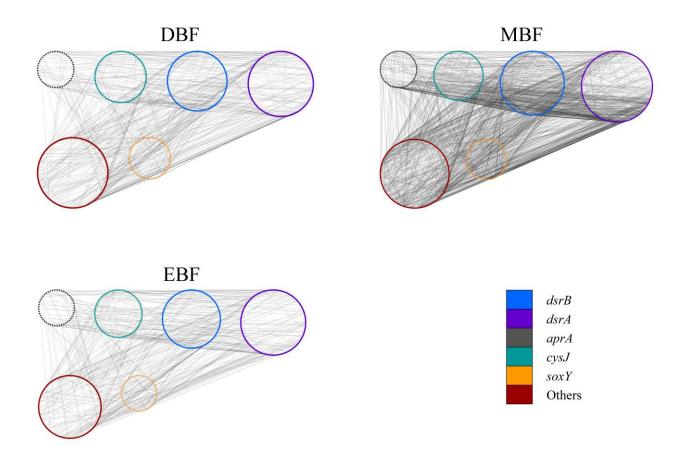


Figure S5. Topology of forest-specific networks based on microbial functional genes for C fixation. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Each dot indicates a node and each line indicates an edge. Nodes are separated by genes, which are indicated by different colors.

Figure S6. Topology of forest-specific networks based on microbial functional genes for P cycling. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Each dot indicates a node and each line indicates an edge. Nodes are separated by genes, which are indicated by different colors.

Figure S7. Topology of forest-specific networks based on microbial functional genes for S cycling. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Each dot indicates a node and each line indicates an edge. Nodes are separated by genes, which are indicated by different colors.

Table S1. Comparison of environmental variables (including plant-related and edaphic variables) among forests. DBF: the deciduous broad-leaved forest. MBF: the mixed deciduous-evergreen broad-leaved forest. EBF: the evergreen broad-leaved forest. Letters including "a" "b" and "c" next to values (mean \pm standard deviation, n = 9) indicate significant difference (P < 0.05, one-way ANOVA with Tukey HSD) among forests.

	DBF	MBF	EBF
Plant-related variables			
dIVI	0.99±0.03 a	0.52±0.10 b	0.19±0.07 c
Shannon-Wiener index	3.11±0.40 a	3.23±0.32 a	2.61±0.13 b
Richness	49±12 a	56±5 a	21±3 b
Pielou's evenness	0.80 ± 0.06	0.81 ± 0.08	0.86 ± 0.06
Edaphic variables			
Soil pH	4.48±0.48 b	4.12±0.18 b	6.72±0.72 a
Organic carbon (C) (g kg ⁻¹)	42.32±10.94 b	64.91±20.71 a	53.58±19.44 ab
Total nitrogen (N) (g kg ⁻¹)	3.19±0.87 b	5.07±1.38 a	4.72±1.36 a
Total potassium (K) (g kg ⁻¹)	0.70±0.36 b	1.13±0.16 b	1.86±0.57 a
Total phosphorus (P) (g kg ⁻¹)	0.25±0.08 b	0.59±0.07 a	0.65±0.26 a
Total sulfur (S) (g kg ⁻¹)	0.41±0.12 b	1.06±0.12 a	0.89±0.30 a
$NH4^{+}-N (mg kg^{-1})$	41.59±7.16 b	83.83±27.71 a	17.11±10.16 c
NO_3 -N (mg kg ⁻¹)	5.14±5.97 b	43.48±20.05 a	36.40±10.15 a
Alkali-hydrolysable N (mg kg ⁻¹)	291.33±70.55 b	510.19±106.37 a	417.03±89.99 a
Plant available P (mg kg ⁻¹)	8.95±3.47 a	6.74±1.62 ab	5.34±2.12 b
Fe^{3+} (g kg ⁻¹)	13.78±1.94 b	34.24±2.45 a	34.05±9.10 a